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 An analytical study is performed to obtain the phase description of a network of 
Leaky Integrate-and-Fire (LIF) neurons. We start by discussing the behaviour of 
single LIF neuron in the presence of a constant current and then derive the 
corresponding phase oscillator model for some parameters setup. In the case of two 
identical LIF neurons where the interactions are ruled by the weak pulse input, we 
determine the analytical expression for the phase response curve. Next, we extend 
the phase reduction principles to a generic case of N networks of identical LIF 
neurons. The final model of so-called phase oscillators is widely used to study 
synchronization in many natural systems. Through numerical simulations, we find 
an agreement between the LIF neurons and the phase oscillators model.  
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A. INTRODUCTION  

The neuroscientists employ the mathematical models mainly to understand the brain 

activities from a cellular to the network level. Various models have been introduced to explain 

the neuron dynamics namely the Hodgkin-Huxley model (Hodgkin & Huxley, 1952), FitzHugh-

Nagumo systems (FitzHugh, 1961), including Leaky Integrate-and-Fire (LIF) neuron (Gerstner, 

Kistler, Naud, & Paninski, 2014). 

The four-dimensional nonlinear Hodgkin-Huxley model describes quantitatively the 

initiation and propagation of action potential. It helps to understand the brain functionalities 

such as ion channels modulation, the circumstances which control both rate and timing of 

action potential, and the neural coding and information processing (Catterall, Raman, Robinson, 

Sejnowski, & Paulsen, 2012). The changes on ion channel function like the opening and closing 

of sodium and potassium gating variables are the key concepts introduced by Hodgkin and 

Huxley in their model. The ion channels response may be affected through a neuromodulation 

in the axon while the gates are very sensitive to the incoming stimulus even if it is weak (Burke 

& Bender, 2019) (Mathie, Kennard, & Veale, 2003). As a consequence, the neuron shows a 

periodic firing activity when the stimulus exceeds a critical value. 
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Fitzhugh and Nagumo proposed a two-dimensional nonlinear system to explain the basic 

excitability properties as exhibited by the Hodgkin-Huxley model (Izhikevich & FitzHugh, 

FitzHugh-Nagumo model, 2006) (Sherwood, 2013). In principle, the Fitzhugh-Nagumo model 

is the extension of the Van Der Pol oscillator (see equations 2-3 in Ref. (Kanamaru, 2007)): they 

introduced the variable input current in the Van Der Pol fast equation to mimics the 

experimental injection of a current into the cell membrane. The cubic and line nullclines 

intersect at one equilibrium point and its stability is determined by a constant current. If no 

current is applied, the equilibrium is stable i.e., the neuron remains in the resting membrane 

potential and no action potential is generated. If the current is weak, the neuron is in the 

subthreshold regime and again no action potential is generated. Here, the trajectories decay 

quickly to the resting potential from a particular initial condition. On the other hand, if the 

current is sufficiently strong the equilibrium becomes unstable and the limit-cycle oscillation is 

born (Hopf-bifurcation) i.e., the neuron fires a spike periodically.  

In contrast to the Hodgkin-Huxley and Fitzhugh-Nagumo models, the LIF neuron neglects 

many physiological details of the neuron such as the activation of ion channels, the shape of the 

action potential etc. The model is one-dimensional linear differential equation describing the 

evolution of membrane potential accompanied by the reset constraint (Gerstner, Kistler, Naud, 

& Paninski, 2014). If the membrane potential passing the threshold, it suddenly jumps to the 

reset value. One can expect a regular spiking behavior in the LIF neuron as those displayed by 

the two other models, if the equilibrium point is larger than the threshold. 

It is relatively easy to simulate a single neuron, yet the task is not always trivial since it 

relays on the assumptions being considered. On the other hand, one must deal with the 

computational costs when simulating a large-scale network (Brette, et al., 2007). Fortunately, 

the emergence of periodic oscillation in the real neuron paves a way to treat the state variables, 

e.g., membrane potential as a phase. We may eliminate the electro-chemical aspects of the 

neuron and then limit ourselves only to the position of membrane potential along the periodic 

orbit, or equivalently, the phase on the circle (Izhikevich & Ermentrout, 2008). The resulting 

model of pulse-coupled phase oscillators is relatively simple and computationally efficient 

(Politi & Rosenblum, 2015). Despite of its simplicity, the model is indeed able to produce the 

rich dynamical regimes, ranging from synchronization transition (Strogatz, 2000), self-partial 

synchronization (Barabash, Belykh, Osipov, & Belykh, 2021), including irregular collective 

behaviour (Afifurrahman, Ullner, & Politi, 2021).  

The phase reduction is a commonly used method to reduce the multidimensional 

dynamical systems into one-dimensional phase equation (Nakao, 2016). In this study, we 

discuss the phase reduction process to acquire the phase representation for LIF neurons under 

the following conditions: (1) the neurons are all identical and show periodic firing; and (2) 

weak synaptic interactions. The first condition depends on the appropriate parameters selected 

for the neuron’s model being studied, while the second one ensures a small deviation of the 

neuron from its limit-cycle (Winfree, 1967). The LIF model is selected as it has been repeatedly 

investigated in the literatures and widely used both for analytical and numerical studies 

(Abbott, 1999) (Brunel & Van Rossum, 2007) (Coombes, Thul, & Wedgwood, 2012) (Godinez, 

Sossa, & Montero, 2017). Our research systematically verifies the equivalence of phase 

oscillator and integrate-and-fire models studied in (Politi & Rosenblum, 2015). 
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B. METHODS 

The research procedures consist of three steps: (1) models review; (2) phase reduction; 

and (3) simulation. More specifically, we review the mathematical model for the LIF neuron and 

discuss its behaviour in the presence of constant input. We then discuss the phase model and 

derive the corresponding phase representation for the LIF neuron. Next, we explain the effect 

of pulses to the neuron’s dynamics and transform the LIF neuron into the phase model by 

assuming a weak pulse input. Accordingly, we extend the phase reduction approach to obtain a 

simplified version of LIF neuronal networks, namely pulse-coupled phase oscillators. At the 

end, we verify the existence of collective behaviour (e.g., synchronization) through numerical 

studies. We employ the Euler forward integration scheme to simulate our model of pulse-

coupled phase oscillators and use a statistical measure to test the emergence of 

synchronization. The research procedures are summarized in Figure 1. 

 

 
Figure 1. Research process. 
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C. RESULTS AND DISCUSSION 

1. Models  

a. LIF Neuron 

The LIF model is defined by a linear differential equation describing the membrane 

potential u(t) when it is stimulated by an input current. If u(t) reaches a threshold 𝜗, the 

neuron is said to fire a spike at time ts and u(t) is instantaneously reset to ur at t = ts+. 

 

𝜏𝑚
𝑑𝑢

𝑑𝑡
= −𝑢(𝑡) + 𝑅𝐼(𝑡)        (1) 

 

combined with a reset condition   

 

𝑢(𝑡𝑠) ≥ 𝜗 ⟹ 𝑢(𝑡) = 𝑢𝑟        (2) 

 

for 𝑡 = 𝑡𝑠+
 where 𝜏𝑚 is the membrane time constant and defined as 𝜏𝑚 = 𝑅𝐶. 

In the absence of any input i.e. I(t)=0, the membrane potential u(t) decays to the resting 

membrane potential as 𝑡 → ∞. When the passive membrane potential is stimulated by a 

constant current I(t) = I0, its trajectory is obtained by integrating Eq. (1) from the initial 

value u(0) = ur. The solution for t > 0 is given by 

 

𝑢(𝑡) = 𝑅𝐼0 (1 − 𝑒
−

𝑡

𝜏𝑚).        (3) 

 

From Eq. (3) we can clearly see that 𝑢(𝑡) = 𝑅𝐼0 when 𝑡 → ∞. The neuron emits a spike, 

if the equilibrium point RI0 is larger than 𝜗, otherwise there is no spike emitted. The time 

needed by the neuron to reach the threshold can be found by solving  

 

𝑢(𝑡𝑠) = 𝜗 = 𝑅𝐼0 (1 − 𝑒
−

𝑡𝑠
𝜏𝑚)        (4) 

 

that yields 

 

𝑡𝑠 = 𝜏𝑚 ln (
𝑅𝐼0

𝑅𝐼0−𝜗
)         (5) 

 

where ts is the period of oscillation. 

In case the neuron has a refractory time tr, i.e., a time interval when the membrane 

potential stays constant and equal to the reset value after the spike has fired, the Eq. (5) 

becomes 

 

𝑇 = 𝑡𝑟 + 𝜏𝑚 ln (
𝑅𝐼0

𝑅𝐼0−𝜗
).        (6) 

 

The firing rate, 𝜈, of single neuron is given by 
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𝜈 =
1

𝑇
.           (7) 

 

b. Phase Oscillator Model 

According to Eq. (4) the neuron fires a spike periodically if the membrane potential 

exceeds a threshold (see also Figure 2). Here, we discuss a simplest mathematical model 

to represent the periodic oscillation. It approximates the behaviour of nonlinear systems 

with a multidimensional state variable by using only a single-phase variable.  

Suppose that 

 
𝑑𝒙

𝑑𝑡
= 𝑭(𝒙)          (8) 

 

is nonlinear dynamical system having a stable periodic orbit 𝛾(𝒙𝟎) with a period T0 and 

x0 is the initial condition. The only relevant parameter needed to characterise the 

oscillator is the position along the closed curve. This is naturally a phase-like variable 

and can be measured as the amount of time elapsed from the crossing of a given 

threshold. 

The phase is normally defined on the interval [0,2𝜋). Here, we rescale the time in such 

way that every point on the oscillation can be uniquely described by the phase in the 

unit interval, i.e., Φ ∈ [0,1). More precisely, the phase is defined as the time multiplied 

by the frequency (Nakao, 2016), i.e. 

 

Φ(𝑡) = 𝜈𝑡.          (9) 

 

Taking a derivative of Eq. (9) with respect to time gives 

 
𝑑Φ

𝑑𝑡
= 𝜈           (10) 

 

which defines the phase model for the system (8) (Bonnin, Corinto, & Gilli, 2010) (Nakao, 

2016) (Izhikevich, Poggio, & Sejnowski, Dynamical systems in neuroscience : the 

geometry of excitability and bursting, 2006).  

c. Phase Description for LIF Neuron: Constant Input 

Let’s give a look at the LIF neuron injected by a constant current I0. In this case, the phase 

representation for the membrane potential u(t) can be obtained by re-expressing the 

time t as a function of u in Eq. (3), i.e., 

𝑡 = 𝜏𝑚 ln (
𝑅𝐼0

𝑅𝐼0−𝑢
).         (11) 

 

Thus, by definition of the phase in Eq. (9), we have 

 

Φ(𝑢) = 𝜈𝑡 =
𝜏𝑚

𝑇0
ln (

𝑅𝐼0

𝑅𝐼0−𝑢
)        (12) 

 

where T0 is defined in Eq. (6). 
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Figure 2 illustrates the time series of membrane potential u(t) and the corresponding 

phase Φ(𝑡) for LIF model driven by a constant current. In this simulation we choose a 

set of parameters: 𝑅 = 1Ω, 𝐼0 = 20 𝑚𝑉, 𝑢𝑟 = 0 𝑚𝑠, 𝜗 = 15 𝑚𝑉, 𝜏𝑚 = 10 𝑚𝑠, 𝑡𝑟 = 0 𝑚𝑠. 

As seen, the neuron fires a spike in regular manner with a constant period. The dashed 

line represents the spike trains. The main point is that there one can see du/dt is not 

constant, while dΦ(𝑡)/dt it is, as shown in Figure 2. 

 

 
Figure 2. The time series of the membrane potential u(t) for LIF model driven by a constant input 

(upper panel) and the associates Φ(𝑡) (lower panel). 

 

2. Pulse Input 

Let’s consider two identical LIF neurons where 𝑢1(𝑡) and  𝑢2(𝑡) are used to describe the 

membrane potential for neuron 1 and 2, respectively. The evolution equation of membrane 

potentials for the two neurons is given by 

 

{
𝜏𝑚

𝑑𝑢1

𝑑𝑡
= −𝑢1(𝑡) + 𝑅𝐼1

𝑠𝑦𝑛
(𝑡)

𝜏𝑚
𝑑𝑢2

𝑑𝑡
= −𝑢2(𝑡) + 𝑅𝐼2

𝑠𝑦𝑛
(𝑡)

        (13) 

 

and combined with the reset conditions 

 

𝑢1 ≥ 𝜗 ⟹ 𝑢1 = 𝑢𝑟  

𝑢2 ≥ 𝜗 ⟹ 𝑢2 = 𝑢𝑟 .    

 

The variables 𝐼1
𝑠𝑦𝑛

(𝑡)  and 𝐼2
𝑠𝑦𝑛

(𝑡)  characterize the synaptic inputs for neuron 1 and 2, 

respectively and defined as 

 

𝐼1
𝑠𝑦𝑛(𝑡) = 𝜇 ∑ 𝑠(𝑡 − 𝑡𝑛

2)𝑛 + 𝐼0        (14) 
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𝐼2
𝑠𝑦𝑛(𝑡) = 𝜇 ∑ 𝑠(𝑡 − 𝑡𝑛

1)𝑛 + 𝐼0        (15) 

 

The synapse is excitatory (inhibitory) if 𝜇 > 0(𝜇 < 0). The sums run over nth pulse emitted 

by the neuron 1 and 2 at a time 𝑡𝑛
1 and 𝑡𝑛

2, respectively. Each pulse being emitted by a single 

neuron is described by the function s(t). The shape of a single pulse can take many forms 

including delta 𝛿 , exponential, and alpha pulses (Gerstner, Kistler, Naud, & Paninski, 2014) 

(Afifurrahman, Ullner, & Politi, Collective dynamics in the presence of finite-width pulses, 

2021), as shown in Figure 3. 

 

 
Figure 3. Time series of membrane potential for neuron 1 (black) and 2 (red)  

with the inhibitory 𝛿-pulse input. 

 

Figure 3 depicts the time trace of membrane potential for the two LIF neurons interacting 

through delta pulses. The initial conditions for the membrane potential 𝑢1,2(0) are selected 

from uniform and random distributions. The same parameter set is chosen as in isolated neuron 

driven by a constant current I0 (see Figure 2). 

A general remark concerns on the oscillatory behaviour of the neuron 1 and 2 under the 

action of a constant current I0. When 𝜇 = 0, the membrane potential for neuron 1 and 2 evolves 

independently and have equal free-running period T. We notice for the mutually inhibitory 

synapse; the firing of the presynaptic neuron kicks the membrane potential of the postsynaptic 

neuron backward by a fixed amount 𝜇  leading to a delay on the firing of the postsynaptic 

neuron. 

For mutually excitatory synapse, the firing of the presynaptic neuron kicks the membrane 

potential of the postsynaptic neuron forward which accelerates the firing rate of the 

postsynaptic neuron. Interestingly, after a finite amount of time the phases of two neuron 

locked and they start to fire simultaneously as a result of such mutual interaction. This issue 

has been initially studied rigorously by Peskin (1975), and later on generalized by Mirollo and 

Strogatz (Mirollo & Strogatz, 1990) for any two pulse-coupled oscillators with delta pulses. 
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3. Phase Description for LIF Neuron: Weak Pulse Input 

According to the Figure 3, the neuron reacts to the incoming delta pulse by shifting its 

trajectory in the opposite direction of the motion due to inhibitory synapse. If the synapse is 

excitatory, the trajectory is shifted in the same direction as the motion, causing an acceleration 

on the firing rate. The response of the oscillator to the external stimulus (e.g., pulse) is encoded 

in a phase-dependent function, called phase response curve (Canavier, 2006). 

First of all, let’s recall the phase representation of a stable periodic orbit 𝑑Φ 𝑑𝑡⁄ = 𝜈 

where 𝜈 is the frequency of oscillation. If the oscillator weakly interacts with its environment 

(weak interaction means that the periodic orbit is not substantially affected by the external 

force), then the phase model can be written as (Pikovsky, Rosenblum, & Kurths, 2001) 

 
𝑑Φ

𝑑𝑡
= 𝜈 + 𝜇𝑄(Φ, 𝜓)          (16) 

 

where 𝜓 is the phase of forcing, Q is a periodic function of both arguments, and 𝜇 is the coupling 

strength. In many cases, Q can be expressed as 

 

𝑄(Φ, 𝜓) = Γ(Φ)𝑍(𝜓)         (17) 

 

where Γ(Φ) is the PRC and  𝑍(𝜓) is the forcing function. 

Let’s give a look again at the LIF neuron. Assume that the membrane potential evolves 

according to 

 

𝜏𝑚
𝑑𝑢

𝑑𝑡
= −𝑢(𝑡) + 𝑅𝐼0 + 𝜇𝛿(𝑡 − 𝑡𝑝)        (18) 

 

with the reset condition and constant current I0. A delta pulse arrives at time tp and it kicks the 

membrane potential u by a fixed amount 𝜇. 

If 𝜇 is sufficiently small (typically 𝜇 ≪ 1), the Eq. (18) can be reduced to the phase model 

as follows 

 

𝑑𝑢

𝑑𝑡
=

−𝑢(𝑡) + 𝑅𝐼0

𝜏𝑚
+

𝜇𝛿(𝑡 − 𝑡𝑝)

𝜏𝑚
 

 

𝑑Φ

𝑑𝑡

𝑑𝑢

𝑑𝑡
=

𝜈

𝑓(𝑢)
[
−𝑢(𝑡) + 𝑅𝐼0

𝜏𝑚
+

𝜇𝛿(𝑡 − 𝑡𝑝)

𝜏𝑚
] 

 
𝑑Φ

𝑑𝑡
= 𝜈 + 𝜇 [

𝜈

−𝑢(𝑡) + 𝑅𝐼0
] 𝛿(𝑡 − 𝑡𝑝) 

 

The expression inside the square bracket (R.H.S) determines the PRC. In order to obtain 

the phase-dependent function, it is necessary to substitute u(t) given in Eq. (3) into Γ(𝑢(𝑡)) =

𝜈 (−𝑢(𝑡) + 𝑅𝐼0)⁄  and these yields 

 



318  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 2, April 2023, pp. 310-323  

 

 

Γ(Φ) =
𝜏𝑚

𝑅𝐼0𝑇0
𝑒

Φ𝑇0
𝜏𝑚           (19) 

 

while T0 is defined in Eq. (6). The internal complexity of LIF neuron is now encoded in the 

function Γ(Φ). Notice that there are alternative ways to derive the PRC for the LIF model (see 

(Abbott & Vreeswijk, Asynchronous states in networks of pulse-coupled oscillators, 1993) 

(Lewis & Rinzel, 2003) for further references). 

 

4. Networks of Pulse-Coupled Phase Oscillators 

Now we extend the phase reduction approach to N system sizes.  First, consider a 

population of N network of identical LIF neurons. The evolution of the membrane potential of 

the jth neuron (j = 1, 2, …, N) is given by 

 

𝜏𝑚
𝑑𝑢𝑗

𝑑𝑡
= −𝑢𝑗(𝑡) + 𝑅𝐼𝑗

𝑠𝑦𝑛
(𝑡)         (20) 

 

with the reset condition 𝑢𝑗 ≥ 𝜗 ⟹ 𝑢𝑗 = 𝑢𝑟 . 

Analogous to the case of two neurons, the variable 𝐼𝑗
𝑠𝑦𝑛

(𝑡) can be defined as 

 

𝐼𝑗
𝑠𝑦𝑛(𝑡) = 𝜇

1

𝑁
∑ 𝐺𝑗,𝑘

𝑁
𝑘=1 ∑ 𝑠(𝑡 − 𝑡𝑛

𝑘)𝑛 + 𝐼0,     𝑘 ≠ 𝑗      (21) 

 

where I0 is the input current. The connectivity from the presynaptic neuron k to the 

postsynaptic neuron j is defined by a matrix G where Gj,k = 1 if 𝑘 → 𝑗  is active, and Gj,k = 0 

otherwise. 

The first sum on the R.H.S is performed over all presynaptic neurons (k = 1, 2, …, N), while 

the second sum runs over nth pulse emitted by the kth neuron at times 𝑡𝑛
𝑘 . The scaling factor 

1/N is important to keep the expected input finite when N goes to infinity. In principle, the 

transformation of Eq. (20) to the phase oscillators can be done by following the same procedure 

as described in the section 1.3. Doing so, we obtain  

 
𝑑Φ𝑗

𝑑𝑡
= 𝜈 + 𝜇Γ(Φ𝑗)

1

𝑁
∑ 𝐺𝑗,𝑘 ∑ 𝑠(𝑡 − 𝑡𝑛

𝑘)𝑛
𝑁
𝑘=1 ,     𝑘 ≠ 𝑗     (22) 

 

where Γ(Φ𝑗) has already defined in Eq. (19). We refer to the model as pulse-coupled phase 

oscillators. In comparison to the original LIF model in Eq. (20), each neuron is now 

characterized by the phase Φ𝑗 ≤ 1. If Φ𝑘  passed a threshold Φ𝑡ℎ = 1, it is reset to the value 

Φ𝑟 = 0 and enters a refractory time tr. At the same time, the nth pulse is emitted and sent to the 

neuron j at time 𝑡𝑛
𝑘 . 
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5. Simulations 

a. Setup 

Our object of study is N pulse-coupled phase oscillators defined in Eq. (22). We perform 

the Euler algorithm in C programming languages with the integration time step ∆𝑡 =

10−3. The table below highlights all parameters being used for the simulation, as shown 

in Table 1. 

 

Table 1. All Parameters Being Used for the Simulation 

LIF neurons (original model) 
Pulse-coupled phase oscillators (simplified 

version) 
𝜗 = 15 𝑚𝑉 Φ𝑡ℎ = 1 
𝑡𝑟 = 0.01 𝑚𝑠 𝑡𝑟 = 0.01 
𝑢𝑟 = 0 𝑚𝑠 Φ𝑟 = 0 
𝐼0 = 20 𝑚𝑉 

 𝑇 = 𝑡𝑟 + 𝜏𝑚 ln (
𝑅𝐼0

𝑅𝐼0−𝜗
). 

 𝜈 =
1

𝑇
 

 Γ(Φ𝑗) =
𝜏𝑚

𝑅𝐼0𝑇
𝑒

Φ𝑗𝑇

𝜏𝑚  

 

𝑅 = 1 Ω 
𝜏𝑚 = 10 𝑚𝑠 

𝜇 > 0 (Mirollo & Strogatz, 1990) 𝜇 > 0 (Mirollo & Strogatz, 1990) 
𝐺𝑗,𝑘 = 1 for all 𝑗 ≠ 𝑘 (Mirollo & Strogatz, 

1990) 

𝐺𝑗,𝑘 = 1 for all 𝑗 ≠ 𝑘 (Mirollo & Strogatz, 1990) 

𝑠(𝑡) = 𝛿(𝑡) pulse (Mirollo & Strogatz, 1990) 𝑠(𝑡) = 𝛿(𝑡) pulse (Mirollo & Strogatz, 1990) 

 

Notice that, the phase-response curve Γ(Φ𝑗) is the same for all neurons and its value 

depends on the parameters imposed in the original LIF neuron. Furthermore, we assume 

that the neurons interact to its neighbourhoods through 𝛿 pulses. 

b. Statistical Measure 

The degree of synchrony in a large population of neurons is measured based on the 

fluctuations of the global variable (e.g., the average phase). The formula is given by 

(Golomb D. , 2007). 

 

𝜎2 ≡
⟨Φ⟩2

−⟨Φ⟩
2

⟨Φ2−Φ
2

⟩
          (23) 

 

where ⟨∘⟩ represents an ensemble average, while the over-bar is a time average. 

The numerator is the variance of the ensemble average 

 

⟨Φ⟩(𝑡) =
1

𝑁
∑ Φ𝑗(𝑡)𝑁

𝑗=1         (24) 

 

while the denominator is the ensemble mean of the single-neuron’s variance. 

If the neurons in the population fire in asynchronized manner, then 𝜎 = 0. However, if 

all those neurons fire in complete synchrony, exactly at the same time, then 𝜎 = 1. If the 

neurons are firing synchronously but not in a complete synchronization, then the 
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neurons are said to be partially synchronized. Here, the order parameter is strictly larger 

than 0 and smaller than 1.  

c. Numerical Analysis 

We simulate a network of N = 100 phase oscillators with all-to-all connectivity, i.e., 𝐺𝑗,𝑘 =

1 for every 𝑗 ≠ 𝑘 while the coupling strength is set to 𝜇 = 0.2. The initial conditions are 

selected randomly from a uniform distribution within the unit interval Φ𝑗(0) ∈ [0,1].  

The first two panels in Figure 4 show the time series of Φ1 and  Φ3 out of 100 oscillators, 

respectively. It is clear that the two oscillators fire a spike exactly at the same time and 

follow periodic dynamics with a period approximately 𝑇 ≈ 13.9 . The value fits the 

formula given in the Eq (6) for LIF neuron. On top of that, the ensemble average 〈Φ〉(𝑡) 

in the lower panel shows the same scenario as the two other cases, meaning that all 

oscillators are identical, as shown in Figure 4. 

 

 
Figure 4. Time series for Φ1(𝑡), Φ3(𝑡), and 〈Φ〉(𝑡). 

 

In order to be more quantitative, we compute 𝜎(𝑡) for a longer time span (see Figure 5). 

There one can see the degree of synchronization settles around 𝜎(𝑡 → ∞) ≈ 1, which 

means that all neurons are completely synchronized. The finding is in line with the 

synchronous behaviour studied originally in a single population of LIF neurons by 

(Mirollo & Strogatz, 1990).  

A detail stability analysis of synchronous states in the generic model of phase oscillators 

is investigated by (Afifurrahman, Ullner, & Politi, Stability of synchronous states in 

sparse neuronal networks, 2020). In this study, however, we limit ourselves on testing 

the emergence of synchronization to confirm the validity of the model being studied. 

In addition, the pulse-coupled phase oscillators (22) can be examined by imposing a 

scaling 𝑁 → ∞. In fact, a true synchronous state is independent of the system size N 

(Golomb, Hansel, & Mato, 2001). The black and red curves in Figure 5 correspond to N = 

100 and N = 200, consecutively. As seen, both synchrony measures are relatively close 

to 1, which indicates that the synchronous state is preserved, as shown I Figure 5. 
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Figure 5. Time evolution of synchrony measure 𝜎(𝑡) for different system sizes N. 

 

Interestingly, the degree of synchronization 𝜎(𝑡) converges to 1 as N grows (the red 

curve is on the top of black one) suggesting the existence of a large number but finite N 

at which 𝜎 = 1. This observation is consistent with the law of large numbers where the 

precision is proportional to the system sizes (Weisstein, 2023). 

 

D. CONCLUSION AND SUGGESTIONS 

In this paper, we have described the implementation of phase reduction principles to 

obtain the phase oscillators model for LIF neurons. First, we consider simple case where a 

single neuron is injected by a constant current. We construct the variable time as a function of 

membrane potential, i.e., 𝑡(𝑢) and use the definition of the phase to obtain Φ(𝑡). In the second 

case, we consider the dynamics of two identical neurons interacting through 𝛿 pulses. While 

assuming the two neurons are weakly coupled, we derive the exponential shape of phase 

response curve for LIF neuron. Next, we extend these formulations for any N networks of LIF 

neurons and derive the corresponding phase oscillators model.  

In the last step, we perform the numerical simulation to validate the phase oscillators 

model of Eq. (22) and compare the results with the original LIF neurons by confirming the 

existence and persistence of synchronous periodic dynamics. We conclude that both models 

are indeed equivalent and recommend the phase oscillators as an alternative model to 

investigate a synchronization in the populations of neurons. However, one must take into 

account both time and computational costs when doing the simulation for a large system size. 

Finally, the question of how fit the model with the experimental data is worth to explore as this 

allows us for better understanding of the brain activity. 
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