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 Limitation within the WFTS model, which relies on midpoints within intervals and 
linguistic variable relationships for assigning weights. This reliance can result in 
reduced accuracy, especially when dealing with extreme values during trend to 
seasonality transformations. This study employs the Weighted Fuzzy Time Series 
(WFTS) method to adjust predictive values based on actual data. Using Lagrange 
Quadratic Programming (LQP), estimated weights enhance the WFTS model. MAPE 
assesses accuracy as the model analyzes monthly IHSG closing prices from January 
2017 to January 2023.The MAPE value of 0.61% results from optimizing WFTS with 
LQP. It utilizes a deterministic approach based on set membership counts in class 
intervals, continuously adjusting weights during fuzzification, minimizing the 
deviation between forecasted and actual data values.The Weighted Fuzzy Time 
Series Forecasting Model with Lagrange Quadratic Programming is effective in 
forecasting, indicated by a low MAPE value. This method evaluates each data point 
and adjusts weights, offering reliable investment insights for IHSG strategies.. 
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A. INTRODUCTION 

Forecasting is a highly relevant technique for projecting data into future periods using 

historical data as the basis for building mathematical models (Hilhami et al., 2020). The primary 

goal of forecasting is to provide a solid foundation for planning and addressing potential issues 

that may arise in the future (Subramanian, 2021). In various sectors, especially in the field of 

economics, forecasting methods are commonly used as a framework for planning, particularly 

in the context of trading in the capital markets (Bhowmik & Wang, 2020). 

Furthermore, forecasting models also face significant challenges in accommodating and 

managing highly volatile market conditions (Tschora et al., 2022). Specifically, real-time 

markets are vulnerable to unexpected price risks, leading to higher price volatility (Assouto et 

al., 2020). While forecasting errors for forward markets are often reported to be quite accurate 

with single-digit error rates, comparable studies indicate that real-time markets often report 

significantly higher error rates (Ferreira et al., 2019). 

Forecasting time series data is essential for understanding the uncertainties that may arise 

in the future. The process of time series data forecasting involves observing data in each 
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observation period. A commonly utilized conventional method for forecasting is Autoregressive 

Integrated Moving Average (ARIMA) (Wang et al., 2023). ARIMA is a straightforward statistical 

method since it only requires the data of the variable to be forecasted. The approach involves 

iterating on the existing model. 

The ARIMA model has a limitation, requiring the assumption of stationarity, which means 

it cannot be directly applied to time series data with a trend pattern (Moghimi et al., 2023). The 

presence of a trend pattern causes uncertainty in the average value of the time series data. This 

issue can be addressed using the Fuzzy Time Series model, which is an extension of fuzzy theory 

to time series data, representing each data point within an interval (Aliyev et al., 2019). The 

relationship between fuzzy logic and time series results in accurate forecasting and excellent 

cluster formation compared to the widely used ARIMA-Garch model, as measured by the Mean 

Absolute Percentage Error (MAPE) (Haryono et al., 2013).  

The Fuzzy Time Series (FTS) method has a drawback as it defuzzifies prediction data 

without considering fuzzy logic relationship repetitions, thus disregarding past trends (Yolcu 

& Lam, 2017). To address this, the weighted Fuzzy Time Series model was developed, repeating 

fuzzy logic relationships while considering past trends during the defuzzification process 

(Singh, 2021). A study comparing Weighted Fuzzy Time Series and Fuzzy Time Series by 

Widiyani et al. (2022) found that the predictions from Weighted Fuzzy Time Series (WFTS) are 

superior in accuracy based on MAPE values. In contrast to forecasting with fuzzy time series, 

weighted fuzzy time series forecasting incorporates an additional step post-defuzzification: the 

introduction of weighting factors. These weights are applied to the fuzzy sets generated during 

the fuzzification process, influencing the final forecast. This approach enhances the accuracy of 

predictions by assigning (A’yun et al., 2015) different degrees of importance to various 

linguistic variables and intervals, reflecting their significance in the forecasting model. It 

enables a more nuanced and refined forecast, allowing for improved insights into data trends 

and potential future outcomes. By incorporating weighted elements into the fuzzy time series 

methodology, this approach advances the precision and reliability of forecasting models. 

This study introduces several novel elements compared to previous research. Firstly, it 

highlights that the Weighted Fuzzy Time Series (WFTS) model outperforms the conventional 

Fuzzy Time Series (FTS) model in terms of accuracy. This finding is significant as it underscores 

the superiority of the WFTS approach, providing a fresh perspective in the field. Secondly, the 

study identifies a limitation within the WFTS model, which relies on midpoints within intervals 

and linguistic variable relationships for assigning weights. This reliance can lead to reduced 

accuracy, especially when dealing with extreme values during trend-to-seasonality 

transformations, as observed by Lucas et al. (2022). To address this limitation and further 

improve forecasting precision, this study draws inspiration from Rezvani et al. (2021). Rezvani 

and their team employed the Piecewise Aggregate Approximation (PAA) technique in 

conjunction with Lagrange Multipliers to detect points in time series data that result from 

pattern changes. This innovative approach significantly enhanced the model's accuracy, 

demonstrating the potential benefits of optimization techniques in time series forecasting. 

The main novelty of this study resides in its utilization of the Lagrange Quadratic 

Programming optimization technique to improve the WFTS model through the estimation of 

weights as an integral part of the defuzzification process. By mathematically modeling the 
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estimation of Fuzzy Time Series weighting, the research aims to pinpoint the optimal solution 

for enhancing forecasting accuracy. This distinctive approach sets the study apart from prior 

research and presents a promising avenue for enhancing the precision of time series 

forecasting models. 

 

B. METHODS 

In this study, weighting processes are employed in the fuzzy time series method. The 

purpose of this weighting is to adjust the predictive values generated based on actual data. This 

research focuses on a case study involving the closing prices of IHSG, where a forecasting model 

is developed using the Weighted Fuzzy Time Series (WFTS) method. The WFTS model will be 

enhanced by estimated weights (w) calculated using Lagrange Quadratic Programming (LQP). 

The resulting model will be assessed using MAPE to determine its accuracy. WFTS will be 

applied to analyze the monthly time series data of IHSG closing prices from January 2017 to 

January 2023 using a fuzzy logic approach. The IHSG is a stock price index derived from the 

analysis of trend movements, facilitating the assessment of price fluctuations over various time 

periods (Daniswara & Daryanto, 2019). The stock market index in Indonesia, referred to as the 

Indeks Harga Saham Gabungan (IHSG), goes by various names including the Indonesian 

Composite Index (ICI), the Indonesian Exchange (IDX) Composite, and the Jakarta Stock 

Exchange (JKSE). LQP will determine optimal weights for each value in the time series, thereby 

improving the model's predictive accuracy. The analysis steps are illustrated in Figure 1. 

 

Data Collecting  IHSG

Define Fuzzy Logic 

Relationship

Statistic Descriptive

Determine Universe of 

Discourse (U)

Define Fuzzy Set

Define Lagrange Quadratic 

Model from Fuzzy Set

Estimation Weighted

Defuzzyfication

Evaluate Performance

 
Figure 1. The analysis steps in this study 
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Based on Figure 1, it can be observed that the initial process begins with data collection 

and descriptive analysis. Subsequently, the forecasting process is carried out using the 

Weighted Fuzzy Time Series algorithm. The weighted fuzzy time series method employs 

weights as predictors for forecasting computations. These weights are generated from the 

repetition of Fuzzy Logic Relationships (FLR) to construct a weight matrix (Efendi et al., 2013). 

In detail, the research steps are shown as: 

1. Collecting data IHSG: In this procces data IHSG  collecting from www.yahoo.finance.com.  

2. Analyzing descriptive statistic to know characteristic of data. 

3. Define 𝑈 = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑢𝑟𝑠𝑒: 

 

𝑈 = [𝐷𝑚𝑖𝑛 − 𝐵1, 𝐷𝑚𝑎𝑥 + 𝐵2]                                                         (1) 

 

4. Forming partitions into several equal-length intervals using the Sturges formula 

(Devianto et al., 2022): 

 

1 + 3,322 log 𝑛                                           (2) 

 

5. Defining fuzzy sets 𝐴1, 𝐴2, … , 𝐴𝑖  in the universe of discourse 𝑈 is: 

 

𝐴1 =
𝑎11

𝑢1
+

𝑎12

𝑢2
+ ⋯ +

𝑎1𝑚

𝑢𝑚
  

𝐴2 =
𝑎21

𝑢1
+

𝑎22

𝑢2
+ ⋯ +

𝑎2𝑚

𝑢𝑚
                                                                 (3) 

⋯  = ⋯ + ⋯  + ⋯ + ⋯  

𝐴𝑘 =
𝑎𝑘1

𝑢1
+

𝑎𝑘2

𝑢2
+ ⋯ +

𝑎𝑘𝑚

𝑢𝑚
  

 

6. Determining the fuzzy relationship of historical data through Fuzzy Logical Relationship 

(FLR),  where two consecutive fuzzy sets 𝐴𝑖(𝑡 − 𝑝) and 𝐴𝑗(𝑡) are defined to form the first 

FLR as 𝐴𝑖  →  𝐴𝑗 . 𝐴𝑖  can be referred to as Left Hand Sides (LHS), and 𝐴𝑗  as Right Hand 

Side (RHS), with 𝑝 = 1,2, … , 𝑝∗. 

7. Estimating weight based method of Lagrange multipliers which is a widely recognized 

technique utilized to solve constrained optimization problems (Vadlamani et al., 2020). 

It involves finding the optimal point (denoted as 𝑥∗ ≡ (𝑥, 𝑦)) in multidimensional space 

that locally optimizes the merit function 𝑓(𝑥) while satisfying the constraint 𝑔(𝑥) = 0: 

 

𝐹(𝑦) = 𝑓(𝑦) + ∑ 𝜆𝑗
𝑚
𝑗=1 𝑔𝑗(𝑦)                                                                   (4) 

 

8. The linguistic variable transformations formed from Step 5 are used as the 

defuzzification process using the equation: 

 

𝐹(𝑡 + 1)  =  𝑈(𝑡)  ×  𝑤(𝑡)𝑇 =  [𝑢𝑗1, 𝑢𝑗2, … , 𝑢𝑗𝑘] x [𝑤1
′ , 𝑤2

′ , … , 𝑤𝑘
′ ]𝑇                 (5) 

 

9. Calculating the forecasting value is done by adding a differencing process between the 

actual data and the midpoint values formed in each interval class (Surono et al., 2022): 

http://www.yahoo.finance.com/
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�̂�(𝑡 + 1)  = F(t +  1) ±  |𝑑𝑖𝑓𝑓(𝑌(𝑡), 𝑚𝑖)                                          (6) 

 

10. Evaluation performance using MAPE: The Mean Absolute Percentage Error (MAPE) is 

computed by taking the absolute error between the forecasted data and the actual 

values for each period and then dividing it by the corresponding observed actual value 

(Kim & Kim, 2016). The calculation of MAPE is shown in the following formula (Khair 

et al., 2017): 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|�̂�𝑡−𝑌𝑡|

𝑌𝑡

𝑛
𝑡=1                                                                (7) 

 

C. RESULT AND DISCUSSION 

1. Descriptive Statistic 

Descriptive analysis is conducted to understand the data patterns occurring in the IHSG 

return rates. Data patterns are examined to understand the movement of closing prices of the 

IHSG from January 2017 to January 2023. In this research, descriptive statistics are observed 

from the visualization of actual data as shown in Figure 2. 

 

 
 Figure 2. Graph of IHSG Closing Prices Actual Data  

 

From Figure 2, it can be observed that there are extreme values. This can be seen in the 

period of March 2020 when there was a decrease in prices (a downward trend). Meanwhile, the 

highest IHSG closing price is observed in April 2022, suggesting that the IHSG closing price has 

experienced an increase in the recent periods, specifically from January 2022 to April 2022. 

 

2. Fuzzyfication Proccess  

The process of forecasting using weighted fuzzy time series is based on the weights 

generated for each interval class, multiplied by the mid-point value for each interval class. The 

steps involved in this process are as follows: 

a. Forming the universe of discourse using equation (1), which is: 

 

 𝑈 = [𝐷𝑚𝑖𝑛 − 𝐵1, 𝐷𝑚𝑎𝑥 + 𝐵2] = [4538.93 − 0 , 7228.91 + 0] 

                                                       = [4538.93  , 7228.91]  
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The calculation process above results in the universe (𝑈) with lower and upper bounds 

of 4538.93 and 7228.91. 

b. Calculate interval class using equation (2), which is: 

 

 1 + 3,322 log 73 = 7,18 ≈ 7                                                                       

 

The calculation results in 7 interval classes used to group actual data, simplifying the 

transformation process into linguistic variables in the fuzzification process. 

c. Fuzzification of actual data involves categorizing data based on upper and lower bounds,   

as indicated in the following Table 1. 

 

Table 1. Fuzzyfication Actual Data 

Interval 𝑼𝒋 
Set Membership 

Count 

Linguistic  

Variable 

1 𝑢1 = [4538.93 −  4923.21) 5 𝐴1 

2 𝑢2 = [4923.21 − 5307.50) 4 𝐴2 

3 𝑢3 = [5307.50 −  5691.78) 5 𝐴3 

4 𝑢4 = [5691.78 − 6076.06) 24 𝐴4 

5 𝑢5 = [6076.06 −  6460.35) 15 𝐴5 

6 𝑢6 = [6460.35 − 6844.63) 9 𝐴6 

7 𝑢7 = [6844.63 −  7228.91] 11 𝐴7 

 

From Table 1, it can be observed that each interval class has a distinct number of set 

members. The grouping of actual data into interval classes is based on their respective 

upper and lower bounds. 

d. The determination of the fuzzy logic relationship group (FLRG) is based on the number 

of relationships between linguistic variables across periods in the following Table 2. 

 

Table 2. FLRG Actual Data 

Linguistic 
Variable 

𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 𝑨𝟔 𝑨𝟕 Total 

𝐴1 3 2 0 0 0 0 0 5 
𝐴2 1 1 2 0 0 0 0 4 
𝐴3 1 0 2 2 0 0 0 5 
𝐴4 0 0 1 18 5 0 0 24 
𝐴5 0 0 0 4 7 4 0 15 
𝐴6 0 0 0 0 3 4 1 8 
𝐴7 0 0 0 0 0 1 10 11 

 

From Table 2, it is evident that the highest total relations exist for variable A_4, which 

amounts to 24, indicating that the actual data, on average, falls within interval class 4. 

On the other hand, the lowest number of relations is indicated by variable A_2, which is 

4, signifying that there is a limited amount of actual data that falls outside the average 

and into interval class 2. These relations demonstrate the relationship between 

linguistic variables across periods as a result of fuzzification. 
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3. Estimation Weighted using Lagrange Quadratic Programming 

Forecasting the IHSG (Indonesia Stock Exchange Composite Index) using WFTS involves 

weight estimation based on quadratic equation form. The LQP equation is formed based on the 

objective function and constraints defined in equation (6) as follows: 

 

𝐿(𝑤𝑗,𝑖, 𝜆𝑖) = ∑ 𝑤𝑗,𝑖
2 𝑢𝑗,𝑖 + 2𝜆𝑖(∑ 𝑤𝑗,𝑖 − 1𝑛

𝑗=1 )𝑛
𝑗=1  with 𝑖 = 1,2,3, … , 𝑛 (8) 

 

Where 𝑤𝑗  is the weight for the 𝑗 member in interval class 𝑖, 𝑢𝑗,𝑖 is the membership value of 

the 𝑗 member in the universe of discourse for interval class 𝑖, and 𝜆𝑖 is the Lagrange multiplier 

for class 𝑖 . As for the equations formed from each interval class based on the previously 

calculated results, there are 7 intervals, and the equations are obtained as follows: 

Class interval 1: 

𝐿(𝑤𝑗,1, 𝜆1) = ∑ 𝑤𝑗,𝑖
2 𝑢𝑗,𝑖 + 2𝜆𝑖(∑ 𝑤𝑗,𝑖 − 15

𝑗=1 )5
𝑗=1     (9) 

Class interval 2:  

𝐿(𝑤𝑗,2, 𝜆2) = ∑ 𝑤𝑗,2
2 𝑢𝑗,2 + 2𝜆2(∑ 𝑤𝑗,2 − 1

4

𝑗=1
)

4

𝑗=1
 

(10) 

Class interval 3: 

𝐿(𝑤𝑗,3, 𝜆3) = ∑ 𝑤𝑗,3
2 𝑢𝑗,3 + 2𝜆3(∑ 𝑤𝑗,3 − 1

5

𝑗=1
)

5

𝑗=1
 

(11) 

Class interval 4: 

𝐿(𝑤𝑗,4, 𝜆4) = ∑ 𝑤𝑗,4
2 𝑢𝑗,4 + 2𝜆4(∑ 𝑤𝑗,4 − 1

24

𝑗=1
)

24

𝑗=1
 

(12) 

Class interval 5: 

𝐿(𝑤𝑗,5, 𝜆5) = ∑ 𝑤𝑗,5
2 𝑢𝑗,5 + 2𝜆5(∑ 𝑤𝑗,5 − 1

15

𝑗=1
)

15

𝑗=1
 

(13) 

Class interval 6: 

𝐿(𝑤𝑗,6, 𝜆6) = ∑ 𝑤𝑗,6
2 𝑢𝑗,6 + 2𝜆6(∑ 𝑤𝑗,6 − 1

9

𝑗=1
)

9

𝑗=1
 

(14) 

Class interval 7: 

𝐿(𝑤𝑗,7, 𝜆7) = ∑ 𝑤𝑗,7
2 𝑢𝑗,7 + 2𝜆7(∑ 𝑤𝑗,7 − 1

11

𝑗=1
)

11

𝑗=1
 

(15) 

 

The solution to equations (9) to (15) is carried out through the process of partial derivatives 

with equation: 

Class interval 1 

 𝜕𝐿(𝑤𝑗,1, 𝜆1)

𝜕𝑤𝑗
= ∑ 2𝑤𝑗,1𝑢𝑗,1 + 2𝜆1

5

𝑗=1
= 0           

𝜕𝐿(𝑤𝑗,1, 𝜆1)

𝜕𝜆1
= ∑ 2𝑤𝑗,1 − 2

5

𝑗=1
= 0           

 

(16) 
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Class interval 2 

 𝜕𝐿(𝑤𝑗,2, 𝜆2)

𝜕𝑤𝑗
= ∑ 2𝑤𝑗,2𝑢𝑗,2 + 2𝜆2

4

𝑗=1
= 0           

𝜕𝐿(𝑤𝑗,2, 𝜆2)

𝜕𝜆2
= ∑ 2𝑤𝑗,2 − 2

4

𝑗=1
= 0           

 

(17) 

Class interval 3: 

 𝜕𝐿(𝑤𝑗,3, 𝜆3)

𝜕𝑤𝑗
= ∑ 2𝑤𝑗,3𝑢𝑗,3 + 2𝜆3

5

𝑗=1
= 0           

𝜕𝐿(𝑤𝑗,3, 𝜆3)

𝜕𝜆3
= ∑ 2𝑤𝑗,3 − 2

5

𝑗=1
= 0           

 

(18) 

Class interval 4: 

 𝜕𝐿(𝑤𝑗,4, 𝜆4)

𝜕𝑤𝑗
= ∑ 2𝑤𝑗,4𝑢𝑗,4 + 2𝜆4

24

𝑗=1
= 0           

𝜕𝐿(𝑤𝑗,4, 𝜆4)

𝜕𝜆4
= ∑ 2𝑤𝑗,4 − 2

24

𝑗=1
= 0           

 

(19) 

Class interval 5: 

 𝜕𝐿(𝑤𝑗,5, 𝜆5)

𝜕𝑤𝑗
= ∑ 2𝑤𝑗,5𝑢𝑗,5 + 2𝜆5

15

𝑗=1
= 0           

𝜕𝐿(𝑤𝑗,5, 𝜆5)

𝜕𝜆5
= ∑ 2𝑤𝑗,5 − 2

15

𝑗=1
= 0           

 

(20) 

Class interval 6: 

 𝜕𝐿(𝑤𝑗,6, 𝜆6)

𝜕𝑤𝑗
= ∑ 2𝑤𝑗,6𝑢𝑗,6 + 2𝜆6

9

𝑗=1
= 0           

𝜕𝐿(𝑤𝑗,6, 𝜆6)

𝜕𝜆6
= ∑ 2𝑤𝑗,6 − 2

9

𝑗=1
= 0           

 

(21) 

Class interval 7: 

 𝜕𝐿(𝑤𝑗,7, 𝜆7)

𝜕𝑤𝑗
= ∑ 2𝑤𝑗,7𝑢𝑗,7 + 2𝜆7

11

𝑗=1
= 0           

𝜕𝐿(𝑤𝑗,7, 𝜆7)

𝜕𝜆7
= ∑ 2𝑤𝑗,7 − 2

11

𝑗=1
= 0           

 

(22) 

 

Then, the defuzzification process is performed by multiplying weights and membership values 

for each interval class using the equation: 

 

𝐹(𝑡) =  𝑢𝑖 ×  𝑤𝑖(𝑡)𝑇 (23) 



Agus Fachrur Rozy, Development of accuracy for the…   1201 

 

 

4. Defuzzyfication  

The defuzzification process is carried out by multiplying the LQP weights with each actual 

data point, which represents membership in each interval class. The results of the 

defuzzification process are presented in Table 3. 

 

Table 3. Result of Defuzzification using LQP Method 

𝑭(t) Value 
𝐹(1) 4753.29 
𝐹(2) 5201.75 
𝐹(3) 5538.93 
𝐹(4) 5936.54 
𝐹(5) 6285.25 
𝐹(6) 6596.58 
𝐹(7) 7038.92 

 

From Table 3, it can be seen that 𝐹(𝑡) represents the value of defuzzification results for 

each interval class, and it is known that the higher the criteria in the linguistic variable, namely 

"Very Low," "Low," "Quite Low," "Medium," "Quite High," "High," and "Very High.". The 

defuzzified values, denoted as 𝐹(𝑡), represent the forecasting results for each interval class.The 

lower defuzzification value is 4753.29 and higher is 7038.92. These defuzzified values have 

been obtained using the LQP method for forecasting, enabling the transformation of fuzzy 

outputs into crisp numerical results, making them more interpretable and practical for 

decision-making processes. 

 

5. The Result of Forecasting 

The forecasting values generated are formed through the defuzzification process based on 

the WFTS LQP model using equation (6). The forecasting results are visualized as: 

 

 
Figure 3. Graph of IHSG Closing Prices Actual Data and WFTS LQP Weight Estimation 

 

From Figure 3, it can be observed that there was an increase in prices during the early 

period, specifically from January 2017 to 2018. The rise in IHSG prices indicates that investor 

stock purchases were relatively high. During this early period, investors were advised against 

making investments due to the increasing prices. Investment decisions should ideally be made 

around March 2020, as indicated by the downward trend in the forecasting graph using the 
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Lagrange Quadratic Programming weighting. Additionally, towards the end of the period, there 

is a change in the downward trend, suggesting that investors should consider selling IHSG 

stocks in April 2022. 

 

6. Model Evaluation using MAPE 

The best forecasting model is needed to produce accurate prediction values. This is aligned 

with the conditions observed in the historical data that has been collected. The best model for 

forecasting is determined by examining the resulting Mean Absolute Percentage Error (MAPE) 

to assess the deviations occurring in the forecasting model. In the process, the calculation of the 

MAPE value using equation (7) is required, and a value of 0.61% is obtained. The resulting 

MAPE value is relatively small, primarily due to the fact that the weighting of WFTS with the 

LQP model provides an optimal solution through partial derivative processes via a 

deterministic approach. The weights generated are adjusted at each actual data point value 

from the fuzzification process, resulting in a low deviation of forecasting values from actual data 

values. 

 

D. CONCLUSION AND SUGGESTIONS 

Based on the analysis results, Weighted Fuzzy Time Series Forecasting Model using the 

Lagrange Quadratic Programming weighting method is effective in making forecasts. This can 

be seen in the level of accuracy based on the MAPE value. Effectiveness is attributed to the 

evaluation of each actual data point and the adjustment of weights to generate forecast values 

with relatively low deviations. This method can serve as the basis for decision-making in 

investment strategies related to the IHSG. 

The suggestion provided in this research is that the development of the Weighted Fuzzy 

Time Series model with weight estimation using the Lagrange Quadratic Programming 

equation encounters several challenges. The challenges are related to the complexity of the 

solution process using partial derivatives, especially for long-term data periods, such as daily 

data. As a result, many weights need to be estimated for each interval class. Additionally, this 

research focuses on a single variable or univariate, which may limit the flexibility of the model. 

Therefore, further development is required by modifying the Lagrange equation and adding 

additional variables. The inclusion of more variables in the model will consider more factors 

influencing the time data, thus providing more accurate predictions. 
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