SYSTEMATIC LITERATURE REVIEW: POLA SPASIAL, TREN DAN DINAMIKA DEFORESTASI HUTAN DALAM PRESPEKTIF PENGINDERAAN JAUH

Marwah Noer, Muhammad Dimyati

Abstract


Abstrak: Deforestasi merupakan hal yang menjadi perhatian dunia, laju deforestasi yang kian meningkat menjadi hal yang penting dikaji pola dan penyebabnya. Memahami pola, tren, dan dinamika deforestasi sangat penting untuk mewujudkan pembangunan berkelanjutan. Penginderaan jauh merupakan teknik yang paling sering digunakan dalam memetakan perubahan penggunaan lahan atau tutupan lahan termasuk deforestasi. Review ini dipandu oleh model PRISMA (Preferred Reporting Items for Systemic Review and Meta-Analyses). Lima artikel terkait deforestasi dan penginderaan jauh ditinjau dan dibandingkan menggunakan variabel judul, kata kunci, tujuan, sumber data, variabel, lokasi, metode, dan temuan utama. Hasil systematic literature review ini adalah metode penginderaan jauh yang dipadukan dengan GIS merupaka metode yang sangat baik dan cocok untuk melihat pola spasial, tren dan dinamika deforestasi hutan. Metode ini dianggap sangat efektif karena data penginderaan jauh saat ini sudah banyak tersedia dan dapat diakses dengan mudah. Landsat merupakan citra satelit yang paling banyak digunakan dalam kajian deforestasi. Variabel umum yang digunakan dalam penelitian deforestasi adalah luas hutan, lahan terbangun, lahan pertanian/ perkebunan dan tanah kosong. Dengan mengkaji tren dan dinamika deforestasi di berbagai negara, diharapkan dapat menghambat laju deforestasi di negara tersebut dan juga diharapkan adanya kebijakan yang sesuai untuk masing-masing negara dalam memperbaiki pengelolaan hutan.


Abstract:  Deforestation is a matter of global concern. The increasing rate of deforestation is an important matter to study its pattern and causes. Understanding deforestation patterns, trends, and dynamics is essential to realizing sustainable development. Remote sensing is the most frequently used technique in mapping land use or cover changes, including deforestation. This review was guided by the PRISMA model (Preferred Reporting Items for Systemic Review and Meta-Analyses). Five articles related to deforestation and remote sensing were reviewed and compared using the variables title, keywords, objectives, data sources, variables, location, methods, and main findings. This systematic literature review shows that remote sensing combined with GIS is an excellent and suitable method for viewing spatial patterns, trends, and dynamics of forest deforestation. This method is considered very effective because currently remote sensing data is widely available and can be accessed easily. Landsat is the most widely used satellite imagery in deforestation studies. Common variables used in deforestation research are forest area, built-up land, agricultural/ plantation land, and vacant land. By studying the trends and dynamics of deforestation in various countries, it is hoped that this will inhibit the rate of deforestation in these countries and it is also hoped that appropriate policies will be developed for each country in improving forest management.


Keywords


Literature Review; Spasial; Deforestasi; Penginderaan Jauh

Full Text:

PDF

References


Ayenikafo, O. M., & Wang, Y. F. (2021). Land use/land cover changes analysis in sudano guinean region of benin. Applied Ecology and Environmental Research, 19(1), 715–726. https://doi.org/10.15666/aeer/1901_715726

Barni, P. E., Barbosa, R. I., Manzi, A. O., & Fearnside, P. M. (2020). Simulated deforestation versus satellite data in Roraima, Northern Amazonia, Brazil. Sustentabilidade Em Debate, 11(2), 78–94. https://doi.org/10.18472/SustDeb.v11n2.2020.27493

Bhatia, N., & Cumming, G. S. (2020). Deforestation and economic growth trends on oceanic islands highlight the need for meso-scale analysis and improved mid-range theory in conservation. Ecology and Society, 25(3), 1–14. https://doi.org/10.5751/ES-11713-250310

Crompton, O., Correa, D., Duncan, J., & Thompson, S. (2021). Deforestation-induced surface warming is influenced by the fragmentation and spatial extent of forest loss in Maritime Southeast Asia. Environmental Research Letters, 16(11). https://doi.org/10.1088/1748-9326/ac2fdc

Gull, S., Shah, S. R., & Dar, A. M. (2022). Assessing land use/land cover change detection of north-eastern watersheds of Kashmir valley using GIS and remote sensing techniques. Water Practice and Technology, 17(8), 1603–1614. https://doi.org/10.2166/wpt.2022.085

Helmer, E. H., Ruzycki, T. S., Wilson, B. T., Sherrill, K. R., Lefsky, M. A., Marcano-Vega, H., Brandeis, T. J., Erickson, H. E., & Ruefenacht, B. (2018). Tropical deforestation and recolonization by exotic and native trees: Spatial patterns of tropical forest biomass, functional groups, and species counts and links to stand age, geoclimate, and sustainability goals. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111724

Kinnebrew, E., Ochoa-Brito, J. I., French, M., Mills-Novoa, M., Shoffner, E., & Siegel, K. (2022). Biases and limitations of Global Forest Change and author-generated land cover maps in detecting deforestation in the Amazon. PLoS ONE, 17(7 July). https://doi.org/10.1371/journal.pone.0268970

Koranteng, A., Adu-Poku, I., & Zawiła-Niedwiecki, T. (2019). Landuse and land cover dynamics in the Volta River Basin surrounding APSD forest plantation, Ghana. Folia Forestalia Polonica, Series A, 61(1), 78–89. https://doi.org/10.2478/ffp-2019-0008

Meli Fokeng, R., Gadinga Forje, W., Meli Meli, V., & Nyuyki Bodzemo, B. (2020). Multi-temporal forest cover change detection in the Metchie-Ngoum Protection Forest Reserve, West Region of Cameroon. Egyptian Journal of Remote Sensing and Space Science, 23(1), 113–124. https://doi.org/10.1016/j.ejrs.2018.12.002

Musetsho, K. D., Chitakira, M., & Nel, W. (2021). Mapping land-use/land-cover change in a critical biodiversity area of south africa. International Journal of Environmental Research and Public Health, 18(19). https://doi.org/10.3390/ijerph181910164

Sedano, F., Mizu-Siampale, A., Duncanson, L., & Liang, M. (2022). Influence of Charcoal Production on Forest Degradation in Zambia: A Remote Sensing Perspective. Remote Sensing, 14(14). https://doi.org/10.3390/rs14143352

Silva-Junior, C. H. L., Buna, A. T. M., Bezerra, D. S., Costa Jr., O. S., Santos, A. L., Basson, L. O. D., Santos, A. L. S., Alvarado, S. T., Almeida, C. T., Freire, A. T. G., Rousseau, G. X., Celentano, D., Silva, F. B., Pinheiro, M. S. S., Amaral, S., Kampel, M., Vedovato, L. B., Anderson, L. O., & Aragão, L. E. O. C. (2022). Forest Fragmentation and Fires in the Eastern Brazilian Amazon–Maranhão State, Brazil. Fire, 5(3). https://doi.org/10.3390/fire5030077

Sin Foo, Y., & Numata, S. (2019). Deforestation and forest fragmentation in and around Endau-Rompin National Park, Peninsular Malaysia. Tropics, 28(2), 23–37. https://doi.org/10.3759/tropics.ms18-16

Tun, Z. N., Dargusch, P., McMoran, D. J., McAlpine, C., & Hill, G. (2021). Patterns and drivers of deforestation and forest degradation in myanmar. Sustainability (Switzerland), 13(14). https://doi.org/10.3390/su13147539

Xie, G., & Niculescu, S. (2021). Mapping and monitoring of land cover/land use (LCLU) changes in the crozon peninsula (Brittany, France) from 2007 to 2018 by machine learning algorithms (support vector machine, random forest, and convolutional neural network) and by post-classification comparison (PCC). Remote Sensing, 13(19). https://doi.org/10.3390/rs13193899

Zvobgo, L., & Tsoka, J. (2021). Deforestation rate and causes in Upper Manyame Sub-Catchment, Zimbabwe: Implications on achieving national climate change mitigation targets. Trees, Forests and People, 5. https://doi.org/10.1016/j.tfp.2021.100090




DOI: https://doi.org/10.31764/geography.v12i1.17122

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

GEOGRAPHY : Jurnal Kajian Penelitian & Pengembangan Pendidikan
Email: [email protected] | p-ISSN 2339-2835 | e-ISSN 2614-5529

 EDITORIAL OFFICE: