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 One and two-compartment pharmacokinetic models with drug-drug interactions 
are proposed. Two drugs are given orally simultaneously, so that their interaction 
affects the drug absorption process and subsequently the elimination process. The 
aim of this paper is to estimate the elimination and absorption rate constants by 
evaluating the data set of time and drug concentration. This data set was divided 
into two time phases: large-time elimination phase to estimate the elimination rate 
constant, and small-time absorption phase to estimate the absorption rate 
constant. Since the models are nonlinear, the Taylor expansion is employed to so 
that the Wagner-Nelson and the Loo-Riegelman methods can be used for 
estimation. Finally, simulations were performed using the generated arbitrary data 
set of time and concentration, instead of an actual data set, to derive the solution of 
drug concentration concerning time numerically. In these simulations we 
compared the original parameter values with their estimates for the one and two-
compartment models, and we concluded that the two-compartment model 
produced better estimates than the one-compartment model. Qualitatively, the 
two-compartment model gives smaller drug concentration curve deviations 
between the original and the estimated curve compared with the one-compartment 
model. 
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A. INTRODUCTION  

Pharmacokinetics study the activity of drugs over time. There are three activities or 

processes occur once they enter the body: absorption, distribution, and elimination, 

successively. All three fundamental processes occur when drugs are administered orally, while 

the case that drugs are administered intravenously, the absorption process is omitted since the 

drugs enter directly to the blood. To investigate the drug dynamics in the body, one can consider 

the body as a number of compartments, starting from a simple single compartment to a complex 

multi compartments (Hedaya, 2012; Gössling, 1993). The single-compartment or one-

compartment model means all organs or tissues in the body are assumed to have rapid drug 

distribution.  But when a drug is distributed rapidly to some parts of the body and slowly to the 

other parts, the two-compartment model better describes the drug dynamics. The 

compartment with rapid distribution is commonly called central compartment, while the slow 

one is called peripheral compartment (Shargel, 2022; Hedaya, 2012; Gössling, 1993; Gibaldi, 

1982).  

http://journal.ummat.ac.id/index.php/jtam
mailto:dzulkarnaen@uinsgd.ac.id
mailto:1197010047@student.uinsgd.ac.id
mailto:elvise@uinsgd.ac.id
https://doi.org/10.31764/jtam.v7i4.16479


1078  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 4, October 2023, pp. 1077-1093 

 

 

A compartment model can be represented mathematically by fractional-order system 

Mtshali & Jacobs (2023); Angstmann et al. (2019); Sopasakis et al. (2018); Angstmann et al. 

(2017) but classically  it is  represented by differential equations Hedaya (2012), either a single 

or a system, that depends on how many compartments are used. The more compartments used 

the more differential equations are formed. Once a compartment model is constructed, the 

solution of drug concentration needs to be solved by some mathematical models, basically by 

separation of variables or integration factor. Savva applied the superposition methods to solve 

one and two-compartment models to obtain the drug concentration when the drug is 

administered by intermittent infusion (Savva, 2022, 2021). On the other hand, Wu et al. have 

successfully obtained the closed form solution of the pharmacokinetic models with the 

Michaelis-Menten elimination (Wu et al., 2021, 2018, 2015). Laplace transform can also be 

implemented to obtain the exact solution from a pharmacokinetic model (Rodrigo, 2022; Siva 

Rama Krishna Reddy & Narayan, 2019; Khanday et al., 2017). In addition to analytical solution, 

the numerical approach can be used to solve the pharmacokinetic compartment model such as 

the nonstandard finite difference method ( Sa’adah et al., 2020; Egbelowo, 2018; Egbelowo et 

al., 2017). 

In addition to find a solution, an estimation to some parameters in a compartment model 

is also another pharmacokinetics problem to look for, where the constant of absorption rate 

and elimination are the most common parameters to estimate. The estimation can be 

performed when time-concentration data points are given. There are some methods of how to 

do the estimation, and the two very classic and well-known methods are the residual and the 

Wagner-Nelson method Wagner & Nelson (1963), but these methods only apply for one-

compartment model. The estimation methods have then developed to allow parameter 

estimation for two-compartment models, namely Loo-Riegelman method (Loo & Riegelman, 

1968). The application of these two methods can be found in some articles (Zeng et al., 2021; 

Mahmood, 2004; Sanaka et al., 2004). For another method used to parameter estimate or make 

predictions from the pharmacokinetics model,  one can look in the following articles (Qiao et 

al., 2021; Sánchez-Dengra et al., 2021; Zeng et al., 2020; Deng & Li, 2017). 

The parameter estimations of the constant rate of elimination and absorption for one-

compartment model can be conducted by applying the Wagner-Nelson method. Meanwhile the 

Loo-Riegelman method is employed for the two-compartment model. But when two distinct 

drugs are given simultaneously and drug-drug interactions (DDIs) occur, the absorption, 

distribution or elimination processes might be affected (Neves et al., 2022; Babak et al., 2019; 

Kennedy-Dixon et al., 2015; Palleria et al., 2013). Furthermore, the presence of DDIs makes the 

model to become nonlinear which implies that the Wagner-Nelson and Loo-Riegelman cannot 

be used directly. In this article we established the one and two-compartment pharmacokinetic 

models with oral administration where DDIs occurs. The absorption and elimination rate 

constants were estimated from these models by applying Taylor expansion to the Wagner-

Nelson and the Loo-Riegelman methods. Finally, the simulations were given to compare the 

results of drug concentration dynamics between the one and two-compartment models. 
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B. METHOD 

In this article, we propose two different models of drug-drug interactions. One is the model 

with one compartment, and the second is the two-compartment model. For each compartment 

model the two parameters, which are the absorption and elimination rate constants, are 

quantitatively estimated using the data set of time versus drug concentration. Here, the data set 

is divided into two parts: the data with large time and small time. The large-time data set is 

employed first to estimate the elimination rate constant using the least square method. Then 

the small-time data set is applied for the estimation of the absorption rate constant by 

combining the Taylor expansion with the Wagner-Nelson method for the one-compartment 

model or with the Loo-Riegelman method for the two-compartment model. The reason for 

applying the Taylor expansion is to transform the nonlinear model formed by DDIs into a linear 

model so that the Wagner-Nelson and the Loo-Riegelman method can be used for the estimation. 

1. One-compartment DDIs Model 

In a one-compartment model, body is assumed to have a rapid and homogeneous drug 

distribution. Once the drug enters the body, the absorption process occurs in the 

Gastrointestinal Tract (GIT) followed by the distribution and elimination processes. When two 

drugs are administered orally and simultaneously, they first enter the GIT for absorption before 

coming into the blood plasma, where the distribution process occurs followed by the 

elimination process. Suppose two drugs are given by single doses, denoted by 𝐷1 for drug one 

and 𝐷2 for drug two, and notice that not the entire dose is completely absorbed, but there is a 

fraction 0 < 𝐹 < 1 of administered doses that will be absorbed into the systemic circulation. 

Thus, when two drugs are given, the amount of each drug that enters the systemic circulation 

can be calculated by 𝐴𝑎1,0 = 𝐹𝐷1 and 𝐴𝑎2,0 = 𝐹𝐷2. These two drugs will interact to each other 

with the constant of interaction rate 𝑘𝑖 , then are transported (by absorbing) into the blood 

plasma as a unite 𝐴 by the constant 𝑘𝑎, and finally this unite drug is eliminated from the body 

by the constant 𝑘 . These systemic processes can be easily understood through the diagram 

given in Figure 1. 

 

 
Figure 1. One-compartment model of drug-drug interactions. 

 

From this diagram, the construction of the drug dynamics mathematical model can be 

divided into two phases based on where the process takes place: The model of the two drugs 

dynamics before they enter the systemic circulation (in GIT), and the model of the unite drug 

that enters the systemic circulation, that is in the blood plasma. Begin with the first phase, the 

rate of change of the drug amount for drug one and drug two can be modelled as 

 

𝑑𝐴𝑎1

𝑑𝑡
= −𝑘𝑎𝐴𝑎1 − 𝑘𝑖𝐴𝑎1𝐴𝑎2 (1) 
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𝑑𝐴𝑎2

𝑑𝑡
= −𝑘𝑎𝐴𝑎2, (2) 

 

Respectively, where the initial values are given by 𝐴𝑎1,0 and 𝐴𝑎2,0. Here, we use grams (gr) 

for the drug amount so that {𝐴𝑎1,0, 𝐴𝑎2,0} < 1. We assume that 0 < {𝑘𝑖, 𝑘𝑎} < 1 and both drugs 

have the same constant of absorption rate, where only one drug (i.e. drug one) is affected by 

the presence of DDIs, shown by the term 𝑘𝑖𝐴𝑎1𝐴𝑎2  in (1). This means drug one is absorbed 

faster into the blood plasma than drug two. The next phase is when the two drugs have entered 

the blood plasma and become unite. The mathematical model for this stage can be specified as 

 

𝑑𝐴

𝑑𝑡
= 𝑘𝑎(𝐴𝑎1 + 𝐴𝑎2) − 𝑘𝐴, (3) 

 

where 𝐴(0) = 0 since no drug in the plasma initially but in the GIT, and 0 < 𝑘 < 𝑘𝑎 . In this one-

compartment model we estimate only the parameters of the absorption rate constant 𝑘𝑎 and 

the elimination rate constant 𝑘 by separating the data points of time-concentration into two 

phases: large and small-time phases. First, the data points at large time are used to estimate 𝑘, 

followed by the 𝑘𝑎 estimation using the small-time data points. 

a. Large-time phase 

When the time is large, the drug is considered to have completed the absorption phase, 

and only the elimination phase occurs. Therefore, the first term of the righthand side in 

equation (3) vanishes and it becomes 

 

𝑑𝐴

𝑑�̂�
= −𝑘𝐴. (4) 

 

Here we use the notation �̂� to indicate that this equation holds only for large time 𝑡. To 

estimate k in (4), we apply the least square method (Giordano et al., 2014), but the 

analytical solution must be done first. Thus, by integrating both sides of (4), we obtain 

 

𝐴(�̂�) = �̂�0𝑒−𝑘�̂� . (5) 

 

Since the data set consists of time and drug concentration instead of drug amount, the 

solution given in (5) should be in the concentration form. Knowing that 𝐴 = 𝑉𝑑𝐶, where 

𝑉𝑑 is the volume of distribution and 𝐶 denotes the drug concentration, the solution in (5) 

can be rewritten as 

 

𝐶(�̂�) = �̂�0𝑒−𝑘�̂�.       (6) 

 

Note that �̂�(0) represents the concentration values at the initial large time �̂�.  Taking the 

logarithm of both sides of (6), the equation now becomes 
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ln 𝐶(�̂�) = ln �̂�0 − 𝑘�̂�,       (7) 

 

which has linear relationship between �̂� and ln 𝐶(�̂�). The least square method now can 

be applied to estimate the elimination rate constant as well as the initial concentration, 

respectively as 

 

𝑘 = −
𝑛 ∑ �̂�𝑖 ln 𝐶𝑖

𝑛
𝑖=1 − ∑ �̂�𝑖

𝑛
𝑖=1 ∑ ln 𝐶𝑖

𝑛
𝑖=1

𝑛 ∑ �̂�𝑖
2𝑛

𝑖=1 − (∑ �̂�𝑖
𝑛
𝑖=1 )2

,     (8) 

�̂�0 = exp (
∑ �̂�𝑖

2 ∑ ln 𝐶𝑖
𝑛
𝑖=1

𝑛
𝑖=1 − ∑ �̂�𝑖 ln 𝐶𝑖

𝑛
𝑖=1 ∑ �̂�𝑖

𝑛
𝑖=1

𝑛 ∑ �̂�𝑖
2𝑛

𝑖=1 − (∑ �̂�𝑖
𝑛
𝑖=1 )2

).    (9) 

 

b. Small-time phase 

Recall that the absorption phase occurs at the beginning time drug enters the body. Thus, 

in this part the Wagner-Nelson and the Taylor expansion are implemented to estimate 

𝑘𝑎 using the small-time data points. Wagner and Nelson have calculated the fraction of 

the absorbed drug as 

 

𝐴𝑏

𝐴𝑏
∞ =

𝐶 + 𝑘[𝐴𝑈𝐶]0
𝑡

𝑘[𝐴𝑈𝐶]0
∞        (10) 

 

and the unabsorbed drug by 

 

1 −
𝐴𝑏

𝐴𝑏
∞ = 1 −

𝐶 + 𝑘[𝐴𝑈𝐶]0
𝑡

𝑘[𝐴𝑈𝐶]0
∞ . (11) 

 

Here 𝐴𝑏 and 𝐴𝑏
∞ represent the respective absorbed drug over time 𝑡 and at infinite time 

(drug has been absorbed completely), while [𝐴𝑈𝐶]0
𝑡 = ∫ 𝐶 𝑑𝑡

𝑡

0
 interpret the area under 

curve over time 𝑡. To see the derivation of (10) please see (Hedaya, 2012; Wagner & 

Nelson, 1963). Now we implement the Wagner-Nelson method to our proposed model 

for absorption phase with small 𝑡. Revisited to equation (2), we find the solution of the 

amount of drug two as 

 

𝐴𝑎2(𝑡) = 𝐴𝑎2,0𝑒−𝑘𝑎𝑡. (12) 

 

Inserting this solution to equation (1), we have 

 

𝑑𝐴𝑎1

𝑑𝑡
= −𝑘𝑎𝐴𝑎1 − 𝑘𝑖𝐴𝑎1𝐴𝑎2,0𝑒−𝑘𝑎𝑡. (13) 
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Furthermore, separating the variables Aa1 and t to each side then integrating them, we 

obtain the solution as 

𝐴𝑎1(𝑡) = 𝐴𝑎1,0 exp (−𝑘𝑎𝑡 +
𝑘𝑖𝐴𝑎2,0

𝑘𝑎

(𝑒−𝑘𝑎𝑡 − 1)). (14) 

 

Next, we need to calculate the fraction of drug remaining in the GIT, that is by 

determining the formula (𝐴𝑎1 + 𝐴𝑎2)/(𝐴𝑎1,0 + 𝐴𝑎2,0) . Since a linear form is what we 

need to ease the parameter estimation by least square method, the Taylor expansion 

must be done first. We begin with 

 

𝐴𝑎1 + 𝐴𝑎2 = 𝐴𝑎10 exp (−𝑘𝑎𝑡 +
𝑘𝑖𝐴𝑎20

𝑘𝑎

(𝑒−𝑘𝑎𝑡 − 1)) + 𝐴𝑎20𝑒−𝑘𝑎𝑡 (15) 

 

from (12) and (13). By the Taylor expansion, the exponential term in the latter equation 

can be expanded as 

 

𝑒−𝑘𝑎𝑡 = 1 − 𝑘𝑎𝑡 +
𝑘𝑎

2𝑡2

2!
−

𝑘𝑎
3𝑡3

3!
+ ⋯. (16) 

 

Suppose that 𝑘𝑎 is defined small so that 𝑘𝑎𝑡 ≪ 1 since 𝑡 is also small. This means we can 

consider that (𝑘𝑎𝑡)𝑛 ≈ 0, for 𝑛 = 2, 3,· · ·. As a result, the equation (16) can be truncated 

and becomes 𝑒−𝑘𝑎𝑡 ≈ 1 − 𝑘𝑎𝑡. The equation given in (15) now can be simplified as 

 

𝐴𝑎1 + 𝐴𝑎2 = 𝐴𝑎1,0(1 − (𝑘𝑎 + 𝑘𝑖𝐴𝑎20)𝑡) + 𝐴𝑎2,0(1 − 𝑘𝑎𝑡). (17) 

 

Recall that 𝑘𝑖 < 𝑘𝑎, 𝑡 is small and 𝐴𝑎2,0 < 1. This implies their multiplication 𝑘𝑖𝐴𝑎2,0𝑡 ≪

1, so as the term (𝑘𝑎 + 𝑘𝑖𝐴𝑎2,0)𝑡 ≪ 1 in (17).  Therefore, the Taylor expansion can be 

used again to equation (17) to obtain the more simplified equation and then make the 

equation rearrangement, we obtain 

 

𝐴𝑎1 + 𝐴𝑎2

𝐴𝑎1,0 + 𝐴𝑎2,0
= 1 − (𝑘𝑎 +

𝑘𝑖𝐴𝑎1,0𝐴𝑎2,0

𝐴𝑎1,0 + 𝐴𝑎2,0
) 𝑡. (18) 

 

Thus, this equation defines the fraction of drug remaining in the GIT, which has the same 

meaning as the fraction of the unabsorbed drug, defined previously in (11). 

Consequently, we can combine the latter equation and (11) to obtain 

 

1 −
𝐶 + 𝑘[𝐴𝑈𝐶]0

𝑡

𝑘[𝐴𝑈𝐶]0
∞ = 1 − (𝑘𝑎 +

𝑘𝑖𝐴𝑎1,0𝐴𝑎2,0

𝐴𝑎1,0 + 𝐴𝑎2,0
) 𝑡. (19) 
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As can be seen here, the equation is linear, so the least square method can be used 

here to estimate the rate constant of absorption, formulated by 

 

 𝑘𝑎 = −

𝑛 ∑ 𝑡𝑖 (1 −
𝐶 + 𝑘[𝐴𝑈𝐶]0

𝑡

𝑘[𝐴𝑈𝐶]0
∞ )𝑛

𝑖=1 − ∑ 𝑡𝑖
𝑛
𝑖=1 ∑ (1 −

𝐶 + 𝑘[𝐴𝑈𝐶]0
𝑡

𝑘[𝐴𝑈𝐶]0
∞ )𝑛

𝑖=1

𝑛 ∑ 𝑡𝑖
2𝑛

𝑖=1 − (∑ 𝑡𝑖
𝑛
𝑖=1 )

2 −
𝑘𝑖𝐴𝑎1,0𝐴𝑎2,0

𝐴𝑎1,0 + 𝐴𝑎2,0
.  (20) 

 

2. Two-compartment DDIs Model 

In the two-compartment model, the absorbed drugs are transported into the systemic 

circulation which has two classes of distribution speed. One class is the tissues or organs that 

have rapid distribution, represented by central compartment. The other one is the group of 

tissues with slow distribution, represented by peripheral compartment. The entire process of 

two orally given drugs from absorption to elimination is shown by the diagram in Figure 2. 

 

 
Figure 2. Two-compartment model of drug-drug interactions. 

 

From this diagram, the mathematical model for the elimination phase can be established as 

a system of two differential equations, governed by 

 
𝑑𝐴𝑐

𝑑𝑡
= −(𝑘12 + 𝑘)𝐴𝑐 + 𝑘21𝐴𝑝 + 𝑘𝑎(𝐴𝑎1 + 𝐴𝑎2), 

𝑑𝐴𝑝

𝑑𝑡
= 𝑘12𝐴𝑐 − 𝑘21𝐴𝑝, 

(21) 

 

where 𝐴𝑐(0) = 𝐴𝑝(0) = 0. In this model 𝑘12  and 𝑘21  denote the transfer rate constant from 

central to peripheral compartment and from peripheral to central compartment, respectively, 

𝐴𝑐 and 𝐴𝑝 represent the drug amount in the central and peripheral compartment, respectively. 

Meanwhile the mathematical model for absorption phase remains unchanged, given by (1) and 

(2). Like in the one-compartment model, in this part we estimate 𝑘 and 𝑘𝑎, whereas 𝑘𝑖  is given. 

On the other hand, 𝑘12 and 𝑘21 are also estimated as the requirement to estimate 𝑘.  Now the 

data points of time-concentration are broken down into large and small-time phases. 

a. Large-time phase  

The goal of this part is finding the formula for the transfer rate constants 𝑘12 and 𝑘21 so 

that 𝑘  can be estimated. Note that the steps for estimation follow the reference 

(Giordano et al., 2014; Shargel L, Wu-Pong S, 2022). Therefore, the explanation given 

here will not be detailed as this reference are clear enough to understand the step-by-

step estimation. As explained earlier that there is only an elimination process when the 

time is large.  This makes the model given in (21) become 
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𝑑𝐴𝑐

𝑑�̂�
= −(𝑘12 + 𝑘)𝐴𝑐 + 𝑘21𝐴𝑝 

𝑑𝐴𝑝

𝑑�̂�
= 𝑘12𝐴𝑐 − 𝑘21𝐴𝑝, 

(22) 

 

where �̂� indicates the large time 𝑡. Note that when the elimination phase begins, there 

will be some amount of drugs that has entered the systemic circulation, and here we 

assume that some amount of drugs has entered the central compartment, but not yet the 

peripheral compartment. Hence, we have 𝐴𝑐(0) = 𝐴𝑐,0  and 𝐴𝑝(0) = 0  as the initial 

values for the system (22). The first step we need to take for estimation is to find an 

analytical solution of (22) using the Laplace transform. Representing the system (22) 

into the matrix 

 

[
𝐴𝑐

′

𝐴𝑝
′ ] = [

−(𝑘12 + 𝑘) 𝑘21

𝑘12 −𝑘21
] [

𝐴𝑐

𝐴𝑝
], (23) 

 

or simply writing 𝐴′(𝑡) = 𝐾𝐴(𝑡) with 𝐴(𝑡) = [
𝐴𝑐

𝐴𝑝
] and 𝐾 = [

−(𝑘12 + 𝑘) 𝑘21

𝑘12 −𝑘21
], we can 

express its Laplace transform as 

 

ℒ(𝐴(𝑠)) = (𝑠 − 𝐾)−1ℒ(𝐴(0)), (24) 

 

Where 

 

(𝑠 − 𝐾)−1 =
1

(𝑠 + 𝛼)(𝑠 + 𝛽)
[
𝑠 + 𝑘21 𝑘21

𝑘12 𝑠 + 𝑘12 + 𝑘
].  

 

The parameters α and β in the latter equation are called the hybrid constants, where 

their addition and multiplication can be calculated by 

 

𝛼 + 𝛽 = 𝑘12 + 𝑘21 + 𝑘 

𝛼𝛽 = 𝑘21𝑘. 
(25) 

 

Performing the inverse Laplace transform of equation (24), we obtain the solution as 

 

𝐴𝑐(�̂�) =
�̂�0(𝛼 − 𝑘21)

(𝛼 − 𝛽)
𝑒−𝛼�̂� +

�̂�0(𝑘21 − 𝛽)

(𝛼 − 𝛽)
𝑒−𝛽�̂� ,

𝐴𝑝(�̂�) =
�̂�0𝑘12

(𝛼 − 𝛽)
𝑒−𝛼�̂� +

�̂�0𝑘21

(𝛼 − 𝛽)
𝑒−𝛽�̂� 

(26) 

 

or in terms on concentration, we have 

 

𝐶𝑐(�̂�) = 𝑃𝑒−𝛼�̂� + 𝑄𝑒−𝛽�̂� , 𝐶𝑝(�̂�) = 𝑅𝑒−𝛼�̂� + 𝑆𝑒−𝛽�̂�. (27) 
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Where 

 

𝑃 =
�̂�0(𝛼 − 𝑘21)

(𝛼 − 𝛽)
, 𝑄 =

�̂�0(𝑘21 − 𝛽)

(𝛼 − 𝛽)
, 𝑅 =

�̂�0𝑘12

(𝛼 − 𝛽)
, 𝑆 =

�̂�0𝑘21

(𝛼 − 𝛽)
. (28) 

 

The first term of each equation in (27) indicates the elimination phase, while the second 

term is the distribution phase. Thus 𝛼  and 𝛽  denote the coefficient constants of the 

elimination and distribution phases, where 𝛼 < 𝛽 since the distribution process is faster 

than the elimination process. To estimate 𝑘, 𝑘12 and 𝑘21, we only use the first equation 

of (27) since the data collection is only available via blood plasma (central compartment). 

In other words, before we estimate these three rates, we first need to calculate 𝛼, 𝛽, 𝑃 

and 𝑄. Observe that 𝛼 < 𝛽 which implies 𝑒−𝛽�̂� ≈ 0 due to the large �̂�. Thus, we have 

 

𝐶𝑐(�̂�) = 𝑃𝑒−𝛼�̂�. (29) 

       

Taking logarithms to both sides to linearize the equation as 

 

ln 𝐶𝑐(�̂�) = ln 𝑃 − 𝛼�̂�,  

        

and applying the least square method we can calculate α and P as 

 

 𝛼 = −
𝑛 ∑ �̂�𝑖 ln 𝐶𝑐,𝑖

𝑛
𝑖=1 −∑ �̂�𝑖

𝑛
𝑖=1 ∑ ln 𝐶𝑐,𝑖

𝑛
𝑖=1

𝑛 ∑ �̂�𝑖
2𝑛

𝑖=1 −(∑ �̂�𝑖
𝑛
𝑖=1 )

2 , 𝑃 = exp (
∑ �̂�𝑖

2 ∑ ln 𝐶𝑐,𝑖
𝑛
𝑖=1

𝑛
𝑖=1 −∑ �̂�𝑖 ln 𝐶𝑐,𝑖

𝑛
𝑖=1 ∑ �̂�𝑖

𝑛
𝑖=1

𝑛 ∑ �̂�𝑖
2𝑛

𝑖=1 −(∑ �̂�𝑖
𝑛
𝑖=1 )

2 ). (30) 

 

Next, to calculate 𝛽 and 𝑄, the residual concentration between (29) and (27) needs to be 

calculated first by 

 

Res = −𝑄𝑒−𝛽�̂�.  

 

Likewise, we can linearize the equation as 

 

ln Res = ln(−𝑄) − 𝛽�̂�, (31) 

 

and use the least square method to calculate 

 

𝛽 = −
𝑛 ∑ �̂�𝑖 ln Res𝑖

𝑛
𝑖=1 − ∑ �̂�𝑖

𝑛
𝑖=1 ∑ ln Res𝑖

𝑛
𝑖=1

𝑛 ∑ �̂�𝑖
2𝑛

𝑖=1 − (∑ �̂�𝑖
𝑛
𝑖=1 )2

, (32) 

𝑄 = − exp (
∑ �̂�𝑖

2 ∑ ln Res𝑖
𝑛
𝑖=1

𝑛
𝑖=1 − ∑ �̂�𝑖 ln Res𝑖

𝑛
𝑖=1 ∑ �̂�𝑖

𝑛
𝑖=1

𝑛 ∑ �̂�𝑖
2𝑛

𝑖=1 − (∑ �̂�𝑖
𝑛
𝑖=1 )2

). (33) 

 

Since the values α, β, P, Q have been given in (30) to (33), we can finally estimate k21, k, 

k12 from the equations (25) and (28), sequentially as 
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𝑘21 =
𝑃𝛽 + 𝑄𝛼

𝑃 + 𝑄
, 𝑘 =

𝛼𝛽

𝑘21
, 𝑘12 = 𝛼 + 𝛽 − 𝑘21 − 𝑘.        (34) 

 

b. Small-time phase 

The Wagner-Nelson method to estimate the constant absorption rate cannot be used in 

the two-compartment model. Instead, the development method, namely Loo-Riegelman 

method, is used. First of all, the fraction of unabsorbed drug is calculated by 

 

1 −
𝐴𝑏

𝐴𝑏
∞ = 1 −

𝐶𝑐 + 𝐶𝑝 + 𝑘[𝐴𝑈𝐶]0
𝑡

𝑘[𝐴𝑈𝐶]0
∞ . (35) 

 

Observe that this expression is similar to the one in the one-compartment model given 

in (11), where the blood concentration now includes the concentration in the central 

and peripheral compartments. The drug concentration value in the peripheral 

compartment is required to calculate (35), and Loo-Riegelman (Loo & Riegelman, 1968) 

has established the formula to calculate it by 

 

𝐶𝑝(𝑡) =
(𝑘12Δ𝐶𝑐Δt)

2
+

𝑘12

𝑘21
𝐶𝑐(𝑡 − Δ𝑡)(1 − 𝑒−𝑘21Δ𝑡) + 𝐶𝑝(𝑡 − Δ𝑡)𝑒−𝑘21Δ𝑡, (36) 

 

Recall that unabsorbed drug is the amount of drug that does not enter the blood systemic 

circulation but remains in the GIT. Since this process occurs before the drug enters the 

blood, the drug that remains in the GIT in this case is the same as the case in the one-

compartment model. In other words, we can calculate the drug remaining in the GIT by 

(17). Furthermore, we can insert the equation (35) and (19) into (11) to construct a 

linear relationship between time and unabsorbed drug by 

 

1 −
𝐶𝑐 + 𝐶𝑝 + 𝑘[𝐴𝑈𝐶]0

𝑡

𝑘[𝐴𝑈𝐶]0
∞ = 1 − (𝑘𝑎 +

𝑘𝑖𝐴𝑎1,0𝐴𝑎2,0

𝐴𝑎1,0 + 𝐴𝑎2,0
) 𝑡, (37) 

 

By this linearity, we can use the least square method to calculate the slope of (37), say 𝛼, 

as 

 

𝛼 =

𝑛 ∑ 𝑡𝑖 (1 −
𝐶 + 𝑘[𝐴𝑈𝐶]0

𝑡

𝑘[𝐴𝑈𝐶]0
∞ )𝑛

𝑖=1 − ∑ 𝑡𝑖
𝑛
𝑖=1 ∑ (1 −

𝐶 + 𝑘[𝐴𝑈𝐶]0
𝑡

𝑘[𝐴𝑈𝐶]0
∞ )𝑛

𝑖=1

𝑛 ∑ 𝑡𝑖
2𝑛

𝑖=1 − (∑ 𝑡𝑖
𝑛
𝑖=1 )2

. 
(38) 

 

Since the slope 𝛼  in (38) has the value − (𝑘𝑎 + (𝑘𝑖𝐴𝑎1,0𝐴𝑎2,0)/(𝐴𝑎1,0 + 𝐴𝑎2,0)) , the 

absorption rate constant 𝑘𝑎 for the two-compartment model can be estimated by 

 

𝑘𝑎 = −𝛼 −
𝑘𝑖𝐴𝑎1,0𝐴𝑎2,0

𝐴𝑎1,0 + 𝐴𝑎2,0
.      (39) 
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C. RESULT AND DISCUSSION 

In this section, simulations are performed to estimate the coefficient of elimination and 

absorption rate using the formulas given in the previous section. These estimation values are 

then verified by comparing the deviation between the approximation values and the original 

data points through the root means squared error. These simulations are conducted to one and 

two-compartment models to find out which model better represents drug dynamics through 

the error values obtained. 

The parameter estimates require the data points of drug concentration versus time, where 

the data points are obtained by choosing parameter values randomly then inserting them into 

the DDIs model, either one or two-compartment model. By using a numerical approach, the 

model solution of drug concentration with respect to time is obtained. The data is then broken 

into two parts: small-time and large-time data points. The large-time data points are used first 

to estimate the elimination rate coefficient, followed by the small-time data points to estimate 

the absorption rate coefficient. These estimated values are then compared with the original 

values that were input earlier.  

1. One-compartment model 

In the one-compartment model we randomly select the parameter values as shown in Table 

1, which are inserted into the model in equation (3) to generate drug concentration data points 

over time as depicted in Figure 3a (notice that dividing the equation by volume of distribution 

will convert the amount of drug into the concentration of drug), as shown in Table 1 and Figure 

3. 

 

Table 1. Parameter values used to obtain time-concentration data set 

Parameter 𝐶𝑎1,0 𝐶𝑎2,0 𝐹1 𝐹2 𝑘𝑎 𝑘 𝑘𝑖 

Value 0.5 gr/lt 0.7 gr/lt 66% 71% 0.4049/hr 0.1896/hr 0.0932/(gr.hr) 

 
       (a)                (b) 

  Figure 3. The data set of time and drug concentration in the blood plasma for (a) one-compartment 

model and (b) two-compartment model. 

 

The time data points used here are up to 30 hours, or within the interval [0,30], where for 

the first hour there are 5 data points with the time step size of 0.2 hour followed by 1 hour step 

size for the rest. The data points are divided into two parts: the data with small time within the 

interval 0 ≤ 𝑡 ≤ 0.4 and the data with large time within the interval 12 ≤ 𝑡 ≤ 30. Large-time 



1088  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 4, October 2023, pp. 1077-1093 

 

 

data points are used first to find the value of the elimination rate coefficient 𝑘 using (7) which 

is illustrated by Figure 4a as semi-log graph. 

 
(a)               (b) 

Figure 4. Comparison data set to its approximation (a) to find k using large-time data set and (b) to 

find ka using small-time data set for one-compartment model. 

 

The star symbol represents the original data points, while the solid line indicates the fit 

model that takes the form ln 𝐶 = −0.1860𝑡 + 0.3134, calculated by (8) dan (9). As a result, we 

obtain 𝑘 = 0.1860  which is close enough to the original value shown in Table 1. For the 

estimation ka, we use small-time data points in the interval 0 ≤ 𝑡 ≤ 0.4. The first step we need 

to do is to calculate AUC using the trapezoidal rule so that the unabsorbed drug is able to be 

estimated by using (11), as shown in Table 2. 

 

Table 2 : The fraction of unabsorbed drug for small-time phase for one-compartment-model 

Time Concentration 𝚫𝒕 𝚫𝑪 AUC 𝟏 − 𝑨𝒃/𝑨𝒃
∞ 

0.00 0.00 0.00 0.00 0.00 1.00 
0.20 0.06 0.20 0.06 0.01 0.92 
0.40 0.12 0.20 0.12 0.02 0.84 

 

The results are shown in Table 2. Next, the unabsorbed drug values can be used to 

determine ka through the linear fit model (see Figure 4b) presented by equation (19), where ka 

is obtained from the slope of the linear fit model. By using the equation (20), the value of ka is 

estimated as 0.3916. The estimates 𝑘 and 𝑘𝑎  are then used to find the numerical solution of 

drug concentration so that it can be compared with the original data points. The comparison of 

these two produces root mean squared error (RMSE) of 0.0078. Graphically, the comparison 

can be seen clearly in Figure 5a. As we know, DDIs in this model affect the absorption process. 

Therefore, another simulation is performed to see the drug concentration level when DDIs are 

taken into account and when they are not. It can be seen in Figure 5b that the curve with DDIs 

is lower than the curve with no DDIs. In other words, there is a reduction in cumulative drug 

concentration for the model with DDIs compared with the one with no DDIs. 
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               (a)                   (b) 

Figure 5. Comparisons (a) the data points and the approximate solution of DDIs and (b) the drug 

concentrations with and without DDIs for one-compartment model. 

 

2. Two-compartment model 

Estimation of the parameters k and ka for the two-compartment model is performed using 

data points generated by the same parameter values as the one-compartment model given in 

Table 1, with the addition of parameters 𝑘12 = 1.7/hr and 𝑘21 = 1.3/hr. We also use the same 

time interval, that is [0,30]. The generated data points from these parameter values can be seen 

in Figure 3b. Similar to the one-compartment model, in the two-compartment model the 

parameter 𝑘 is estimated using large-time data points in the interval 12 ≤ 𝑡 ≤ 30, while ka is 

estimated using small-time data points in 0 ≤ 𝑡 ≤ 0.4. To estimate 𝑘, given in (34), a number of 

parameters such as 𝛼, 𝛽 and 𝑘21 must be calculated first. The parameter 𝛼 can be determined 

based on the fit linear model in the form ln 𝐶 = −0.0786𝑡 − 0.9273. This fit model is associated 

with the calculation of the equations (30). From these calculations, we obtain 𝛼 = 0.1809 and 

𝑃 = 0.3956. 

 

Table 3. The fraction of unabsorbed drug for small-time phase for two-compartment model 

Time 𝑪𝒄 𝑪𝒑 𝚫𝒕 𝚫𝑪𝒄 AUC 𝟏 − 𝑨𝒃/𝑨𝒃
∞ 

0.00 0.00 0.00 0.00 0.00 0.00 1.00 

0.20 0.05 0.01 0.20 0.05 0.01 0.91 

0.40 0.09 0.03 0.20 0.14 0.02 0.83 

 

Like 𝛼, the parameter 𝛽 can also be obtained by constructing the linear fit model of the 

residual concentration given in (31). By using (32) and (33) equations, we obtain 𝛽 = 0.7504 

and 𝑄 = 0.0114. These four parameter values (𝛼, 𝛽, 𝑃, 𝑄) are then used to find 𝑘21 using the 

formula (34). Since 𝑘21 is now known, we can estimate 𝑘 by (34) with the result 𝑘 = 0.1875. 
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           (a)                   (b) 

Figure 6. Comparisons (a) the data points and the approximate solution of DDIs and (b) the drug 

concentrations with and without DDIs, for two-compartment model. 

 

The parameter 𝑘𝑎 is estimated by small-time data points, which is presented in Table 3. 

The linear fit model is established first as the semi-log graph between the unabsorbed drug 

concentration and time to obtain 𝑘𝑎 = 0.3943 which is calculated from (39). The approximated 

parameters 𝑘, 𝑘𝑎, 𝑘12, 𝑘21 along with the selected parameter 𝑘𝑖 = 0.0930, are then inserted into 

the model (21) to obtain the approximation solution numerically. The Comparison of the 

approximate solution and the original data points is shown graphically in Figure 6a. From this 

comparison, the value of RMSE is obtained at 0.0017. Comparisons between the presence and 

absence of drug interactions in the two-compartment model are also performed here, and it is 

illustrated in Figure 6b. As can be seen in the figure, the cumulative of the drug concentrations 

in the blood with the presence of DDIs are smaller than the one with no DDIs. 

 

Table 4. The comparison of the estimate parameter with the original values. 

Model 𝒌 𝒌𝒂 

Original 0.1896 0.4049 

One-compartment 0.1860 0.3916 

Two-compartment 0.1875 0.3943 

 

From the simulations performed for the one and two-compartment DDIs models we can 

summarize and compare the original and the estimated parameter values as shown in Table 4. 

As can be seen in this table, the elimination rate constant k and the absorption rate constant ka 

for the two-compartment model provide values that are closer to the original values compared 

to the one-compartment model. Qualitatively, the curve of the drug concentration for the two-

compartment model appears to have smaller deviations from the original data points than that 

of the one-compartment model. We can compare them from Figures 5a and 6a. 

 

D. CONCLUSION AND SUGGESTIONS 

In this paper, the drug-drug interactions models of the one and two compartments are 

proposed, where the drug interaction coefficient is taken into account in the models so that it 

affects the absorption process. The elimination rate constant k and the absorption rate constant 



 Diny Zulkarnaen, Drug-Drug Interactions Pharmacokinetic Models…  1091 

 

 

ka are the parameters to be estimated using the data set of time and drug concentration. We do 

not use the actual data points, instead the data points are generated from the input parameters 

including k and ka. Using the Wagner-Nelson method for one-compartment model and the Loo-

Riegelman method for the two-compartment model, the simulations show good estimation for 

both models as shown graphically by Figure 5a and 6a. Furthermore, comparing the estimated 

and the original values as given in Table 4, the two-compartment model gives a better 

approximate than the one-compartment model since both k and ka for one-compartment model 

have closer values from the original one. This conclusion is consistent with the fact that organs 

and tissues in the body have different perfusion levels. The more the perfusion level is classified, 

the more it reflects the real situation of the body. In other words, a body with two different 

levels of perfusion more closely reflects the real situation than a body with only one level. This 

work can be extended to a model of three or more compartments, then see comparisons with 

the smaller compartment. Other factors such as drug-protein binding and circadian rhythm can 

also be considered in the model as well as investigating the DDIs effect on the drug delivery 

process when other routes of administration are performed. 
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