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 The area of applied science known as fluid dynamics studied how gases and liquids 
moved. The motion of the fluid in the liquid and vapour phases is described by a 
special system of partial differential equations.  The research purpose of this article 
investigated the solution formula of incompressible Stokes equation with the Robin 
boundary condition in half-space case. The solution formula for Stokes equation 
was calculated using the partial Fourier transform. This calculation was carried out 
over the Weis’s multipliers theorem. Our calculation showed that the solution 
formula of Stokes equation with Robin boundary condition in half-space for 
velocity and pressure were contained multipliers as due to work Shibata & 
Shimada. Due to our consideration of the half-space situation, the partial Fourier 
transform approach is the most appropriate one to use to get the velocity and 
pressure for the Stokes equation with Robin boundary condition. Furthermore, 
research methods in this article, in the first stage, we use the resolvent problem of 
the model. Secondly, we apply the partial Fourier transform to the model problem 
and finally, we use inverse partial Fourier transform to get the solution formula of 
the incompressible type of Stokes equation for velocity and pressure. This result 
indicates that Weis' multiplier theorem also allows us to find the local well-
posedness of the model problem in addition to the maximal Lp-Lq regularity class 
(Gerard-Varet et al., 2020). 
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A. INTRODUCTION  

Fluid dynamics is the branch of applied science that is concerned with the movement of 

liquids and gases. In other word, fluid dynamic is the subject which is study of fluid and how 

forces affect them. The Convective heat transfer and species mass transfer are described by 

scalar transport equations, but fluid dynamics imply fluid movement and accompanying forces 

defined by vector equations. Even fluid mechanics is broken down into various areas. 

Hydrodynamics is the term used to describe the study of the motion of fluids that are essentially 

incompressible (such as liquids, particularly water, and gases at low speeds) (Kleinstreuer, 

2018).  

Because of the strong cohesive interactions between the molecules in a liquid, molecular 

pieces can move around in relation to one another, but the volume stays largely fixed. As a result, 

a liquid assumes the shape of the container it is in and, in the presence of gravity, produces a 

free surface in a bigger container. In contrast, a gas enlarges until it touches the container's 

walls and fills the full volume. Due to their large spacing and weak cohesive forces, gas 
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molecules behave in this way. Gases cannot create a free surface, in contrast to liquids (John & 

Yunus, 2014). Recently, there are many researchers considering reated to fluid, not only fluid 

mechanics but also fluid dynamics.  

Vapor and gas are frequently used interchangeably. When a substance is above the critical 

temperature, its vapor phase is commonly referred to as a gas. Vapor often denotes a gas that 

is close to the condensation stage. Both in daily activities and in the design of contemporary 

technical systems, ranging from vacuum cleaners to supersonic aircraft, fluid mechanics is 

extensively used. Therefore, it's critical to gain a solid understanding of fluid mechanics' 

fundamental concepts.  

To start, fluid mechanics is important to the human body. The lungs are the locations of 

airflow in alternating directions, and the heart is constantly pumping blood to all areas of the 

body through the arteries and veins. Naturally, fluid dynamics is used in the design of all 

artificial hearts, breathing apparatuses, and dialysis devices. Think about how a fluid might go 

through a pipe that isn't moving or through a solid surface that isn't porous. A fluid in motion 

stops completely at the surface and assumes a zero velocity relative to the surface, according to 

all experimental observations. As a result of viscous effects, a fluid in direct contact with a solid 

"sticks" to the surface; slippage is therefore not possible. The no-slip condition is what is meant 

by this (John & Yunus, 2014).  

On the other hand, in the middle of the 20th century may be regarded as the heyday of fluid 

mechanics applications. The fluid characteristics and qualities established by existing theories 

were sufficient for the tasks at hand. These enabled the enormous growth of the industrial, 

water resources, chemical, and aeronautical sectors, each of which advanced fluid mechanics in 

novel ways (John & Yunus, 2014). The emergence of the digital computer in the late 20th 

century dominated fluid mechanics study and work. Some researchers have benefited from the 

ability to address difficult issues of a scale that the fluid mechanics pioneers of the eighteenth 

century could not have foreseen, such as global climate modelling or optimizing the design of a 

turbine blade. In this article, we consider fluid dynamics which is explaining motion of the flow.  

In some cases, fluid motion are studying about friction of the layer. A friction force forms 

between two fluid layers that are moving in relation to one another, and the slower layer seeks 

to slow the faster layer down. The fluid property viscosity, which is a gauge of the fluid's 

internal stickiness, quantifies this internal resistance to flow. Cohesive interactions between 

molecules in liquids and molecular collisions in gases are what generate viscosity. Since there 

is no fluid with zero viscosity, viscous effects are present in all fluid flows to some extent. 

Viscous flows are those in which frictional effects are prominent. The Robin boundary condition 

can be used in fluid dynamics to express no-slip boundary conditions in terms of vorticity in 𝑛 

-dimensional case (𝑛 ≥ 2). Specifically, the Robin-type boundary condition is used to enforce 

moment relations under Stokes flow, which ensures that the affine invarienat manifold is 

invariant and the no-slip law at the boundary is satisfied (Gorshkov, 2021).  

Numerous conclusions have already been made, all up to this point in Stokes equations. 

Maekawa et al. (2020), they proved the Stokes and Navier-Stokes equation in half-space case 

for initial data in class of locally uniform Lebesgue integrable functions. The local energy weak 

solutions for the Navier-Stokes equation in the same space have been demonstrated by the 

same authors (Maekawa et al., 2019). Ten years ago, de Almeida & Ferreira (2013) also 
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investigated the Navier-Stokes in half-space case, with initial and boundary rough data in 

Morrey space. 

Concerning the time analyticity for inhomogeneous parabolic equations and the Navier-

Stokes equations in half space, Dong & Pan (2020) studied weak solutions for inhomogeneous 

parabolic equations with measurable coefficients in the half-space with either the Dirichlet 

boundary condition or the Dirichlet boundary condition under the supposition that the solution 

and the source term have an exponential increase of order 2 with the space variables. Our 

argument in this paper is completely different from the argument due to (Saal, 2006) but rather 

closed to that due (Shibata & Shimada, 2007). Saal (2006) investigated not only resolvent 

estimate but also 𝐻∞ calculus.  

The inviscid limit for general analytic data without having to construct Prandtl’s boundary 

layer corrector studied by (Nguyen & Nguyen, 2018). In that article, they used forticity 

formulation on the boundary and Theorem of Cauchy-Kovalevskaya on the layer function 

spaces. Recently, the localized smoothing and concentration for the Navier-Stokes equations in 

half-space for the incompressible case can bee seen in (Albritton et al., 2023). In that article 

they consent to the non-local effects of the pressure in the half-space in 3-dimensional 

Euclidean space.  

On the other hand, the main result for forward self-similar solution of the Navier-Stokes 

equations in the half-space is due to (Korobkov & Tsai, 2016). The boundedness and 

stabilization of the Navier-Stokes equation system with competitive kinetics in 2-dimensional 

case is studied by (Hirata et al., 2017). They showed not only the boundedness and stabilization 

of the solution to the two species chemotaxis model but also the global existence. As known that 

the partial differential equation can be described the natural phenomena. Moreover, there are 

some observation which reveal dynamics concerning pattern and spontaneous emergence of 

turbulence in population of aerobic bacteria suspended in sessile drops of water (Tuval et al., 

2005). In 2017, Wang investigated the zero-viscosity limit of the Navier-Stokes in analytic 

setting (Wang et al., 2017).  There are many type of fluid motion then this different of model 

fluid flow which be interesting point of view for many researchers not only in compressible 

case but also in incompressible case. Inna et al. (2020) investigated half-space problem for 

compressible fluid motion of Korteweg type with slip boundary condition. Furthermore, 

Maryani et al. (2022) prove the R-boundedness of the solution operator families of  Navier-

Lame equation problem by using partial Fourier transform.  Ogawa & Shimizu (2020) 

considered the L1-regularity class for the initial boundary value problem of parabolic equation 

in half-space. Other researchers who consider the korteweg model are (Bresch et al., 2019). 

They investigated the Euler Korteweg and Navier-Stokes-Korteweg in quantum application 

(Bresch et al., 2019). Furthermore, Farwig et. al studied the fundamental solution of linearized 

non-stationary Navier-Stokes equations of motion around a rotating and translating body 

(Farwig et al., 2014). They considered the motion of the viscous fluid around a rotating body in 

which the axis of the rotation of the body is not parallel to the velocity of the fluid at infinity.   

The central issue in this paper is determining the solution formula of velocity and pressure 

in equation (1) in half-space case, with Robin boundary condition by using partial Fourier 

transform. We use the techniques in Shibata & Shimada (2007) together with some recent 

result due to (Dewi et al., 2022). However, little information of the technical manner use the 
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partial Fourier transform for half-space case. Therefore, in this article, we show the detail 

getting solution formula of the model problem using partial Fourier transform. In spirit of 

Shibata & Shimada (2007), we determine the solution formula of velocity for the Stokes 

equation 𝐮 and pressure 𝑝 using inverse Fourier transform.  

 

Notation ℕ denotes the sets of natural numbers and we set ℕ𝟎 =  ℕ ∪ {𝟎}. ℂ and ℝ denote the 

sets of complex numbers and real numbers, respectively. For any multi-index κ =

 (κ1, … , κN) ∈  ℕ𝟎
𝑵 , we write |κ| = κ1 +⋯+ κN   and 𝜕𝑥

𝜅 = 𝜕1
𝜅1⋯𝜕𝑁

𝜅𝑁  with x =  (x1, … , xN). For 

scalar function 𝑓 and 𝑁-vector of function 𝐠, we get  

 

∇𝑓 = (𝜕1𝑓,… , 𝜕𝑁𝑓), ∇𝐠 = { 𝜕𝑖𝑔𝑗 ∣ 𝑖, 𝑗 = 1,… ,𝑁}, 

∇2𝑓 = {𝜕𝑖𝜕𝑗𝑓 ∣ 𝑖, 𝑗 = 1, … , 𝑁},   ∇
2𝐠 = {𝜕𝑖𝜕𝑗𝑔𝑘 ∣ 𝑖, 𝑗, 𝑘 = 1,… ,𝑁}, 

𝑊𝑞
𝑚,ℓ(Ω) ≔ { (𝐟, 𝐠) ∣∣ 𝐟 ∈ 𝑊𝑞

𝑚(Ω), 𝐠 ∈ 𝑊𝑞
ℓ(Ω) }. 

 

Let ℱ𝑥 = ℱ  and ℱ𝜉
−1 = ℱ−1  denote the Fourier transform and Fourier inverse transform, 

respectively, which are defined by 

 

ℱ𝑥[𝑓](𝜉) = 𝑓(𝜉) = ∫ 𝑒−𝑖𝑥⋅𝜉𝑓(𝑥) 𝑑𝑥,
ℝ𝑁

  ℱ𝜉
−1[𝑔](𝑥) =

1

(2𝜋)𝑁
∫ 𝑒𝑖𝑥⋅𝜉𝑔(𝜉) 𝑑𝜉.  
ℝ𝑁

                   (1) 

 

In other hand, the partial Fourier transform with respect to 𝑥′ = (𝑥1, … , 𝑥𝑁−1) and its inverse 

transform are defined as 

 

ℱ𝑥′[𝑢(𝑥
′, 𝑥𝑁)](𝜉) = �̂�(𝜉

′, 𝑥𝑁) = ∫ 𝑒−𝑖𝑥′⋅𝜉′𝑢(𝑥′, 𝑥𝑁) 𝑑𝑥′,ℝ𝑁−1
                               (2) 

  ℱ𝜉′
−1[𝑢(𝜉′, 𝑥𝑁)](𝑥′) =

1

(2𝜋)𝑁−1
∫ 𝑒𝑖𝑥

′⋅𝜉′𝑢(𝜉′, 𝑥𝑁)𝑑𝜉
′,

ℝ𝑁−1
                       (3) 

where 𝜉′ = (𝜉1, … , 𝜉𝑁−1) ∈ ℝ
𝑁−1. 

 

Let ℒ and ℒ−1 denote the Laplace transform and the Laplace inverse transform, respectively, 

which are defined by 

 

ℒ[𝑓](𝜆) = ∫ 𝑒−𝜆𝑡𝑓(𝑡) 𝑑𝑡,
∞

−∞
   ℒ−1[𝑔](𝑥) =

1

2𝜋
∫ 𝑒𝜆𝑡𝑔(𝜏) 𝑑𝜏,
∞

−∞
                      (4) 

 

with  𝜆 = 𝛾 + 𝑖𝜏 ∈ ℂ.  For 𝐱 = (𝑥1, … , 𝑥𝑁) and 𝐲 = (𝑦1, … , 𝑦𝑁), we set 𝐱 ⋅ 𝐲 = ⟨𝐱, 𝐲⟩ = ∑ 𝑥𝑗𝑦𝑗
𝑁
𝑗=1 . 

For scalar functions 𝑓, 𝑔 and N-vectors of function 𝐤, 𝐠 , we get (𝐤, 𝐠)𝐷 = ∫ 𝐤 ⋅  𝐠 𝑑𝑥,
𝐷

  (𝑘, 𝑔)Γ =

∫ kg 𝑑𝜎,
Γ

 (𝐤, 𝐠)Γ = ∫ 𝐤 ⋅  𝐠 𝑑𝜎,
Γ

 where 𝜎  is the surface element of Γ . For 𝑁 × 𝑁  matrices of 

function 𝐅 = (𝐹𝑖𝑗) and 𝐆 = (𝐺𝑖𝑗), we get (𝐅, 𝐆)𝐷 = ∫ 𝐅 ∶  𝐆 𝑑𝑥,
𝐷

  (𝐅, 𝐆)Γ = ∫ 𝐅 ∶  𝐆 𝑑𝜎,
Γ

 where 

𝐅 ∶  𝐆 ≡ ∑ 𝐹𝑖𝑗𝐺𝑖𝑗
𝑁
𝑖,𝑗=1 . The letter C denotes generic constants and the constant 𝐶𝑎,𝑏,… depends on 

𝑎, 𝑏, …. The values of constants C and 𝐶𝑎,𝑏,… denote a positive constant which maybe different 

even in a single chain of inequalities. We use small boldface letter, e.g. 𝐮 to denote vector-valued 
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functions and capital boldface letters, e.g. 𝐇 to denote matrix-valued functions, respectively. 

But, we also use the Greek letters, e.g 𝜎, 𝜌, 𝜃, 𝜏, 𝜔 such as mass densities. 

 

B. METHODS 

The research strategy for this work draws on an examination of related academic literature, 

particularly the article by Shibata & Shimada, (2007). We defined the solution of velocity 

differently in this article because to their development of the velocity formula. In the 

subsequent phases, we will utilize resolvent problem, which is described in (1) and for the 

Robin boundary condition is described in (2). We also have the answer formula for equation (1) 

and (2) using the partial Fourier transform and inverse partial Fourier transform of the 

equation system. As a result, we arrive at the solution formula for pressure and velocity in the 

half-space situation. Therefore, the partial Fourier transform is the first and most important 

step in understanding the solution formula of model problem in half-space.  In this study, the 

partial Fourier transform method is used to solve the Stokes equation for incompressible fluid 

flow in half-space under the Robin boundary conditions. The procedure of the research 

described, as shown in Figure 1. 

 

 
Figure 1. Procedure of the research 
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C. RESULT AND DISCUSSION 

1. Stokes with Robin boundary condition 

Stokes equation is the linearized of the Navier-Stokes equation (NSE). The equation system 

of the NSE describe the motion of viscous fluids, such as air and water.  These materials are 

widely used in fluid dynamics as a phenomena including turbulence, flow around objects, and 

the behaviour of fluid in different environtments. The equations are set of the partial 

differential equations that govern the conservation of mass and momentum in a fluid. The 

compressible NSE can be described in the following (Shibata & Shimizu, 2009). 

  

{
𝐮𝐭 − (u ⋅ ∇)𝐮 − μΔ𝐮 + ∇p = 𝟎 in Ω𝑡

div 𝐮 = 0  in Ω𝑡.
                                            (5) 

 

The linearized of the NSE which called compressible Stokes equation written in equation 

(1). In this paper, we consider the Stokes equations of incompressible fluid flow with Robin 

boundary condition in half-space case. The generalized Stokes resolvent problem for 

incompressible fluid motion in half-space can be written in the following (Shibata & Shimada, 

2007). 

 

{
𝜆𝐮 − Div 𝐓(𝐮, 𝑝) = 𝐟 in ℝ+

𝑛

div 𝐮 = 0  in ℝ+
𝑛                                                      (6) 

 

with Robin Boundary condition  

 

{
𝐧 ⋅ 𝐮 = 0 on ℝ0

𝑛

𝜶𝐮 + 𝛽(𝐓(𝐮, 𝑝)𝐧 − ⟨𝐓(𝐮, 𝑝)𝐧, 𝐧⟩𝐧) = 𝐡 on ℝ0
𝑛                                       (7) 

 

where 𝐮(𝐱) = (𝑢1(𝐱), 𝑢2(𝐱),⋯ , 𝑢𝑛(𝐱))  and 𝑝  are velocity and pressure, respectively. 

Meanwhile, 𝐟(𝐱) = (𝑓1(𝐱), 𝑓2(𝐱),⋯ , 𝑓𝑛(𝐱))  and 𝐡(𝐱) = (ℎ1(𝐱), ℎ2(𝐱),⋯ , ℎ𝑛(𝐱))  are unknown 

function and 𝐧 = (0,… ,0, −1) is a unit outer normal. We define the stress tensor  𝐓(𝐮, 𝑝) as 

 

𝐓(𝐮, 𝑝) = 𝐃(𝐮) − 𝑝𝐈                                                           (8) 

 

with 𝐃(𝐮) is a deformation tensor which defined as  

 

D(𝐮)𝑗𝑘 =
𝜕𝑢𝑗

𝜕𝑥𝑘
+
𝜕𝑢𝑘

𝜕𝑥𝑗
 ,                                                             (9) 

 

and 𝐈  is an 𝑛 × 𝑛  identity matrix. A half-space is one of the two divisions of the three-

dimensional Euclidean space that a plane makes. Half-spaces are referred to as half-planes 

(open or closed) in two-dimensional spaces. A half-line or ray is a half-space in a one-

dimensional space. A half-space is more broadly defined as one of the two sections that an affine 

space is divided into by a hyperplane. As a result, any subspace connecting a point in one set to 

a position in the other must intersect the hyperplane. To put it another way, the points that are 
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not incident to the hyperplane are divided into two convex sets. For the half-space case, we 

define ℝ+
𝑛  and its boundary which noted by ℝ0

𝑛 are in the following:  

 

ℝ+
𝑛 = { 𝐱 = (𝑥1, … , 𝑥𝑛−1, 𝑥𝑛) ∈ ℝ

𝑛 ∣ 𝑥𝑛 > 0}  

 

and 

 

 ℝ+
0 = { 𝐱 = (𝑥1, … , 𝑥𝑛−1, 𝑥𝑛) ∈ ℝ

𝑛 ∣ 𝑥𝑛 = 0}.                                          (10) 

 

The primary objective of this study is to determine the solution formula of equation (1) 

with Robin boundary condition in equation (2) in half-space case by using partial Fourier 

transform. Before we state the solution formula of the equation (1) with the Robin boundary 

condition, firstly we introduce the definition of Sobolev space 𝑊𝑞
𝑚(Ω) and main theorem in the 

following: 

  

Definition 1. (Adams & Fournier, 2003) 

Let k ∈ ℕ ∪ ℕ0 and p ∈ [1,∞) then the Sobolev Space 𝑊𝑞
𝑚(Ω) is defined by  

 

𝑊𝑞
𝑚(Ω) ≔ {𝐮 ∈ 𝐿𝑞(Ω) ∣ D

𝛼𝐮 ∈ 𝐿𝑞(Ω), ∀𝛼 with |𝛼| ≤ m} 

  

The following theorem is the main result of this article 

 

Theorem 2. Let 𝑝(𝑥, 𝑡) be a pressure and 𝐮(x, t) velocity in 𝑁-dimensional Euclidean space ℝ𝑁 ,

𝑁 ≥ 2 and set 𝒙′ = (𝑥1, … , 𝑥𝑁−1) and 𝜉′ = (𝜉1, … , 𝜉𝑁−1) ∈ ℝ
𝑁−1 then the equation system of (1) 

with the Robin Boundary condition which defined as (2) has a unique solution formula of 

(𝑝, 𝐮) ∈ 𝑊𝑞
1,2(ℝ+

𝑁) with  

 

𝑝 = ℱ𝜉′
−1 [−

(𝐴 + 𝐵)𝑒−𝐵𝑥𝑁

𝐵(𝛼 + 𝛽(𝐴 + 𝐵))
∑ 𝑖𝜉𝑘ℎ𝑘(𝛏

′, 0)

𝑁−1

𝑘=1

] (𝒙′, 𝑥𝑁) 

 

and  

      𝑢𝑗(𝐱) = ℱ𝜉′
−1 [

ℎ̂𝑗(𝛏
′, 0)𝑒−𝐴𝑥𝑁

𝛼 + 𝛽𝐴
] (𝒙′, 𝑥𝑁)

− ℱ𝛏′
−1 [

𝛼 + 𝛽𝐴

𝛼 + 𝛽𝐵

𝜉𝑗𝑒
−𝐴𝑥𝑛

(𝐴 − 𝐵)(𝛼 + 𝛽(𝐴 + 𝐵))
∑ 𝜉𝑘ℎ𝑘(𝛏

′, 0)

𝑛−1

𝑘=1

] (𝐱′, 𝑥𝑛)

+ ℱ𝛏′
−1 [

𝜉𝑗𝑒
−𝐵𝑥𝑛

𝐵(𝐴 − 𝐵)(𝛼 + 𝛽(𝐴 + 𝐵))
∑𝜉𝑘ℎ𝑘(𝛏

′, 0)

𝑛−1

𝑘=1

] (𝐱′, 𝑥𝑛) 

 

for 𝑗 = 1,… ,𝑁 − 1 and also 
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𝑢𝑁(𝐱) = ℱ𝜉′
−1 [

𝑒−𝐴𝑥𝑛 − 𝑒−𝐵𝑥𝑛

(𝐴 − 𝐵)(𝛼 + 𝛽(𝐴 + 𝐵))
∑ 𝜉𝑘ℎ𝑘(𝛏

′, 0)

𝑛−1

𝑘=1

] (𝒙′, 𝑥𝑁). 

where 

 

𝐴 = √𝜆 + |𝜉′|2 and  𝐵 = |𝜉′|. 

 

For proving the main Theorem 2, first of all we explain the Robin boundary condition. Dirichlet 

and Neumann boundary conditions are combined in a weighted manner to form Robin 

boundary conditions. In contrast, mixed boundary conditions are boundary conditions of 

several types defined on various boundary subsets. Because of the way they are used in 

electromagnetic problems, Robin boundary conditions are also known as impedance boundary 

conditions or convective boundary conditions (Hahn & Özisik, 2012). In the following section, 

we state the steps of the proof. First of all, we transform the equation of (1) by using partial 

Fourier transform (8). Using similar method, we transform the boundary condition (2). Finally, 

finding all coefficients of equation (18), we got the solution formula of equation system (1).  

 

2. The proof of Theorem (2) 

a. Resolvent problem  

In this subsection, we investigate the application of partial Fourier transform to the 

model problem (1) and also to the Robin boundary condition of equation (2). First of all, 

substituting second equation to the first equation of (1), we have  

 

𝜆𝐮 + ∇𝑝 − Δ𝐮 = 𝐟.                                                        (11) 

   

Using definition of boundary in (5), the first equation of equation (3) can be write in the 

following 

 

𝑢𝑛|𝑥𝑛=0 = 0,                                                           (12) 

       

 while second equation of equation (3) described in the following form   

 

{
𝛼𝑢𝑗 − 𝛽(𝜕𝑛𝑢𝑗 + 𝜕𝑗𝑢𝑛)|𝑥𝑛=0

= ℎ𝑗|𝑥𝑛=0;       𝑗 = 1,2,⋯ , 𝑛 − 1

𝛼𝑢𝑛|𝑥𝑛=0 = ℎ𝑛|𝑥𝑛=0.      
.                      (13) 

  

Let 𝐟 = 𝟎  then for incompressible fluid flow and equation (11)-(13), we have new 

homogenous equation system  

 

{
 

 
𝜆𝐮 + ∇𝑝 − Δ𝐮 = 𝟎,      in ℝ+

𝑛

div 𝐮 = 0,      in ℝ+
𝑛

𝑢𝑛 = 0,   on ℝ0
𝑛

𝛼𝑢𝑗 − 𝛽𝜕𝑛𝑢𝑗 = ℎ𝑗 , 𝑗 = 1,⋯ , 𝑛 − 1, on ℝ0
𝑛.

                                  (14) 

 



 Sri Maryani, Partial Fourier Transform Method for...    33 

 

 

b. Partial Fourier Transform 

By using partial Fourier transform as defined in (8) and applying to equation system of 

(14), we have  

 

{
 
 

 
 
(𝜆 + |ξ′|2)�̂�𝑗(𝛏

′, 𝑥𝑛) + 𝑖𝜉𝑗�̂�(𝛏
′, 𝑥𝑛) − 𝜕𝑛

2�̂�𝑗(𝛏
′, 𝑥𝑛) =  0, 𝑗 = 1,⋯ , 𝑛 − 1

(𝜆 + |𝜉′|2)�̂�𝑛(𝛏
′, 𝑥𝑛) + 𝜕𝑛�̂�(𝛏

′, 𝑥𝑛) − 𝜕𝑛
2�̂�𝑛(𝛏

′, 𝑥𝑛) =  0, 𝑗 = 1,⋯ , 𝑛 − 1

∑ 𝑖𝜉𝑗�̂�𝑗
𝑛−1
𝑗=1 (𝛏′, 𝑥𝑛) + 𝜕𝑛�̂�𝑛(𝛏

′, 𝑥𝑛) =  0, 𝑗 = 1,⋯ , 𝑛 − 1

�̂�𝑛(𝛏
′, 0) =  0, 𝑗 = 1,⋯ , 𝑛 − 1

𝛼�̂�𝑗(𝛏
′, 0) − 𝛽𝜕𝑛�̂�𝑗(𝛏

′, 0) = ℎ̂𝑗 , 𝑗 = 1,⋯ , 𝑛 − 1.

         (15) 

 

Furthermore, let 𝐴 = √𝜆 + |𝜉′|2  and 𝐵 = |𝜉′| , then equation system of (15) can be 

written in the following  

 

{
 
 

 
 
𝐴2�̂�𝑗(𝛏

′, 𝑥𝑛) + 𝑖𝜉𝑗�̂�(𝛏
′, 𝑥𝑛) − 𝜕𝑛

2�̂�𝑗(𝛏
′, 𝑥𝑛) =  0, 𝑗 = 1,⋯ , 𝑛 − 1

𝐴2�̂�𝑛(𝛏
′, 𝑥𝑛) + 𝜕𝑛�̂�(𝛏

′, 𝑥𝑛) − 𝜕𝑛
2�̂�𝑛(𝛏

′, 𝑥𝑛) =  0, 𝑗 = 1,⋯ , 𝑛 − 1

∑ 𝑖𝜉𝑗�̂�𝑗
𝑛−1
𝑗=1 (𝛏′, 𝑥𝑛) + 𝜕𝑛�̂�𝑛(𝛏

′, 𝑥𝑛) =  0, 𝑗 = 1,⋯ , 𝑛 − 1

�̂�𝑛(𝛏
′, 0) =  0, 𝑗 = 1,⋯ , 𝑛 − 1

𝛼�̂�𝑗(𝛏
′, 0) − 𝛽𝜕𝑛�̂�𝑗(𝛏

′, 0) = ℎ̂𝑗(𝛏
′, 0), 𝑗 = 1,⋯ , 𝑛 − 1.

                  (16) 

 

 

Moreover, letting the solution formula of equation system (15) are  

 

{

�̂�𝑗(𝛏
′, 𝑥𝑛) = 𝑃𝑗𝑒

−𝐴𝑥𝑛 + 𝑄𝑗𝑒
−𝐵𝑥𝑛 , 𝑗 = 1,2,⋯ , 𝑛 − 1,

�̂�𝑛(𝛏
′, 𝑥𝑛) = 𝑃𝑛𝑒

−𝐴𝑥𝑛 + 𝑄𝑛𝑒
−𝐵𝑥𝑛 , 𝑥 ≥ 0

𝑝(𝛏′, 𝑥𝑛) = 𝑅𝑒−𝐵𝑥𝑛 .  𝑥 ≥ 0

                         (17) 

        

Substituting the equation (17) to (16), then we have  

 

{
 
 
 

 
 
 

(𝐴2 − 𝐵2)𝑄𝑗 + 𝑖𝜉𝑗𝑅 = 0, 𝑗 = 1,2,⋯ , 𝑛 − 1

(𝐴2 − 𝐵2)𝑄𝑛 − 𝐵𝑅 =  0, .

∑ 𝑖𝜉𝑗𝑃𝑗
𝑛−1
𝑗=1 − 𝐴𝑃𝑛 =  0, .

∑ 𝑖𝜉𝑗𝑄𝑗
𝑛−1
𝑗=1 − 𝐵𝑄𝑛 = 0, .

𝑃𝑛 + 𝑄𝑛 = 0, .

𝛼(𝑃𝑗 + 𝑄𝑗) + 𝛽(𝐴𝑃𝑗 + 𝐵𝑄𝑗) =  ℎ̂𝑗(𝛏
′, 0)., 𝑗 = 1,2,⋯ , 𝑛 − 1.

                      (18) 

 

Solving equation system of (18), we have coefficients 𝑃𝑗 , 𝑃𝑁 , 𝑄𝑗, 𝑄𝑁  and 𝑅  for 𝑗 =

1,2,⋯ , 𝑛 − 1 which written as follow  

 

𝑃𝑗 =
ℎ̂𝑗(𝛏

′,𝑥𝑛)

𝛼+𝛽𝐴
−−

𝛼+𝛽𝐵

𝛼+𝛽𝐴

𝜉𝑗

𝐵(𝐴−𝐵)(𝛼+𝛽(𝐴+𝐵))
∑ 𝜉𝑘ℎ𝑘(𝛏

′, 𝑥𝑛)
𝑛−1
𝑘=1 ,                        (19) 
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𝑄𝑗 =
𝜉𝑗

𝐵(𝐴−𝐵)(𝛼+𝛽(𝐴+𝐵))
∑ 𝜉𝑘ℎ𝑘(𝛏

′, 𝑥𝑛)
𝑛−1
𝑘=1 ,                                                         (20) 

 

𝑃𝑛 =
1

(𝐴−𝐵)(𝛼+𝛽(𝐴+𝐵))
∑ 𝑖𝜉𝑘ℎ𝑘(𝛏

′, 𝑥𝑛)
𝑛−1
𝑘=1 ,                                                          (21) 

 

𝑄𝑛 = −
1

(𝐴−𝐵)(𝛼+𝛽(𝐴+𝐵))
∑ 𝑖𝜉𝑘ℎ𝑘(𝛏

′, 𝑥𝑛)
𝑛−1
𝑘=1 ,                                                      (22) 

 

𝑅 = −
(𝐴+𝐵)

𝐵(𝛼+𝛽(𝐴+𝐵))
∑ 𝑖𝜉𝑘ℎ𝑘(𝛏

′, 𝑥𝑛)
𝑛−1
𝑘=1 .                                                             (23) 

 

Substituting equation (19)-(23) to (18) and applying inverse partial Fourier transform, 

we complete the main Theorem 2. ∎ 

 

D. CONCLUSION AND SUGGESTIONS 

The velocity and pressure model problem's solution formula are constructed using 

multipliers. These multipliers are known as solution operator families. The operator families 

for the model problem's solutions being bounded. Future research will focus on the 

boundedness of the solutions operator with surface tension, as was stated at the conclusion of 

this paper. Be aware that the results, including the proofs, can be used to further the study of 

fluid dynamics. From a purely mathematical perspective, the solution regularity of the model 

problem is a critical factor. Furthermore, this finding is a key first step in proving boundlessness 

in bent-half space and the general domain. Therefore, result in this article become important 

part to consider the maximal Lp-Lq regularity class.  
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