DETEKSI PERUBAHAN ZONA AGROKLIMAT SCHMIDT-FERGUSON MENGGUNAKAN SISTEM INFORMASI GEOGRAFIS DI KABUPATEN GORONTALO
Abstract
Abstrak: Penelitian ini menggunakan SIG untuk menganalisis pergeseran zona agroklimat berdasarkan Klasifikasi Schmidt-Ferguson di Kabupaten Gorontalo. Klasifikasi iklim Schmidt-Ferguson diestimasi menggunakan data curah hujan bulanan. Untuk setiap stasiun hujan dari tahun 1981 sampai 2020 dihitung jumlah Bulan Basah (BB), Bulan Kering (BK), dan Bulan Lembab (BL) selama 10, 20, dan 40 tahun. Kabupaten Gorontalo terdeteksi memiliki lima tipe iklim, yaitu: B, C, D, E, dan F. Tipe C mendominasi di stasiun pengamatan selama periode pengamatan 10 dan 20 tahun. Ada kecenderungan luas tipe C menurun sedangkan luas tipe D bertambah, dan iklim kering tipe E dan F berpotensi meningkat. Pemetaan zonasi iklim mempengaruhi sosial ekonomi masyarakat dalam perencanaan pertanian, khususnya pengelolaan lahan dan jenis tanaman. Hasil zonasi iklim yang terdeteksi perlu diverifikasi dengan teknologi penginderaan jauh menggunakan data citra satelit. Hal ini diperlukan karena kelemahan mendasar klasifikasi iklim adalah batas tipe iklim tidak sesuai dengan batas lanskap.
Abstract: This study uses GIS to analyze shifts in agro-climatic zones based on the Schmidt-Ferguson Classification in Gorontalo District. The Schmidt-Ferguson climate classification is estimated using monthly rainfall data. For each rain station from 1981 to 2020, the number of wet months (BB), dry months (BK), and humid months (BL) is calculated for 10, 20, and 40 years. Gorontalo District was detected to have five climate types, namely: B, C, D, E, and F. Type C dominated at observation stations during the 10 and 20-year observation period. There is a tendency for the area of type C to decrease while the area of type D increases, and the dry climate types E and F have the potential to increase. Climate zoning mapping affects the socio-economic community in agricultural planning, especially land management and plant types. The detected climate zoning results need to be verified with remote sensing technology using satellite imagery data. This is necessary because the fundamental weakness of climate classification is that the climate-type boundaries do not match the landscape boundaries.
Keywords
Full Text:
PDFReferences
Alfiandy, S., Hadid, A., & Syakur, A. (2021). Pergeseran Zonasi Agroklimat di Wilayah Banggai Provinsi Sulawesi Tengah Akibat Perubahan Iklim. Buletin GAW Bariri, 2(1). https://doi.org/10.31172/bgb.v2i1.47
As-syakur, A. R., Suarna, I. W., Rusna, I. W., & Dibia, I. N. (2011). Pemetaan Kesesuaian Iklim Tanaman Pakan serta kerentanannya terhadap Perubahna Iklim dengan Sistem Informasi Geografi (SIG) di Provinsi Bali. Pastura, 1(1).
Avia, L. Q. (2019). Change in rainfall per-decades over Java Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 374(1), 012037. https://doi.org/10.1088/1755-1315/374/1/012037
Azizah, S. N. (2020). Proyeksi Klasifikasi Iklim Oldeman Pulau Jawa Berdasarkan Skenario Perubahan Iklim [Skripsi]. Institut Pertanian Bogor.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214
BMKG. (2022). Prakiraan Musim Kemarau 2022 di Indonesia. Badan Meteorologi, Klimatologi, Dan Geofisika, 1–44.
Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., Wuepper, D., Montanarella, L., & Ballabio, C. (2020). Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences of the United States of America, 117(36). https://doi.org/10.1073/pnas.2001403117
Chen, F.-W., & Liu, C.-W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 209–222. https://doi.org/10.1007/s10333-012-0319-1
Cui, D., Liang, S., & Wang, D. (2021). Observed and projected changes in global climate zones based on Köppen climate classification. WIREs Climate Change, 12(3). https://doi.org/10.1002/wcc.701
de Castro, M., Gallardo, C., Jylha, K., & Tuomenvirta, H. (2007). The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Climatic Change, 81(S1), 329–341. https://doi.org/10.1007/s10584-006-9224-1
DNPI. (2011). Pemetaan Kerentanan Di Daerah Provinsi Serta Inventarisasi Kebijakan Dan Kelembagaan Dalam Rangka Antisipasi Dampak Perubahan Iklim. Dewan Nasional Perubahan Iklim. Kementerian BUMN, 1–38.
Hawkins, E. (2011). Our evolving climate: Communicating the effects of climate variability. Weather, 66(7). https://doi.org/10.1002/wea.761
Irwandi, H., Syamsu Rosid, M., & Mart, T. (2019). Identification of the El Niño Effect on Lake Toba’s Water Level Variation. IOP Conference Series: Earth and Environmental Science, 406(1), 012022. https://doi.org/10.1088/1755-1315/406/1/012022
Jylhä, K., Tuomenvirta, H., Ruosteenoja, K., Niemi-Hugaerts, H., Keisu, K., & Karhu, J. A. (2010). Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather, Climate, and Society, 2(2). https://doi.org/10.1175/2010WCAS1010.1
King, M., Altdorff, D., Li, P., Galagedara, L., Holden, J., & Unc, A. (2018). Northward shift of the agricultural climate zone under 21st-century global climate change. Scientific Reports, 8(1), 7904. https://doi.org/10.1038/s41598-018-26321-8
Koem, S., Lahay, R. J., & Nasib, S. K. (2022). The sensitivity of meteorological drought index towards El Nino-Southern Oscillation. IOP Conference Series: Earth and Environmental Science, 1089(1), 012005. https://doi.org/10.1088/1755-1315/1089/1/012005
Koem, S., & Rusiyah. (2017). Monitoring of Drought Events in Gorontalo Regency. IOP Conference Series: Earth and Environmental Science, 98, 012053. https://doi.org/10.1088/1755-1315/98/1/012053
Koem, S., & Rusiyah. (2018). Karakteristik Spasiotemporal Kekeringan Meteorologi Di Kabupaten Gorontalo Tahun 1981-2016. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 8(3), 355–364. https://doi.org/10.29244/jpsl.8.3.355-364
Koesmaryono, Y., & Handoko. (1994). Klasifikasi Iklim. In Handoko (Ed.), Klimatologi Dasar: Landasan Pemahaman Fisika Atmosfer dan Unsur-Unsur Iklim (Edisi Kedua, pp. 1–192). Pustaka Jaya.
Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173–189. https://doi.org/10.1016/j.envsoft.2013.12.008
Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., & Ramankutty, N. (2010). Mind the gap: How do climate and agricultural management explain the “yield gap” of croplands around the world? Global Ecology and Biogeography, 19(6). https://doi.org/10.1111/j.1466-8238.2010.00563.x
Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers and Geosciences, 34(9). https://doi.org/10.1016/j.cageo.2007.07.010
Njurumana, G. N., Ginoga, K., & Octavia, D. (2020). Sustaining farmers livelihoods through community forestry in Sikka, East Nusa Tenggara, Indonesia. Biodiversitas Journal of Biological Diversity, 21(8). https://doi.org/10.13057/biodiv/d210846
Perdinan, Adi, R. F., Sugiarto, Y., Arifah, A., Arini, E. Y., & Atmaja, T. (2017). Climate regionalization for main production areas of Indonesia: Case study of West Java. IOP Conference Series: Earth and Environmental Science, 54(1), 012031. https://doi.org/10.1088/1755-1315/54/1/012031
Perdinan, Atmaja, T., Sehabuddin, U., Sugiarto, Y., Febrianti, L., & Adi, R. F. (2017). Deriving vulnerability indicators for crop production regions in Indonesia. IOP Conference Series: Earth and Environmental Science, 54, 012005. https://doi.org/10.1088/1755-1315/54/1/012005
Rahmanto, E., Rahmabudhi, S., & Kustia, T. (2022). Kajian Analisis Spasial Penentuan Tipe Iklim Menurut Klasifikasi Schmidt – Ferguson Menggunakan Metode Thiessen – Polygon di Provinsi Riau. Buletin GAW Bariri, 3(1), 35–42. https://doi.org/10.31172/bgb.v3i1.66
Rahmawati, N., & Lubczynski, M. W. (2018). Validation of satellite daily rainfall estimates in complex terrain of Bali Island, Indonesia. Theoretical and Applied Climatology, 134(1–2). https://doi.org/10.1007/s00704-017-2290-7
Saiya, H. G., Hiariej, A., Pesik, A., Kaya, E., Hehanussa, M. L., & Puturuhu, F. (2020). Dispersion of tongka langit banana in buru and seram, maluku province, indonesia, based on topographic and climate factors. Biodiversitas, 21(5). https://doi.org/10.13057/biodiv/d210529
Shortridge, J. (2019). Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Climatic Change, 157(3–4), 429–444. https://doi.org/10.1007/s10584-019-02555-x
Wiyono, J., & Sunarto. (2016). Regional Resource Management Based on Landscape Ecology in Northern Muria Peninsula, Central Java. Indonesian Journal of Geography, 48(1), 54. https://doi.org/10.22146/ijg.12467
Yasa, I. W., Sulistiyono, H., Saadi, Y., & Hartana, H. (2022). Spatial Climate Forecasting for Climatology Disaster Mitigation. Environment and Ecology Research, 10(6), 786–796. https://doi.org/10.13189/eer.2022.100613
DOI: https://doi.org/10.31764/geography.v11i2.15821
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
GEOGRAPHY : Jurnal Kajian Penelitian & Pengembangan Pendidikan
Email: [email protected] | p-ISSN 2339-2835 | e-ISSN 2614-5529
EDITORIAL OFFICE: