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 Hyperstructures find numerous applications across various disciplines. One 
notable application is in chemistry, particularly in the context of chemical reactions. 
In 2014, Davvaz introduced the concept of bi-hyperstructures, but their application 
specifically in chemical reactions, has yet to be thoroughly explored in previous 
studies. Thus, the primary aim of this paper is to examine and analyze the different 
types of bi-hyperstructures present within chemical hyperstructures. The scope of 
this study focuses on two types of chemical hyperstructures: redox reactions and 
reactions in electrochemical cells. Within these chemical hyperstructures, we 
investigate the possibility of bi-hyperstructures among bi-semihypergroups, bi-
hypergroups, bi-𝐻𝑣 -semigroups, and bi-𝐻𝑣 -groups. Next, some properties of bi-
hyperstructures related to hyperstructures are also investigate.  
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A. INTRODUCTION  

Hyperstructures are generalizations of algebraic structures. Marty initially introduced the 

concept in 1934 (Marty, 1934). Later, Vougiouklis (1994) furthered generalized 

hyperstructures into structures known as 𝐻𝑣 -Structures. Prominent researchers in 

hyperstructures, including Corsini, Davvaz, Leoreanu-Fotea, Vougiouklis, and Cristea have 

authored books to facilitate research in this field (Corsini and Leoreanu-Fotea, 2003; Davvaz & 

Cristea, 2015; Davvaz, 2016; Davvaz and Vougiouklis, 2019; Davvaz and Leoreanu-Fotea, 2022). 

Moreover, hyperstructures have numerous applications in various mathematical fields, such as 

geometry, cryptography, and coding theory (Corsini and Leoreanu-Fotea, 2003). 

In addition to mathematics, hyperstructures have applications in scientific disciplines like 

physics, biology, and chemistry. In physics, hyperstructures are utilized for analyzing different 

types of hyperstructures in physical particles, particularly leptons (Nezhad et al., 2012). In 

biology, hyperstructures are employed to study hyperstructures related to inheritance Davvaz 

et al. (2013); Al Tahan & Davvaz (2017), where fuzzy sets and intuitionistic fuzzy sets play a 
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significant role (Al-Tahan and Davvaz, 2019; Al-Tahan & Davvaz, 2019a; Leoreanu-Fotea et al., 

2023). Furthermore, hyperstructures are used in chemistry to analyze types of hyperstructures 

in chemical reactions. Research on hyperstructures in chemical reactions initiated by Davvaz 

and Dehghan-Nezhad in 2003 (Davvaz and Dehghan-Nezhad, 2013). Studies related to 

hyperstructures in chemical reactions encompass dismutation reactions (Davvaz et al., 2012), 

redox reactions (Davvaz, Dehghan Nezhad, et al., 2014), redox reactions with three oxidation 

numbers (S. C. Chung et al., 2014), four oxidation numbers (Al-Jinani et al., 2019; Al-Tahan and 

Davvaz, 2022), and examples of redox reactions with five oxidation states (Agusfrianto et al., 

n.d.). Additionally, hyperstructure types have been analyzed concerning reactions in 

electrochemical cells (M. A. Al-Tahan & Davvaz, 2018), ozone depletion reactions (Chung, 2019), 

ozone depletion reactions in the stratosphere (Chung and Chun, 2020), and salt formation 

reactions (Heidari et al., 2019).  

Furthermore, in 2014, Davvaz introduced the concept of bi-hyperstructures (Davvaz et al., 

2014). Since research has yet to be conducted on bi-hyperstructures in chemical 

hyperstructures, this paper aims to analyze the different types of bi-hyperstructures present in 

chemical hyperstructures. This study focuses on chemical hyperstructures within redox 

reactions with three and four oxidation states. Furthermore, from the results of bi-

hyperstructures in redox reactions with three and four oxidation states, theorems regarding 

the relationship between bi-hyperstructures and hyperstructures that have not been studied in 

previous studies are also obtained. 

 

B. METHODS 

The following theories are sourced from Davvaz et al. (2014), Davvaz and Vougiouklis 

(2019), (Leoreanu-Fotea, 2022). Let 𝔏 be a nonempty set and define a mapping ⊖:𝔏 × 𝔏 →

𝑃(𝔏)\{∅} where 𝑃(𝔏) represent all subsets of 𝔏. Then, the mapping " ⊖ " is referred to as a 

hyperoperation on 𝔏 and the mathematical system (𝔏,⊖) is called a hypergroupoid. If  " ⊖ " is 

associative, i.e., for every 𝔩, 𝔪, 𝔫 ∈ 𝔏 , 𝔩 ⊖ (𝔪⊖ 𝔫) = (𝔩 ⊖ 𝔪)⊖ 𝔫 , then (𝔏,⊖)  is called a 

semihypergroup. If (𝔏,⊖) satisfies reproduction axiom, which states that for every 𝔲 ∈ 𝔏, 𝔲⊖

𝔏 = 𝔏⊖ 𝔲 = 𝔏 , then (𝔏,⊖)  is called a hypergroup. Furthermore, a hyperoperation " ⊖ "  is 

considered weakly associative if for every 𝔩, 𝔪, 𝔫 ∈ 𝔏, 𝔩 ⊖ (𝔪⊖ 𝔫) ∩ (𝔩 ⊖ 𝔪)⊖ 𝔫 ≠ ∅. (𝔏,⊖) is 

called a 𝐻𝑣-semigroup if it is weakly associative and a 𝐻𝑣-semigroup (𝔏,⊖) is called a 𝐻𝑣-group 

if it satisfies the reproduction axiom.  

On the other hand, let 𝔏 be a semihypergroup (hypergroup, 𝐻𝑣-semigroup, or 𝐻𝑣-group),  

with " ⊖ " and " ⊙ " representing hyperoperations on 𝔏. Then, 𝔏 is called bi-semihypergroup 

(hypergroup, 𝐻𝑣-semigroup, or 𝐻𝑣-group) if there exist proper subsets 𝔐 and 𝔑 of 𝔏 satisfying 

the following condition: (1) 𝔏 = 𝔐 ∪𝔑 , (2) (𝔐,⊖)  is a semihypergroup (hypergroup, 𝐻𝑣 -

semigroup, or 𝐻𝑣-group), and (3) (𝔑,⊙) is a semihypergroup (hypergroup, 𝐻𝑣-semigroup, or 

𝐻𝑣-group). Next, the research methods that used in this study is literature studies. The research 

process in this paper is given as follows.  

1. Take a chemical reaction that wants to analyze the type of bi-hyperstructures. These are 

chemical reactions with three and four oxidation states.   

2. Define a hyperoperation table whose elements are the reactants and products of the 

chemical reaction. 
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3. Analyze the different types of bi-hyperstructures. 

4. Based on the bi-hyperstructures analysis results obtained, connect the concept of bi-

hyperstructures to hyperstructures. Write the result in the form of a theorem. For a 

more concise process, consider the research process diagram in Figure 1. 

 

 
Figure 1. Research Process Diagram 

 

C. RESULTS AND DISCUSSION 

In this section, we present the research results pertaining to the analysis of bi-

hyperstructures in redox reactions with three and four oxidation states. 

1. Bi-Hyperstructures in Chemical Redox Reactions 

a. Bi-Hyperstructures in Chemical Redox Reactions with Three Oxidation States. If 𝔓,𝔔, 

and ℜ are elements, then we have following Latimer diagram.  

 

𝔓 →𝛼 𝔔 →𝛽 ℜ 

 

where 𝛼 and 𝛽 are represent the potential in volts. Furthermore, if 𝑝, 𝑞, 𝑟 are oxidation 

states of 𝔓,𝔔, and ℜ respectively, then we have the relation 𝑝 > 𝑞 > 𝑟 . Now, let 𝑍 =

{𝔓,𝔔,ℜ} and define a hyperoperation " ⊡ " as the product of the reaction that occurs 

between two elements in 𝑍.  Based on Chun, et al., (2014), there are two conditions.  

 

First Condition: If 𝛼 > 𝛽, then we have the following Table 1 (Chun, et al., 2014). 

 

Table 1. (𝑍,⊡) 

⊡ 𝕻 𝕼 𝕽 
𝔓 𝔓 {𝔓,𝔔} 𝔔 
𝔔 {𝔓,𝔔} 𝔔 {𝔔,ℜ} 
ℜ 𝔔 {𝔔,ℜ} ℜ 

 

Accordingly, we have the following Theorem 3.1.1 related to type of bi-hyperstructure 

of mathematical system (𝑍,⊡).   

 

Theorem 3.1.1 (𝑍,⊡) is a bi-hypegroup.  

Proof. Since 𝑍 = {𝔓,𝔔} ∪ {𝔔,ℜ} , ({𝔓,𝔔},⊡)  and ({𝔔,ℜ},⊡)  are hypergroups, 

therefore (𝑍,⊡) is a bi-hypergroup. 
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Second Condition: If 𝛽 > 𝛼, then we have the following Table 2 (Chun, et al., 2014). 

 

Table 2. (𝑍,⊡) 

⊡ 𝕻 𝕼 𝕽 
𝔓 𝔓 {𝔓,ℜ} {𝔓,ℜ} 
𝔔 {𝔓,ℜ} {𝔓,ℜ} {𝔓,ℜ} 
ℜ {𝔓,ℜ} {𝔓,ℜ} ℜ 

 

Then, based on Table 2, the following Remark 3.1.2 is obtained.  

 

Remark 3.1.2 (𝑍,⊡)  does not form a bi-hyperstructure. Only ({𝔓,ℜ},⊡)  forms a 

hyperstructure, which is hypergroup. However, ({𝔓,𝔔},⊡)  and ({𝔔,ℜ},⊡)  does not 

form bi-hyperstructures. Now, let’s consider the following example. 

 

Example 3.1.3 Based on Douglas et al. (1992), the Latimer diagram of Niobium (𝑁𝑏) 

and Silicon (Si) are given as follows: 

 

𝑁𝑏2𝑂5 →−0.1 𝑁𝑏
3+ →−1.1 𝑁𝑏 

𝑆𝑖𝑂3
2− →−1.69 𝑆𝑖 →−0.93 𝑆𝑖𝐻4 

 

Let 𝑍 = {𝑁𝑏2𝑂5, 𝑁𝑏
3+, 𝑁𝑏}  and 𝒵 = {𝑆𝑖𝑂3

2−, 𝑆𝑖, 𝑆𝑖𝐻4}  and define the hyperoperation 

" ⊞ " and " ⊟ " as the product of reactions that occur between two elements in 𝑍 and 𝒵 

respectively. Then, (𝑍,⊞)  forms a bi-hypergroup and (𝒵,⊟)  does not form a bi-

hyperstructures.  

 

b. Bi-Hyperstructures in Chemical Redox Reactions with Four Oxidation States. If 𝔓,𝔔, and 

ℜ are elements, then we have following Latimer diagram.  

 

𝔓 →𝛼 𝔔 →𝛽 ℜ →𝛾 𝔖 

 

where 𝛼, 𝛽, and 𝛾 are the potential in volts. Furthermore, if 𝑝, 𝑞, 𝑟, 𝑠 are oxidation states 

of 𝔓 ,𝔔 ,ℜ  and 𝔖  respectively, we have the relation 𝑝 > 𝑞 > 𝑟 > 𝑠 . Now, let 𝑊 =

{𝔓,𝔔,ℜ,𝔖} and define a hyperoperation "⨄" as product of reaction that occurs between 

two elements in 𝑊. Based on Jinani, et al., (2019) and Al-Tahan and Davvaz, (2022), we 

have all following conditions.  

 

First Condition: If 𝛼 > 𝛽 > 𝛾, then we have the following Table 3 (Al-Tahan and Davvaz, 

2022). 

 

Table 3. (𝑊,⨄) for 𝛼 > 𝛽 > 𝛾 

⨄ 𝕻 𝕼 𝕽 𝕾 
𝔓 𝔓 {𝔓,𝔔} 𝔔 {𝔔,ℜ} 
𝔔 {𝔓,𝔔} 𝔔 {𝔔,ℜ} ℜ 
ℜ 𝔔 {𝔔,ℜ} ℜ {ℜ,𝔖} 
𝔖 {𝔔,ℜ} ℜ {ℜ,𝔖} 𝔖 
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Then, we the have following Theorem 3.1.4 related to type of bi-hyperstructure of the 

mathematical system (𝑊,⨄) when 𝛼 > 𝛽 > 𝛾.  

 

Theorem 3.1.4 (𝑊,⨄) is a bi-𝐻𝑣-semigroup. 

Proof. Since 𝑊 = {𝔓,𝔔,ℜ} ∪ {𝔔,ℜ,𝔖} , ({𝔓,𝔔,ℜ}, ⨄)  is a 𝐻𝑣 -semigroup, and 

({𝔔,ℜ,𝔖}, ⨄) is a 𝐻𝑣-semigroup, then (𝑊,⨄) is a bi-𝐻𝑣-semigroup.  

 

Corollary 3.1.5  ({𝔓,𝔔,ℜ}, ⨄) and ({𝔔,ℜ,𝔖}, ⨄) are bi-hypergroups. 

 

Second Condition: If 𝛼 > 𝛽 = 𝛾, then we have the following Table 4 (Al-Jinani, et al., 

2019). 

 

Table 4. (𝑊,⨄) for 𝛼 > 𝛽 = 𝛾 

⨄ 𝕻 𝕼 𝕽 𝕾 
𝔓 𝔓 {𝔓,𝔔} {𝔓,ℜ} {𝔔,ℜ} 
𝔔 {𝔓,𝔔} 𝔔 {𝔔,ℜ} ℜ 
ℜ {𝔓,ℜ} {𝔔,ℜ} ℜ {ℜ,𝔖} 
𝔖 {𝔔,ℜ} ℜ {ℜ,𝔖} 𝔖 

 

Then, we the have following Theorem 3.1.6 related to type of bi-hyperstructure of the 

mathematical system (𝑊,⨄) when 𝛼 > 𝛽 = 𝛾.  

 

Theorem 3.1.6 (𝑊,⨄) is a bi-hypergroup. Proof. It follows from Theorem 3.1.1 

 

Corollary 3.1.7 ({𝔓,𝔔,ℜ}, ⨄) and ({𝔔,ℜ,𝔖}, ⨄) are bi-hypergroups. 

 

Third Condition: If 𝛼 = 𝛾 > 𝛽, then we have following Table 5 (Al-Jinani, et al., 2019). 

 

Table 5. (𝑊,⨄) for 𝛼 > 𝛾 > 𝛽 

⨄ 𝕻 𝕼 𝕽 𝕾 
𝔓 𝔓 {𝔓,ℜ} {𝔓,ℜ} ℜ 
𝔔 {𝔓,ℜ} {𝔓,ℜ} {𝔓,ℜ} ℜ 
ℜ {𝔓,ℜ} {𝔓,ℜ} ℜ {ℜ,𝔖} 
𝔖 ℜ ℜ {ℜ,𝔖} 𝔖 

 

Then, we the have following Remark 3.1.8 related to type of bi-hyperstructure of the 

mathematical system (𝑊,⨄) when 𝛼 > 𝛾 > 𝛽.  

 

Remark 3.1.8 (𝑊,⨄) does not form a bi-hyperstructure. 

 

Remark 3.1.9 ({𝔓,𝔔, ℜ},⨄) , ({𝔓,𝔔, 𝔖}, ⨄) , and ({𝔔,ℜ,𝔖}, ⨄)  do not form bi-

hyperstructures.  

Now, let’s consider the following example. 
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Example 3.1.10 Based on Douglas et al. (1992), the Latimer diagram of silver (𝐴𝑔), 

Iridium (𝐼𝑟), and Uranium (𝑈) are given as follows. 

 

𝐴𝑔2𝑂3 →0.74 𝐴𝑔𝑂 →0.6 𝐴𝑔2𝑂 →0.34 𝐴𝑔 

𝐼𝑟𝑂4
2− →0.4 𝐼𝑟𝑂2 →0.1 𝐼𝑟2𝑂3 →0.1 𝐼𝑟 

𝑈𝑂2(𝑂𝐻)2 →−0.3 𝑈𝑂2 →−2.6 𝑈(𝑂𝐻)3 →−2.1 𝑈 

 

Let Γ1 = {𝐴𝑔2𝑂3, 𝐴𝑔𝑂, 𝐴𝑔2𝑂, 𝐴𝑔}, Γ2 = {𝐼𝑟𝑂4
2−, 𝐼𝑟𝑂2, 𝐼𝑟2𝑂3, 𝐼𝑟} , and Γ3 =

{𝑈𝑂2(𝑂𝐻)2, 𝑈𝑂2, 𝑈(𝑂𝐻)3, 𝑈}. Next, define hyperoperations " ⊡1 ", " ⊡2 ", and " ⊡3 " as 

the product of the most positive spontaneous reactions that occur in Γ1, Γ2 , and Γ3 

respectively. Thus, (Γ1,⊡1) forms a bi-𝐻𝑣 -semigroup, (Γ2,⊡2) forms a bi-hypergroup, 

and (Γ3,⊡3) does not form a hyperstructure.   

 

2. Some Relations Between Hyperstructures and Bi-Hyperstructures 

Based on the results obtained in Section 1, the following properties hold. First, we have 

properties about relation between bi-hyperstructures and hyperstructures.  

 

Theorem 3.2.1 Let (𝔏,⊖)  be a commutative hypergroupoid and let  𝔐  and 𝔑  be proper 

subsets of 𝔏 with the same hyperoperation as 𝔏. If (𝔏,⊖) is a bi-semihypergroup (hypergroup, 

bi-𝐻𝑣-semigroup, or bi-𝐻𝑣-group), then (𝔏,⊖) is a commutative semihypergroup (hypergroup, 

𝐻𝑣-semigroup, or 𝐻𝑣-group). 

 

Proof. If (𝔏,⊖) is a commutative bi-hypergroup, then 𝔏 = 𝔐∪𝔑, and both (𝔐,⊖) and (𝔑,⊖) 

is are commutative hypergroups. Since both (𝔐,⊖) and (𝔑,⊖) are hypergroups, it follows that 

(𝔏,⊖) is a hypergroup since 𝔐  and 𝔑  are subsets of 𝔏 , i.e., associativity and reproduction 

axiom also prevailing in 𝔏. The proof for other conditions is similar.  

 

Remark 3.2.2 The converse of Theorem 3.2.1 is not necessarily true. For instance, based on 

Table 5, (𝑊,⨄) is a 𝐻𝑣-semigroup, but does not form a bi-hyperstructure.   

 

Furthermore, we have the following Theorem 3.2.3 about type of bi-hyperstructure when the 

hyperstructure is isomorphic.  

 

Theorem 3.2.3 Let (𝔏1,⊖1) and (𝔏2,⊖2) be commutative semihypergroups (hypergroups, 𝐻𝑣-

semigroups, or 𝐻𝑣-groups). If (𝔏1,⊖1) ≅ (𝔏2,⊖2), then (𝔏1,⊖1) have same bi-hyperstructures 

with (𝔏2,⊖2). 

 

Proof. The proof of this theorem is obvious. 

 

Remark 3.2.4 The converse of Theorem 3.2.3 is not necessarily true. Let 𝔏1 = {𝔭1, 𝔮1, 𝔯1} and 

𝔏2 = {𝔭2, 𝔮2, 𝔯2}. Define hyperoperations " ⊖1 " and " ⊖2 " as shown in Table 6 and Table 7.  
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Table 6. (𝔏1,⊖1) 

⊖𝟏 𝖕𝟏 𝖖𝟏 𝖗𝟏 
𝔭1 𝔭1 {𝔭1, 𝔮1} {𝔭1, 𝔯1} 
𝔮1 {𝔭1, 𝔮1} 𝔮1 {𝔮1, 𝔯1} 
𝔯1 {𝔭1, 𝔯1} {𝔮1, 𝔯1} 𝔯1 

 

Table 7. (𝔏2,⊖2) 

⊖𝟐 𝖕𝟏 𝖖𝟏 𝖗𝟏 
𝔭1 𝔭1 {𝔭1, 𝔮1} 𝐻 
𝔮1 {𝔭1, 𝔮1} 𝔮1 {𝔮1, 𝔯1} 
𝔯1 𝐻 {𝔮1, 𝔯1} 𝔯1 

 

Based on Table 6 and Table 7, (𝔏1,⊖1) and (𝔏2,⊖2) are commutative hypergroups and 

they have the same bi-hyperstructures, that is bi-hypergroups. However, it easy to see that 

(𝔏1,⊖1) not isomorphic to (𝔏2,⊖2).  

 

D. CONCLUSION AND SUGGESTIONS 

Based on the explanation above, bi-hyperstructures have been obtained in hyperstructures 

of redox reactions with three and four oxidation states. The types of bi-hyperstructures that 

obtained are bi-hypergroup and bi-𝐻𝑣-semigroup. Additionally, several related properties of 

bi-hyperstructures have been obtained. These properties include the fact that if a 

hypergroupoid is a bi-hyperstructure, then it is also a hyperstructure, and if two 

hyperstructures are isomorphic, then they share the same bi-hyperstructures. However, it 

should be noted that the converse of these two traits is not necessarily true. For future research, 

it would be beneficial to analyze the types of bi-hyperstructures in chemical reaction 

hyperstructures that have not yet been explored in the context of bi-hyperstructures. 
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