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 This study proposes a multi objective optimization model for vaccine distribution 
problems using the Maximum Covering Location Problem (MCLP) model. The 
objective function of the MCLP model in this study is to maximize the fulfillment of 
vaccine demand for each priority group at each demand point. In practice, the MCLP 
model requires data on the amount of demand at each demand point, which in 
reality can be influenced by many factors so that the value is uncertain. This 
problem makes the optimization model to be uncertain linear problem (ULP). The 
robust optimization approach converts ULP into a single deterministic problem 
called Robust Counterpart (RC) by assuming the demand quantity parameter in the 
constraint function is in the set of uncertainty boxes, so that a robust counterpart 
to the model is obtained. Numerical simulations are carried out using available 
data. It is found that the optimal value in the robust counterpart model is not better 
than the deterministic model but is more resistant to changes in parameter values. 
This causes the robust counterpart model to be more reliable in overcoming 
uncertain vaccine distribution problems in real life. This research is limited to 
solving the problem of vaccine distribution at a certain time and only assumes that 
the uncertainty of the number of requests is within a specified range so that it can 
be developed by assuming that the number of demand is dynamic. 

Keywords: 
MCLP;  
Priority Groups; 
Robust Optimization;  
Service Coverage;  
Demand;  
Uncertainty. 
 

 

 
 

 
https://doi.org/10.31764/jtam.v8i2.20035  

 
This is an open access article under the CC–BY-SA license 
 

 
——————————      —————————— 

 
 

A. INTRODUCTION  

Vaccine distribution modeling has been widely used to carry out optimal distribution 

planning. Vaccine distribution is often faced with several problems which can be grouped based 

on the characteristics of the problems faced (De Boeck et al., 2020). Outlines the general 

characteristics and challenges inherent in the distribution chain, both from location selection 

problems and storage problems. Constraints in selecting vaccine distribution locations are 

supported by several literature studies by modeling the problem of selecting vaccine 

distribution locations that can cover maximum demand points using the Maximum Coverage 

Location Problem (MCLP) model (Alzahrani & Hanbali, 2021; Batanović et al., 2009; 

Jayalakshmi & Singh, 2017; Lim et al., 2016; Lusiantoro et al., 2022; Máximo et al., 2017) where 

based on several studies it can be obtained that the MCLP model can provide a solution for 

determining efficient vaccine distribution locations based on the distance between the point of 

demand and distribution center. Then the problem of limited distribution capacity was studied 

by Chen et al. (2022); Hovav & Tsadikovich (2015) which provides an illustration that in 

http://journal.ummat.ac.id/index.php/jtam
mailto:faiqulfikri.personal@gmail.com
https://doi.org/10.31764/jtam.v8i2.20035


 Faiqul Fikri, Robust Optimization of Vaccine Distribution...    507 

 

 

distribution problems, capacity constraints can influence the optimal location of distribution 

centers. 

On the other hand, vaccine distribution based on priority has a big impact when faced with 

the problem of limited supply in pandemic conditions. Gamchi et al. (2021) modeled the vaccine 

distribution problem by dividing potential vaccine recipients based on priority groups using 

multi-objective optimization. Based on the previous explanation, the Maximum Covering 

Location Problem (MCLP) Model is a problem model that aims to maximize the number of 

vaccine recipients based on the service coverage of health facilities. To optimize vaccine 

distribution, a comparison between equitable distribution approaches and priority-based 

distribution is an important concern. Equitable distribution of vaccines can provide fairer 

vaccination opportunities for the entire community. The MCLP model is generally a single 

objective model that models vaccine distribution evenly. In a crisis such as a pandemic, the 

distribution of vaccines based on priority can reduce the negative impact of the spread of 

disease. Vaccine distribution based on priority groups can be completed using a multi-objective 

optimization model with the objective function being that vaccine requests are sorted based on 

priority groups. 

Furthermore, it is known that the MCLP Model uses population data in an area obtained 

from data provided by the government, in reality, the number of individuals in a population can 

be random so it can cause the number of vaccine demand in a population to become uncertain. 

Uncertainty in the number of requests can affect the optimal value of the MCLP model, this is 

because the optimization model solution has high sensitivity to changes in parameters 

(Bertsimas et al., 2011). Robust optimization is an optimization model that considers the 

uncertainty of parameter values. Robust optimization focuses on worst-case optimization, 

where the worst-case constraints are calculated based on a set of convex parameter 

uncertainties (Gabrel et al., 2014). The resulting solution must be feasible for every uncertain 

parameter in the specified uncertainty set. 

To provide a better picture, a robust optimization model for uncertainty in the number of 

requests for vaccine distribution problems has been developed. In Ziaei & Pishvaee (2019) 

vaccine supply chain network problems with vaccine demand uncertainty and cost issues are 

modeled. Yang & Rajgopal (2019) have modeled the vehicle routing problem with uncertainty 

in vaccine demand and vehicle travel time. In Wang et al. (2023) have modeled the problem of 

vaccine distribution with uncertainty in the amount of supply and demand. Robust optimization 

can provide better worst-case performance compared to non-robust optimization (Gülpinar et 

al., 2013).  

Based on several literature studies above, this research aims to (1) develop a vaccine 

distribution problem model using the MCLP model based on priority groups with multi-

objective problems; (2) then compare the classic MCLP model which distributes vaccines 

evenly using objective optimization -single with vaccine distribution based on priority; (3) 

developing uncertainty assumptions about the number of vaccine demand parameters in the 

MCLP model and solving this problem with a robust optimization approach; and (4) comparing 

models with a definite number of requests which are then called deterministic models and 

models with the number of requests uncertain which is then called the robust counterpart 

model. It is hoped that this research can provide an overview of how the priority-based vaccine 
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distribution model works and how to overcome uncertainty in the number of requests in the 

model.  

 

B. METHODS 

1. Maximum Covering Location Problem 

The classic Maximum Covering Location Problem model aims to determine the location of 

potential distribution centers that can cover demand points maximally. Refers to (Church & 

Revelle, 1974), MCLP has the following form: 

 

Objective function: 

𝑚𝑎𝑥 ∑ 𝑎𝑖𝑦𝑖

𝑖∈ℐ

 

constraint function: 

∑ 𝑥𝑗

𝑗∈𝑁𝑖

≥ 𝑦𝑖 , ∀𝑖 ∈ 𝐼. 

∑ 𝑥𝑗

𝑗∈𝐽

= 𝑃. 

𝑥𝑗 , 𝑦𝑖 ∈ {0,1} 

(1) 

Where is 

𝐼 : denotes the set of demand nodes 

𝐽 : denotes the set of facility sites 

𝑁𝑖 : {𝑗 ∈ 𝐽|𝑑𝑖𝑗 ≤ 𝑆} 

𝑎𝑖 : population to be served at the demand node 𝑖 

𝑑𝑖𝑗  : the shortest distance from node 𝑖 to node 𝑗; 

𝑆 
: the distance beyond which a demand point is considered 

"uncovered" 

𝑃 : the number of facilities to be located 

𝑥𝑗  : 𝑥𝑗 = 1 if a facility is allocated to the site 𝑗, 𝑥𝑗 = 0 otherwise 

𝑦𝑖 : 𝑦𝑖 = 1 if demand point 𝑖 covered, 𝑦𝑖 = 0 otherwise 

 

In this research, the author attempts to develop the basic concept of binary demand 

fulfillment decisions (𝑦𝑖) to be more specific, adding several other assumptions from several 

related papers such as capacity constraints, and adding the assumption that 𝑎𝑖 is uncertain and 

can be solved by robust optimization. 

 

2. Robust Optimization 

The robust optimization approach in this study refers to (Ben-Tal et al., 2009; Ben-Tal & 

Nemirovski, 2002; Bertsimas et al., 2011; Den Hertog, 2013; Gorissen et al., 2015; Sozuer & 

Thiele, 2016). For example, suppose there is an uncertain linear problem with the following 

form: 
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Objective function: 

min 𝑐𝑇𝑥. 

constraint function: 

𝐴𝑥 ≤ 𝑏. 

(𝐴, 𝑏, 𝑐) ∈ 𝒰. 

(2) 

 

where 𝑐 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚 × ℝ𝑛, dan 𝑏 ∈ ℝ𝑛 , is an uncertain decision variable and 𝒰  is the 

notation of the uncertainty set. The robust optimization approach transforms uncertain linear 

problems (ULP) into a single deterministic problem called Robust Counterpart (RC). Problem 

(RC) can be equivalently written as a problem with a linear objective function and uncertainty 

in the constraint function only. Assume that b ∈ ℝn and c ∈ ℝn are certain, the robust 

counterpart formulation of equation (2) is defined in equation (3) 

  

Objective function: 

min 𝑐𝑇 𝑥. 

constraint function 

𝑎𝑖
𝑇(𝜁)𝑥 ≤ 𝑏𝑖, 𝑖 = 0,1, … , 𝑚. 

𝜁 ∈ 𝒵. 

(3) 

 

where 𝒵 ∈ ℝ𝐿 is the set of uncertainties and 𝜁 is a variable that controls the range of 

uncertainties. The solution 𝑥 ∈ ℝ𝑛 is called robust feasible if it satisfies all uncertainty 

constraints for all 𝜁 ∈ 𝒵. Suppose 𝑎 and 𝑏 is a generalized representation of 𝑎𝑖 and𝑏𝑖, then the 

constraints in equation (3) can be written into equation (4) as follows: 

 

𝑎𝑇(𝜁)𝑥 ≤ 𝑏, ∀ 𝜁 ∈ 𝒵. (4) 

 

Define the uncertain parameters as in equation (4). 

 

𝑎(𝜁) = �̅� + 𝑃𝜁. (5) 

 

where �̅� ∈ ℝ𝑛 is the nominal value vector and 𝑃 ∈ ℝ𝑛×𝐿 is a matrix of confounders that cause 

uncertainty. The set 𝒰 is defined as in equation (6). 

 

𝒰 = {𝑎|𝑎 = �̅� + 𝑃𝜁, 𝜁 ∈ 𝒵}. (6) 

 

Substitute the uncertain parameters in equation (5) to the uncertain constraints in 

equation (4), and we get the result as in equation (7). 

 

(�̅� + 𝑃𝜁)𝑇𝑥 ≤ 𝑏, ∀ 𝜁 ∈ 𝒵. (7) 

 

The simplest uncertainty set is Box Uncertainty. The box uncertainty set can be expressed 

in equation (8). 
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𝒵 = {𝜁: ‖𝜁‖∞ ≤ 𝜌}. (8) 

 

with 𝜌 is an adjustable parameter to measure uncertainty. The robust counterpart formulation 

assuming the uncertainty is in the uncertainty box can be constructed by substituting equation 

(8) into inequality (7) to obtain inequality (9). 

 

(�̅� + 𝑃𝜁)𝑇𝑥 ≤ 𝑏, ∀ 𝜁: ‖𝜁‖∞ ≤ 𝜌. (9) 

 

The solution obtained from the robust optimization problem is "the best worst-case" 

solution, that is, the solution obtained is the best solution for all the worst conditions that may 

occur. In the vaccine distribution problem, the worst condition that occurs is that there is an 

unfulfilled demand, so the worst-case formulation is made in constraint (9) as follows: 

 

max
𝜁:‖𝜁‖∞≤𝜌

(�̅� + 𝑃𝜁)𝑇𝑥 ≤ 𝑏. (10) 

 

Based on the norm definition, the robust counterpart formulation is obtained as follows: 

 

Objective function: 

min 𝑐𝑇 𝑥. 

constraint function 

�̅�𝑖
𝑇𝑥 + 𝜌‖𝑃𝑇𝑥‖1 ≤ 𝑏 

𝜁 ∈ 𝒵. 

(11) 

 

The solution for solving the MCLP model with an uncertain amount of vaccine demand is 

carried out by assuming that the demand quantity parameter in the constraint function is in the 

set of uncertainty boxes, so that a robust counterpart to the MCLP model is obtained. 

 

3. Research Data 

To implement the model created, numerical simulations were carried out using available 

data. The MCLP model aims to determine the location of vaccine distribution centers that can 

cover demand points optimally. Therefore this research requires these data: (a) potential 

vaccine distribution center candidates; (b) service capacity of potential vaccine distribution 

center candidates; (c) potential vaccine demand points; (d) number of vaccine requests at each 

request point; and (e) the distance between potential vaccine distribution centers and vaccine 

demand points. Based on availability, the data used as a parameter for the number of vaccine 

requests is population data based on age and sub-district, sub-district data, and DKI Jakarta 

Health Center data as follows: 
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Table 1. Total Population of DKI Jakarta by Age and Village 2021 

No. Village 
Age (Years) 

00-09 10-19 20-29 30-39 40-49 50-59 60-69 70+ 
1 Cengkareng Barat 13.033 13.821 12.630 14.061 13.731 9.042 4.609 2.309 
2 Cengkareng Timur 17.492 17.137 15.713 18.542 17.365 10.608 5.068 1.835 
3 Duri Kosambi 17.077 16.596 15.989 17.581 15.357 10.263 5.263 1.892 
4 Kapuk 30.016 29.825 27.013 31.093 28.030 17.260 8.023 2.275 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
267 Panggang Island 1.414 1.201 1.320 1.171 987 651 308 124 

 

Table 2. Village 

No. Village Name 
1 Cengkareng Barat 
2 Cengkareng Timur 
3 Duri Kosambi 
4 Kapuk 
⋮ ⋮ 
267 Panggang Island 

 

Table 3. Health Center 

No. Name of Health Center Service Capacity 
1 Kecamatan Cengkareng 2.2230 
2 Cengkareng Brt. I 8.474 
3 Cengkareng Brt. II 21.691 
4 Kelurahan Cengkareng Timur 17.085 
⋮ ⋮ ⋮ 
315 Kelurahan Pulau Panggang 16.203 

 

After determining the distribution centers, demand points, and priority groups used, this 

research calculates the distance between each distribution center and each demand point using 

geographical location and distance formula using Google API syntax for Spreadsheet as follows: 

a. Latitude of the health center: 

function getlatloc(address) { 

var location = Maps.newGeocoder().geocode(address); 

var lat = location["results"][0]["geometry"]["location"]["lat"]; return lat;} 

b. Longitude of the health center: 

function getlngloc(address) { 

var location = Maps.newGeocoder().geocode(address); 

var lng = location["results"][0]["geometry"]["location"]["lng"]; return lng;} 

c. The latitude of the neighborhood: 

function getlat(address) { 

var location = Maps.newGeocoder().geocode(address); 

var lat =(location["results"][0]["geometry"]["bounds"]["northeast"]["lat"]  

+lokasi["results"][0][geometry"] ["bounds"]["southwest"]["lat"])/2; return lat;} 
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d. Longitude of the neighborhood: 

function getlng(address) { 

var location = Maps.newGeocoder().geocode(address); 

var lng = (location["results"][0]["geometry"]["bounds"]["northeast"]["lng"]  

+lokasi["results"][0]["geometry"] ["bounds"]["southwest"]["lng"])/2; return lng;} 

 

After getting the geographical location, the formula for the distance between squared 

points is 𝑑2 = (𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2, where: 𝑑 is distance; 𝑥1is the latitude of the 1st point; 

𝑥2 is the latitude of the 2nd point; 𝑦1is the longitude of the 1st point; 𝑦2 is the longitude of the 

2nd point. Conversion of distance in the corner range of Jakarta: 1° Latitude = 110,570 meters; 

1° Longitude = 110,900 meters. 

 

C. RESULT AND DISCUSSION 

1. Vaccine Distribution Problem Model Formulation 

This study formulates a vaccine distribution problem model using the maximum covering 

location problem model that refers to the research of (Church & Revelle, 1974; Lim et al., 2016; 

Lusiantoro et al., 2022). The MCLP model formulation of the vaccine distribution problem 

begins by defining the problem index and the decision variables used. This study assumes that 

vaccines are distributed through health facilities to demand points which are divided into 

several groups based on priority, therefore defining 𝑖  as the demand point index, 𝑗  as the 

priority group index, and 𝑘 as the candidate health facility index with 𝑖 ∈ ℐ, 𝑗 ∈ 𝒥, and 𝑘 ∈ 𝒦. 

Then this study uses the assumption of relaxation of decision variables that refer to research 

(Lim et al., 2016) which allows partial fulfillment of demand by more than one health facility, 

therefore defined the variable 𝑥𝑘 ∈ {0,1} as a health facility selection decision variable 𝑘 and 

𝑦𝑖𝑗𝑘 ∈ [0,1] as the decision variable for the proportion of vaccine demand fulfillment.  

This research develops the basic assumptions of the proportion of services in the research 

of Lim et al. (2016) and Lusiantoro et al. (2022), which assumes that the sum of the number of 

requests is not equal to the number of vaccine fulfillments. Suppose 𝑎𝑖𝑗 is the number of priority 

group vaccine requests 𝑗 at the demand point 𝑖, the number of vaccine requests obtained by 

each priority group at each demand point is defined as the number of vaccine requests 

multiplied by the proportion of vaccine fulfillment or can be written as 𝑎𝑖𝑗𝑦𝑖𝑗𝑘. Meanwhile, the 

amount of vaccine demand fulfillment by health facilities is defined as the service capacity of 

health facilities multiplied by the proportion of services provided. Suppose 𝑤𝑖𝑗𝑘  is the 

proportion of healthy facility services and 𝐶𝑘 is the service capacity of the health facility 𝑘 then 

the amount of vaccine demand fulfillment can be written as 𝑤𝑖𝑗𝑘𝐶𝑘𝑥𝑘. The constraints ensure 

that the number of vaccine requests obtained by each priority group at each demand point is 

no more than the sum of the fulfillment of vaccine requests by health facilities. Therefore, the 

constraint can be written in the following equation: 

 

𝑎𝑖𝑗𝑦𝑖𝑗𝑘 ≤ 𝑤𝑖𝑗𝑘𝐶𝑘𝑥𝑘, ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥, ∀𝑘 ∈ 𝒦. 

 

Furthermore, this study generalizes the assumptions of the division of service categories in 

research (Lim et al., 2016) by dividing health facility services into two categories, namely the 
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optimal service category and partial service. Suppose 𝑑𝑖𝑗𝑘 is the distance parameter between 

health facilities 𝑘  with the priority group 𝑗  at the demand point 𝑖 , 𝑑𝑜  is the optimal service 

distance, and 𝑑𝑓  is the maximum service distance, then the value of 𝑤𝑖𝑗𝑘  is determined by 

conditions (i), (ii), and (iii) and is illustrated in Figure 1. 

i. If 𝑑𝑖𝑗𝑘 ≤ 𝑑𝑜then 𝑤𝑖𝑗𝑘 = 1. 

ii. If 𝑑𝑜 < 𝑑𝑖𝑗𝑘 ≤ 𝑑𝑓then 𝑤𝑖𝑗𝑘 =
𝑑𝑓−𝑑𝑖𝑗𝑘

𝑑𝑓−𝑑𝑜
. 

iii. If 𝑑𝑖𝑗𝑘 > 𝑑𝑓then 𝑤𝑖𝑗𝑘 = 0. 

 

 
Figure 1. Illustration of health facility service levels 

 

Figure 1 shows that if the demand point 𝑖, 𝑗 has a distance from the distribution center 𝑘 

less than optimal services distance (𝑑𝑜), then the demand point gets 100 percent service from 

the distribution center, or can be written as 𝑎𝑖𝑗𝑦𝑖𝑗𝑘 ≤ 𝐶𝑘𝑥𝑘, and if it located between optimal 

services distance and maximum service distance, let’s say it’s gets 60 percent service from the 

distribution center can be written as 𝑎𝑖𝑗𝑦𝑖𝑗𝑘 ≤ 0,6 × 𝐶𝑘𝑥𝑘. The basic assumptions in the MCLP 

problem model used include: (a) the proportion of vaccine demand fulfillment is no more than 

100% (Lusiantoro et al., 2022); (b) facilities used are limited (Church & Revelle, 1974); (c) the 

number of vaccines distributed is limited (Lusiantoro et al., 2022); and (d) the capacity of each 

health facility is limited (Lim et al., 2016). The MCLP model in this study is formulated as follows: 

The set  

ℐ The set of demand points (index:𝑖) 

𝒥 The set of priority groups (index:𝑗) 

𝒦 The set of candidate health facilities (index:𝑘) 

Parameters  

𝑎𝑖𝑗 Prioritized vaccine demand 𝑗 at the point of demand 𝑖 vulnerable  

𝑑𝑖𝑗𝑘 Distance from point of demand 𝑖 to the facility 𝑘 

𝑑𝑜 Optimal service distance covered by a facility 

𝑑𝑓 The farthest service distance covered by a facility 

𝑃 Number of health facilities to be used 

𝐶𝑘 Health facility vaccine storage capacity 𝑘 
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𝑇𝐶 Total vaccines distributed 

Variables  

𝑤𝑖𝑗𝑘 Health facility service level 𝑘 to the point of demand 𝑖 

𝑥𝑘 𝑥𝑘 = 1 if candidate facilities 𝑘 is used, 𝑥𝑘 = 0 otherwise 

𝑦𝑖𝑗𝑘 
Vaccine demand fulfillment rate at the point 𝑖  with priority 𝑗  of health 

facilities 𝑘 

 

The objective function of the MCLP model in this study is to maximize the fulfillment of 

vaccine demand for each priority group at each demand point. On the other hand, to perform 

vaccine distribution based on priority, the objective function is modified by sorting the 

objective function into a multi-objective problem as follows: 

 

Objective function:  

max ∑ ∑ 𝑎𝑖𝑗𝑦𝑖𝑗𝑘

𝑘∈𝒦𝑖∈ℐ

,   𝑗 = 1,2, … , 𝑚. (12) 

constraint function:  

∑ 𝑦𝑖𝑗𝑘

𝑘∈𝒦

≤ 1, ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥. (13) 

∑ 𝑥𝑘

𝑘∈𝒦

≤ 𝑃. (14) 

∑ ∑ ∑ 𝑎𝑖𝑗𝑦𝑖𝑗𝑘

𝑘∈𝒦𝑗∈𝒥𝑖∈ℐ

≤ 𝑇𝐶. (15) 

∑ ∑ 𝑎𝑖𝑗𝑦𝑖𝑗𝑘

𝑗∈𝒥𝑖∈ℐ

≤ 𝐶𝑘𝑥𝑘 , ∀𝑘 ∈ 𝒦. (16) 

𝑎𝑖𝑗𝑦𝑖𝑗𝑘 ≤ 𝑤𝑖𝑗𝑘𝐶𝑘𝑥𝑘, ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥, ∀𝑘 ∈ 𝒦. (17) 

𝑥𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝒦. (18) 

𝑦𝑖𝑗𝑘 ∈ [0,1], ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥, ∀𝑘 ∈ 𝒦. (19) 

 

where the objective function (12) is to maximize the fulfillment of vaccine demand based on 

priority, this objective function can be solved using the lexicographic method. Constraint (13) 

ensures that the proportion of vaccine demand fulfillment is not more than 100%. Constraint 

(14) limits the number of facilities to be used. Constraint (15) limits the amount of vaccine 

distributed. Constraint (16) limits the fulfillment of vaccine demand based on the service 

capacity of health facilities. Constraint (17) limits the amount of vaccine demand fulfillment 

based on the coverage of health facility services. Constraints (18) and (19) are the limits of the 

decision variables. 

 

2. Robust Optimization of Vaccine Distribution Problem 

This study assumes that all parameters are known and have an exact value except for the 

number of vaccine requests or the population of vulnerable individuals. The uncertainty of the 

population of vulnerable individuals is overcome by robust optimization by assuming that the 

uncertainty is in a set of uncertainties. Based on the model created, uncertainty exists in the 
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objective function (12), constraint functions (15), (16), and (17) so that the model has 

additional constraints, namely 𝑎𝑖𝑗 ∈ 𝒰.  Uncertainty in this problem is assumed to only exist in 

the constraint function. Vaccine demand uncertainty 𝑎𝑖𝑗 is assumed to be in the uncertainty box. 

The affine form of the vaccine demand parameter can be expressed as follows: 

 

𝑎𝑖𝑗 = �̅�𝑖𝑗 + 𝑃𝑖𝑗𝜁, ∀ 𝜁: ‖𝜁‖∞ ≤ 𝜌. (20) 

where  

a. 𝑎𝑖𝑗 affine of the parameter of the number of vaccine requests for each priority group 𝑗 at 

the demand point 𝑖 with 𝑎𝑗𝑖 ∈ ℝ.  

b. �̅�𝑖𝑗  is the number of vaccine requests for each priority group 𝑗 at the demand point 𝑖 

which is obtained from the nominal value with �̅�𝑖𝑗 ∈ ℝ. 

c. 𝑃𝑖𝑗  is the confounding constant for the uncertainty in the constraint function with 𝑃𝑖𝑗 ∈

ℝ. 

d. 𝜁 is the uncertainty control variable for the constraint function, and 𝜌 is an adjustable 

parameter that determines the uncertainty value.  

 

Robust optimization assumes that the uncertainty is constraint-wise, so the development of 

the robust counterpart model can be focused on constraints that have vulnerable population 

uncertainty. Note that constraints (15), (16), and (17) have vulnerable population uncertainty, 

i.e. (�̅�𝑖𝑗 + 𝑃𝑖𝑗𝜁)𝑦𝑖𝑗𝑘 , suppose used 𝜌 = 1then ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥, ∀𝑘 ∈ 𝒦, 𝑡 = 𝑡𝑑  can be treated as 

follows: 

 

(�̅�𝑖𝑗 + 𝑃𝑖𝑗𝜁)𝑦𝑖𝑗𝑘, ∀ 𝜁: ‖𝜁‖∞ ≤ 1 ≡ �̅�𝑖𝑗𝑦𝑖𝑗𝑘 + 𝑃𝑖𝑗𝜁𝑦𝑖𝑗𝑘 , ∀ 𝜁: ‖𝜁‖∞ ≤ 1. 

≡ max
𝜁:‖𝜁‖∞≤1

�̅�𝑖𝑗𝑦𝑖𝑗𝑘 + 𝑃𝑖𝑗𝜁𝑦𝑖𝑗𝑘. 

≡ �̅�𝑖𝑗𝑦𝑖𝑗𝑘 + max
𝜁:‖𝜁‖∞≤1

𝑃𝑖𝑗𝜁𝑦𝑖𝑗𝑘. 

≡ �̅�𝑖𝑗𝑦𝑖𝑗𝑘 + ‖𝑃𝑖𝑗𝑦𝑖𝑗𝑘‖
1

. 

≡ �̅�𝑖𝑗𝑦𝑖𝑗𝑘 + |𝑃𝑖𝑗𝑦𝑖𝑗𝑘|. 

Because 𝑦𝑖𝑗𝑘 ∈ [0,1], ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥, ∀𝑘 ∈ 𝒦, then it is obtained: 

�̅�𝑖𝑗𝑦𝑖𝑗𝑘 + |𝑃𝑖𝑗𝑦𝑖𝑗𝑘| ≡ �̅�𝑖𝑗𝑦𝑖𝑗𝑘 + |𝑃𝑖𝑗|𝑦𝑖𝑗𝑘 , ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥, ∀𝑘 ∈ 𝒦. (21) 

 

Based on the above analysis, the vaccine distribution problem model with uncertainty in 

the number of requests is equivalent to the robust counterpart model as follows: 

 

Objective function:  

max ∑ ∑ �̅�𝑖𝑗𝑦𝑖𝑗𝑘

𝑘∈𝒦𝑖∈ℐ

,   𝑗 = 1,2, … , 𝑚. (22) 

constraint function:  

∑ 𝑦𝑖𝑗𝑘

𝑘∈𝒦

≤ 1, ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥. (23) 
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∑ 𝑥𝑘

𝑘∈𝒦

≤ 𝑃. (24) 

∑ ∑ ∑ �̅�𝑖𝑗𝑦𝑖𝑗𝑘

𝑘∈𝒦𝑗∈𝒥𝑖∈ℐ

+ ∑ ∑ ∑|𝑃𝑖𝑗|𝑦𝑖𝑗𝑘

𝑘∈𝒦𝑗∈𝒥𝑖∈ℐ

≤ 𝑇𝐶. (25) 

∑ ∑ �̅�𝑖𝑗𝑦𝑖𝑗𝑘

𝑗∈𝒥𝑖∈ℐ

+ ∑ ∑|𝑃𝑖𝑗|𝑦𝑖𝑗𝑘

𝑗∈𝒥𝑖∈ℐ

≤ 𝐶𝑘𝑥𝑘, ∀𝑘 ∈ 𝒦. (26) 

�̅�𝑖𝑗𝑦𝑖𝑗𝑘 + |𝑃𝑖𝑗|𝑦𝑖𝑗𝑘 ≤ 𝑤𝑖𝑘𝐶𝑘𝑥𝑘, ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥, ∀𝑘 ∈ 𝒦. (27) 

𝑥𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝒦. (28) 

𝑦𝑖𝑗𝑘 ∈ [0,1], ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥, ∀𝑘 ∈ 𝒦. (29) 

 

3. Numerical Simulation 

The case study used in this research is the distribution of the COVID-19 vaccine in DKI 

Jakarta. Suppose there are 7.5 million doses of vaccine to be distributed where vaccine 

distribution is carried out through health centers to urban villages and the population in each 

urban village is divided by age. Based on the data owned, the number of vaccine requests (𝑎𝑖𝑗) 

shown in Table 1 and the capacity of each health center (𝐶𝑘) shown in Table 3, then it can be 

determined that |ℐ| = 267, |𝒥| = 8, and |𝒦| = 315 . The vaccine recipient groups are sorted 

into elderly (over 60 years old), children (less than 10 years old), adolescents (10 to 30 years 

old), and adults (30 to 60 years old). The complete order of priority groups in this simulation is 

as follows: 

a. Population aged 70 years and over 

b. Population aged 60 years to 69 years 

c. Population aged 0 years to 9 years 

d. Population aged 10 years to 19 years 

e. Population aged 20 years to 29 years 

f. Population aged 50 years to 59 years 

g. Population aged 40 years to 49 years 

h. Population aged 30 years to 39 years 

 

Furthermore, it is assumed that each health center can optimally serve the surrounding 

demand points with a distance of 1 km and it is possible to serve demand points up to 5 km. 

based on these assumptions, the values of 𝑑𝑜 = 1 and the value of 𝑑𝑓 = 5. Since each health 

center is assumed to have an optimal service distance of 1 km, the service area of each health 

center is ±3 km2, on the other hand, DKI Jakarta has an area of ±660 km2, so it can be assumed 

that the number of health centers that will be used to carry out vaccine distribution is 220 units.  

Numerical simulation is first performed by assuming that the number of requests is an 

exact value as in Table 3 with the model in equations (12)-(19). To shorten the simulation 

results, this study accumulates the number of fulfilled requests based on priority. For 

comparison, this study also conducted simulations for the equal distribution of vaccines where 

the objective function is solved directly without sorting by priority. The objective function for 

this case study is shown in the following equation: 
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max ∑ ∑ ∑ �̅�𝑖𝑗𝑦𝑖𝑗𝑘

𝑘∈𝒦𝑗∈𝒥𝑖∈ℐ

. (30) 

The number of vaccine requests and simulation results are shown in Table 4. 

 

Table 4. Number of Vaccine Requests and Fulfillment by Priority 

No. Demand Amount 
Vaccine Fulfillment with 

Equitable Distribution 
Vaccine Fulfillment with Priority 

Based Distribution 
1 302.867 95.986 (32%) 302.756 (100%) 
2 668.899 330.383 (49%) 668.689 (100%) 
3 1.788.144 1.375.542 (77%) 1.787.135 (100%) 
4 1.825.288 1.328.904 (73%) 1.824.380 (100%) 
5 1.718.630 1.136.297 (66%) 1.427.036 (83%) 
6 1.262.456 855.743 (68%) 166.135 (13%) 
7 1.825.432 1.180.760 (65%) 133.031 (7%) 
8 1.869.879 1.196.377 (64%) 49.397 (3%) 

Total 11.261.595 7.499.992 (67%) 6.358.559 (56%) 

 

Table 4 shows that equal distribution of vaccines can provide greater fulfillment of vaccine 

demand at 67 percent compared to distribution based on priorities at 56 percent, but 

distribution of vaccines based on priorities can provide fulfillment of vaccine demand for early 

priorities first, as in priorities 1 to 4 which are fulfilled by 100 percent first. Furthermore, 

simulations were carried out assuming that the amount of vaccine demand is uncertain with 

uncertainty in the range of -30 to 30 from the nominal value in Table 3. The amount of vaccine 

demand and simulation results are shown in Table 5. 

 

Table 5. Number of Vaccine Requests and Fulfillment by Priority with Uncertainty Number of Vaccine 

Requests 

No. Demand Amount 
Vaccine Fulfillment with 

Equitable Distribution 
Vaccine Fulfillment with Priority 

Based Distribution 
1 302.867 0 (0%) 302.756 (100%) 
2 668.899 35.735 (5%) 668.689 (100%) 
3 1.788.144 1.357.755 (76%) 1.787.135 (100%) 
4 1.825.288 1.404.380 (77%) 1.824.326 (100%) 
5 1.718.630 1.268.102 (74%) 1.284.568 (75%) 
6 1.262.456 517.270 (41%) 333.578 (26%) 
7 1.825.432 1.418.682 (78%) 89.484 (5%) 
8 1.869.879 1.450.952 (78%) 28.320 (2%) 

Total 11.261.595 7.452.876 (66%) 6.318.856 (56%) 

 

Table 5 shows similar results to Table 4 where the distribution of vaccines evenly can 

provide greater demand fulfillment than the distribution of vaccines based on priorities, but 

with the change or uncertainty in the amount of demand causes differences in the amount of 

demand in each priority group and it can be obtained that the fulfillment of vaccine demand in 

the robust counterpart model is smaller than the deterministic model. The robust counterpart 

model is claimed to provide an optimal value that is more resistant to changes in parameter 

values, therefore, in this study a sensitivity analysis will be carried out by changing vaccine 

demand parameters in the range of [−30,30]. The simulation results are shown in Table 6. 
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Table 6. Sensitivity Analysis Simulation 

Range of Change 
Deterministic 

Model 
Robust Counterpart 

Model 
[−30,0] Feasible Feasible 
[0,30] Infeasible Feasible 

[−30,30] Infeasible Feasible 

 

Based on the simulation results, it is found that changes in parameter values greater than 

the nominal value cause the constraints in the deterministic model to become infeasible so that 

the model does not have an optimal value and in the robust counterpart model, this problem 

does not occur because the robust counterpart model considers the worst case that can occur 

in changing the value of the vaccine demand parameter. 

 

D. CONCLUSION 

Based on the analysis carried out in section C.1, it was found that the priority-based 

distribution problem can be performed by modeling the MCLP model's single-objective 

objective function into a multi-objective one. Thus, from the numeric simulation shown in Table 

4, the equal vaccine distribution problem provides a better optimal value than vaccine 

distribution based on priority, while vaccine distribution based on priority ensures the 

fulfillment of demand at a higher priority. This problem is influenced by the number of facilities 

used and the distance of service owned by health facilities, so further analysis is needed. 

Lastly, from section C.2, found that the robust optimization approach to vaccine demand 

uncertainty can be modeled using robust optimization by assuming the demand uncertainty is 

in the uncertainty box set and from simulation shows in table 5 and 6, it found that the optimal 

value in the robust counterpart model is not better than the deterministic model but is more 

resistant to changes in parameter values. This illustrates that if the amount of vaccine demand 

that occurs in society is uncertain, the robust counterpart model will still be feasible and still 

can be used compared to the deterministic model.  

This research is limited to solving the problem of vaccine distribution at a certain time and 

only assumes that the uncertainty of the number of requests is within a specified range so that 

it can be developed by assuming that the number of requests is dynamic, for example, to know 

the number of requests on any day if the infection rate is known. This problem can be solved 

using dynamic system models such as the SIR model or using statistical models such as linear 

regression models. In addition, to solve dynamic uncertain optimization problems, you can use 

an adjustable robust counterpart optimization model. 
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