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 Time series Forecasting is one of crucial techniques that helps with strategic 
decision-making and mitigating potential risks –One of which is Weighted fuzzy 
time series (WFTS). Moreover, the interval length of the WFTS plays a crucial role 
in its modelization and accuracy in predicting future values. Therefore, this 
research implements a dual optimization on WFTS, which are (1) Particle Swarm 
Optimization to find the optimum interval length of the WFTS and (2) a Lagrange 
quadratic to optimize the weight of the fuzzy interval. In this research, a univariate 
Average Air Temperature located in Malang is used to perform forecasting model. 
The dataset is taken from BMKG-Indonesia. This research aims to acquire an 
optimized interval length on fuzzy time series forecasting, i.e., improving its 
accuracy by finding the optimal interval length. Based on the result, the proposed 
dual optimization model outperforms the classical WFTS on forecasting. The 
proposed model excels based on the evaluation matrix values. It has been noticed 
also that implementing PSO to find the optimum interval length has improved the 
accuracy of the classical WFTS. The classical WFTS has MAPE and RMSE of 2.4 and 
0.73, respectively, while the proposed dual optimized model has 1.01 and 0.3. This 
approach identifies the best interval values and provides optimum weights related 
to each data point, providing solid insights for air temperature forecasting. 
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A. INTRODUCTION  

The field of system modeling encompasses a significant and broad range of research areas, 

one of which is time series forecasting. The fundamental objective of time series forecasting is 

to extract underlying patterns from data and make predictions about future values using past 

observations (Liu et al. 2021). Time series forecasting is widely utilized in diverse industries 

such as weather forecasting, climate forecasting, healthcare forecasting, finance forecasting, 

social studies forecasting, and others (Kumar Jha & Pande 2021; Lim & Zohren 2021; Zamelina 

et al., 2022). The previous research describes the data for time series analysis techniques and 

modeling techniques in order to forecast and provide insights for strategic decision-making. 

Those approaches enable decision-makers to mitigate potential risks and arrive at more 

advantageous ones. 

There are several methods to perform forecasting. The Autoregressive Integrated Moving 

Average (ARIMA) model is frequently utilized in linear time series forecasting techniques and 

is applied in several fields such as business, agriculture, social sciences, etc. (Mishra et al. 2021; 
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Novianti et al., 2022). ARIMA models have been found to provide high accuracy levels when 

forecasting time series data with relative stationarity. The Seasonal ARIMA (SARIMA) model is 

used when dealing with a univariate time series with trend and seasonal components (Sirisha 

et al., 2022). That study shows the RMSE value of ARIMA and SARIMA models, 8.68 and 7.27, 

respectively. However, those approaches assumed that the provided time series contains no 

missing data and has stationary. It is worth noting that numerous real-world time series data 

contain challenging nonlinear patterns that the ARIMA and SARIMA modeling may not 

successfully capture. Therefore, SARIMA models are powerful for capturing seasonal variations, 

but they require careful parameter tuning. Researchers often choose between ARIMA and 

SARIMA based on the presence of seasonality in their data. In this research the Air Temperature 

data has seasonality, besides, it needs appropriate selection of seasonal differencing, seasonal 

autoregressive and seasonal moving average values for SARIMA to be implemented. 

In regard of the cautious SARIMA parameter tuning and data characteristics limitations, a 

machine learning approaches have emerged as a viable technique for addressing time series 

approximation challenges. These techniques leverage historical time series data to predict the 

value of future data points (Song & Chissom 1993). The topic of the Fuzzy Times series has 

garnered significant attention in contemporary research. Additionally, based on the research of 

Alpaslan et al. (2012) while comparing the seasonal FTS and the SARIMA to time series of the 

amount of sulfur dioxide in Ankara province, the RMSE of seasonal FTS and SARIMA are 2.88 

and 9.62 respectively. Despite the demonstrated effectiveness of fuzzy time series in diverse 

applications, it is essential to acknowledge its inherent limits. A primary drawback of the 

conventional fuzzy time series is in its treatment of prior data points as equal entities. 

Rozy et al. (2023) have recently introduced a novel approach to address the lack of 

historical trend consideration in the procedure for defuzzification of the WFTS model. A novel 

approach was introduced by the researchers to enhance the WFTS model by the incorporation 

of the Lagrange Quadratic Programming (LQP) optimization technique for weight estimation. 

Their study displays a relatively small value of MAPE 0.61%. That study uses Lagrange 

Quadratic techniques in the context of WFTS to determine the optimal solution for the objective 

function in order to minimize the model’s error. Mathematical modeling of WFTS significant 

improvements. On the other hand, Chen & Chen (2015) and Tinh et al. (2021) state that the 

interval length of the fuzzy set impacts the efficacy of the Fuzzy Time Series model in 

forecasting. Besides, Rozy et al. (2023) are still using static or equal-length intervals. 

The process of setting parameter values of interval length through trial and error is not 

practicable because there are so many probable combinations of values and even infinite values. 

As a result, an optimization technique is required to find the best parameter values that do not 

necessitate too many experiments and take a relatively quick time toward the optimum results. 

Metaheuristics is one of the techniques frequently used to solve the problem of identifying the 

optimal global solution (Hussain et al. 2019). Particle Swarm Optimization (PSO) is one of the 

metaheuristic methods that can work efficiently in identifying optimum interval length (Surono 

et al. 2022; Tinh et al. 2021). Ariyanto et al. (2021) found that the PSO employs to set non-static 

length of intervals, leading to a lower RMSE value than the conventional forecasting methods. 

Moreover, the phenomenon of global warming has recently received significant interest 

from the scientific community due to its observed correlation with the increase in atmospheric 
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temperatures. The prediction of Air Temperature holds significant importance within the field 

of weather forecasting, as it serves as an essential component in preserving human lives and 

protecting valuable properties. Increases or decreases in air temperature of significant 

magnitude have the potential to induce harmful impacts on plant and animal life. Precisely 

predicting atmospheric temperature is crucial, given its substantial impact on various sectors 

(Kang et al., 2019; Musashi et al, 2018) it affects public safety, healthcare, agriculture, energy 

management, transportation, environmental conservation, infrastructure planning, tourism, 

the economy, and more. 

Therefore, there are two main approaches to optimize the WFTS, one of which are interval 

length and weights for defuzzification steps. The Particle Swarm Optimization (PSO) enhance 

the approach by finding the optimum interval length and the Lagrange Quadratic Programming 

(LQP) address the weight optimizations by detecting optimum points resulting from changes 

in patterns in the time series data. Additionally, having an accurate Air Temperature forecasting 

helps decision-makers to take decision beforehand of the future temperature change. The used 

Air temperature data is taken from the online Database-BMKG, Indonesia, over three (03) years. 

It is anticipated that the outcomes of this study will afterward serve to forecast the impact of 

Air temperature-related events in Malang. 

 

B. METHODS 

Forecasting is a methodological approach that predicts future events or outcomes based on 

historical data and relevant information (Cerqueira, Torgo, and Mozetič 2020). Based on Lim 

and Zohren (2021), time-series forecasting models serve to make predictions about future 

values of a target variable, denoted as 𝑦𝑡, at a particular time 𝑡. In its most basic form, one-step-

ahead forecasting models can be represented as: 

 

𝑦𝑡+1 = 𝑓(𝑦𝑡  −  𝑘)      (1) 

 

where yt+1 is the model forecast, yt - k is the observations of the targets over a look-back window 

k, and f(…) is the forecast function learned by the model. 
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Figure 1. Research flow diagram 

 

Figure 1 illustrates the project's workflow. There are three major steps: First, Pre-

processing data, second, determining the linguistic variables of the WFTS and the proposed 

model, and last models Evaluations the pre-processing steps involve handling the missing 

values and the outliers. About the second step, the proposed model starts by initializing the 

initial particles, where each particle has different interval length or different linguistic variables 

values. Next, identifying the best particle based on MAPE value over PSO iteration on each 

particle and followed by the implementation of the LQP. Besides, as the classical WFTS uses 

equal-length interval, its step is directly setting the linguistic variables based on the interval 

values. Lastly, the third step is by comparing the two models –The classical WFTS and the 

proposed model WFTS-PSO-LQP. 

1. Dataset and Pre-processing data 

The average daily temperature data in Celsius is extracted from the online database, BMKG 

(Badan Meteorologi, Klimatologi dan Geofisika), located in Malang, Indonesia. The dataset 

ranges from July 1, 2020, to June 1, 2023, with 1066 rows of Average temperature data during 

almost three years. We convert the raw daily AT data into a more practical format for 

forecasting. One of the initial pre-processing steps is to address missing values. For this study, 

we employed the 'rolling mean' scheme with a window size of 7 to address the missing data. 

That means we calculate the mean of 7 days both preceding and following the missing values. 

Next, the dataset will be partitioned into training and testing sets. 
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2. The Weighted Fuzzy Time Series 

Song & Chissom (1993) were the first to develop the concept of fuzzy time series. Fuzzy 

Time Series (FTS) is a methodology employed in the field of forecasting and decision-making, 

in which historical data and fuzzy functions are combined to make predictions about future 

values. This fuzziness arises from the inherent ambiguity present in the datasets. The Weighted 

Fuzzy Time Series (WFTS) technique is a development of FTS method (Yu 2005). WFTS adds 

weight to each fuzzy relationship, so it emphasizes the varied significance of the sequence of 

fuzzy relations. The steps for forecasting by using Chen’s algorithm can be described into the 

following steps (Suhartono et al., 2011): 

 

Step 1. Defining the Universe of Discourse 𝑈 based on the maximum value (Dmin) and minimum 

value (Dmax) from the data set and two positive numbers, d1 and d2.  

 

𝑈 = [𝐷𝑚𝑖𝑛  −  𝑑1, 𝐷𝑚𝑖𝑛  − 𝑑2]    (2) 

 

Step 2. Partitioning the Universe of Discourse. Dividing the universal set into several subsets 

with the same range size and then forming a fuzzy set to the subsets u1, u2, …, un. 

 

𝑠𝑡𝑢𝑟𝑔𝑒𝑠 =  1 + 3.322 𝑙𝑜𝑔 𝑛     (3) 

 

Step 3. Defining the fuzzy sets 𝐴𝑖, which are established based on the subsets of the universe of 

discourse. Fuzzification is the process of converting the crisp (exact) value into fuzzy sets. The 

fuzzification obtained from one set is shown by the Equation (4): 

 

A1=
a11

u1
+
a12

u2
+…+

a1n

un
  

    A1=
a21

u1
+
a22

u2
+…+

a2n

un
,     (4) 

… 

Ak=
ak1

u1
+
ak2

u2
+…+

akn

un
  

 

with Ai is the membership degree value, where Aij j the members𝑖 ≤ 𝑘, and 1 ≤ 𝑗 ≤ 𝑛. For 

instance, a data point is involved in a fuzzy set 𝐴𝑗 when its degree of membership in 𝐴𝑗 is 

maximized. 

 

Step 4. Developing Fuzzy Logical Relationships Group. The grouping is determined by the 

present states of the data related to its next state fuzzy logical relationships. For example, 𝐴𝑖 → 

𝐴b, 𝐴𝑖 → 𝐴d, 𝐴𝑖 → 𝐴e then 𝐴𝑖 → 𝐴b, 𝐴d, 𝐴e. 

 

Step 5. Calculating the forecasted values. Consider (𝑡 − 1) = 𝐴𝑖, then The value of F(t) is 

calculated by considering the following scenarios: 

1) Case 1: The fuzzy logical sequence consists of only a single fuzzy logical relationship. If 

𝐴𝑖 → 𝐴𝑗, then the prediction value (𝑡) can be considered equal to 𝐴𝑗. 
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2) Case 2: The series of fuzzy logical comprises many fuzzy logical relationships. If 𝐴𝑖 → 𝐴𝑖, 

𝐴𝑗,..., 𝐴𝑘, then the prediction value 𝐹(𝑡) is taken from (𝑛1 + 𝑛2 +⋯ + 𝑛𝑝)/𝑝, where 𝑛1, 𝑛2, … , 

𝑛𝑖 are the midpoints of the intervals 𝑢1, 𝑢2, … , 𝑢𝑖, respectively. 

3) Case 3: If the fuzzy logical relationship sequence does not exist, then the forecasted value 

remains the same with the current logical relationships. 

 

Step 6. Performing defuzzification. It is the reverse process of the fuzzification. Consider that 

the forecast of 𝐹(𝑡) are 𝐴𝑗1, 𝐴𝑗2, …, 𝐴𝑗𝑘. The defuzzified result is the same as the midpoint value 

matrix of 𝐴𝑗1, 𝐴𝑗2, …, 𝐴𝑗𝑘: 

𝑀(𝑡) = [𝑚𝑗1, 𝑚𝑗2, …, 𝑚𝑗𝑘]     (5) 

 

Step 7. Assigning weights (Yu 2005). 

 

𝑤(𝑡)  =  [𝑤1
′, 𝑤2

′, . . . , 𝑤𝑘
′] = [

𝑤1

∑ 𝑤ℎ
𝑘
ℎ=1

,
𝑤2

∑ 𝑤ℎ
𝑘
ℎ=1

, . . . ,
𝑤𝑘

∑ 𝑤ℎ
𝑘
ℎ=1

]   (6) 

 

Step 8. Finding predicted values. To compute the prediction value, the weighted model is 

obtained by multiplying the defuzzified matrix with the transpose of the weight matrix. 

According to Surono et al. (2022), a differencing technique applies to compare the observed 

data with the midpoint values generated inside each interval class for the purpose of predicting: 

 

�̂�(𝑡) = 𝑀(𝑡) × 𝑤(𝑡)𝑇, and       (7) 
 

�̂�(𝑡 + 1) = 𝐹(𝑡 + 1) ± |𝑑𝑖𝑓𝑓(𝑋(𝑡), 𝑚𝑖)      (8) 
 

where 𝑚1, 𝑚2, …, 𝑚𝑛 is the middle value of the interval. 

 

3. Lagrange Quadratic Weighted Fuzzy Time Series 

The Lagrange Quadratic optimizes the weight of the Weighted Fuzzy Time Series model. 

Lagrange Quadratic Programming in WFTS (WFTS-LQP) is set from a combination of two 

approaches, namely Lagrange Multiplier and Quadratic Programming (Rozy et al., 2023). 

Lagrange Multiplier was first introduced by Joseph Louis Lagrange (1736-1813), which was 

used to optimize real-valued functions. That means a method of evaluating maximum or 

minimum function problems which are formed from changing a constrained extreme point 

problem into a constraint free extreme problem. To implement the Lagrange Quadratic weight 

on FTS, steps 1-4 remain the same with the FTS, and the difference is on calculating the weight 

before defuzzification. 

 

Step 1 – 7. Same with the Weighted Fuzzy time series processes. 

 

Step 8. Identifying the optimal point (represented as 𝑥∗ ≡ (𝑥, 𝑦)) inside a multidimensional 

space that achieves local optimizations of the merit function f(x) while adhering to the 

restriction g(x)=0. Determining the stationary point in this constrained optimization problem 

is done by modeling it into a Lagrange function, which can be seen on Equation (9): 
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𝐹(𝑦)  =  𝑓(𝑦)  +  ∑ 𝜆𝑖𝑔𝑖(𝑦)𝑚
𝑖=1      (9) 

 

where λ1, λ2, … , λ𝑚 is the Lagrange multiplier. 

 

Step 9. Defining the objective function and constraints for the weighted fuzzy time series using 

Langrage Quadratic: 

 

𝐿(𝜔𝑖,𝑗, 𝜆𝑗) = ∑ 𝜔𝑖,𝑗
2 𝑢𝑖,𝑗

𝑛
𝑖=1 + 2𝜆𝑖(∑ 𝜔𝑖,𝑗  −  1𝑛

𝑖=1 )   (10) 

 

with j = 1,2, 3,…, n. 

 

Step 10. Same with the step 8 of the conventional Weighted Fuzzy Time Series algorithm. 

 

4. Particle Swarm Optimization 

James Kennedy and Russell Ebenhart introduced the Particle Swarm Optimization (PSO) 

algorithm in 1995. It is one of many metaheuristic algorithms that can be applied to address 

optimization problems (Rocha, 2021). The researcher added that it is an optimization 

technique that derives inspiration from the collective behaviour observed in flocks of birds and 

schools of fish as they navigate and find solutions to complex nonlinear problems. 

To find the optimum result, the particle (birds) undergoes two distinct forms of learning. 

Each particle will acquire knowledge through its own movement as well as from the collective 

experiences of other particles. Cognitive learning yields the outcome whereby particles retain 

the memory of the optimal solution (Particle best), represented as Pbest. In the context of social 

learning, the optimal outcome (Global best) is represented as Gbest. The following formula can 

be used to compute the movement of particles into a new position: 

 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑣𝑖,𝑗
𝑡+1      (11) 

 

where 𝑥𝑖,𝑗
𝑡  is the actual position of the particle i and dimension j in the iteration t. And 𝑣𝑖,𝑗

𝑡  

represnts the velocity of particle i of dimension j in the iteration t. The velocity and the position 

will always be updated.  Equation (12) is used to update the velocity.  

 

𝑣𝑖,𝑗
𝑡+1 = 𝜔. 𝑣𝑖,𝑗

𝑡 + 𝑐1. 𝑟1 (𝑃𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝑐2. 𝑟2(𝐺𝑏𝑒𝑠𝑡𝑔
𝑡 − 𝑥𝑖,𝑗

𝑡 )  (12) 

 

where 𝜔 is the inertia weight, c1 represents the self-cognition, c2 represents the social cognition 

(acceleration coefficient), r1 and r2 are a random value between 0 and 1. Pbesti,j
t  and 𝐺𝑏𝑒𝑠𝑡𝑔

𝑡  

denotes the best personal and best global of particle 𝑖  and dimension j in the iteration t, 

respectively. 𝑥𝑖,𝑗
𝑡  represent the actual position of the particle i of dimension j at iteration t. The 

process phase regarding Particle Swarm Optimization is illustrated in Figure 1 (Qiu, Zhang, and 

Ping 2015). The process of the PSO starts with the initialization of the particles. Each particle is 

then integrated to a WFTS model, where its MAPE value is the fitness value of a particle. The 
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particle’s values (The position of a particle) are then update based on 𝑃𝑏𝑒𝑠𝑡, 𝐺𝑏𝑒𝑠𝑡, and velocity. 

The scenario is repeated until the end of the iteration or the stop criteria is met. 

 

Initialize Particle Swarm

Check stop criterion

Evaluate fitness value of 
particles

Update the velocity of 
particles

END

Update the Pbest

Update the position of 
particles

Update the Gbest

 
Figure 2. The search procedure of the PSO. 

 

5. Performance Evaluation 

Once the models have been built, we assess and compare the predicted results using 

evaluation measures. Two error metrics were employed in this study to assess the models.  The 

two metrics are Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).  

Equations (13) and (14) represent the formulas for calculating the error metrics MAPE and 

RMSE, respectively (Rocha 2021). 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑥𝑡 −�̂�𝑡

𝑥𝑡
|𝑛

𝑡=1 × 100%     (13) 

 

𝑅𝑀𝑆𝐸 =  √(
1

𝑛
) ∑ (𝑥𝑡 − �̂�𝑡)2𝑛

𝑖=1      (14) 

 

where 𝑛 is the amount of data, 𝑥𝑡 is the actual value at time 𝑡, and 𝑥 𝑡 is the predicted value at 

time 𝑡. 

 

C. RESULT AND DISCUSSION 

This section describes the outputs and discusses the model’s performance. This study 

utilizes Chen's Fuzzy Time Series model basis to forecast average daily temperatures. The 

model Chen's fuzzy model is optimized using weight, PSO, and LQP. We utilize qualitative and 

quantitative frameworks to achieve optimal results for the models. 
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1. Experiment Model Training 

The research is conducting a univariate time series analysis. There is only one feature of the 

AT time series. The model development procedure begins by undergoing pre-processing and 

then establishing the initial hyperparameters to achieve the most effective model for 

forecasting. The two models have distinct parameters because PSO is utilized in the proposed 

model to determine the optimal interval length of the optimized WFTS. The first step for both 

models is setting the Universe of discourse. The following are the distinct steps for the Chen’s 

conventional WFTS and the optimized WFTS: 

a. The classical Weighted Fuzzy Time Series 

Chen’s conventional fuzzy time series model uses the same interval length for all fuzzy 

sets. Its interval length is obtained from the initial value of the discourse plus the final 

value of the discourse divided by the result of the dimension particle from (3). The 

number of linguistic variables for the classical WFTS within the discourse range is then 

equal to 9. By performing the weighted fuzzy time series procedure, which is described 

in section B.2, we got the weight and the forecasted values from the WFTS model. 

b. The proposed model 

The determination of the number of linguistic variables is the same as the conventional 

fuzzy time series, but the interval fuzzy sets do not have an equal-length intervals. The 

initial interval values for the proposed model are obtained from a uniform 

randomization within the range of the Universe of Discourse. The following are the 

hyperparameters for the PSO, which is gotten from a random search: 

1) Number of particles: 5 

2) Number of iterations: 20 

3) c1: 1 

4) c2: 1.5 

5) w: 0.3 

6) r1 and r2: Random variables that change through iteration. 

 

Those hyperparameter values produce an optimal model (neither underfitting nor 

overfitting). As the number of particles is five (5), thus we have 5 different sets of 

linguistic variables between each particle, i.e., each particle has A1-A9 with different 

values of fuzzy sets length. From that, we perform the step of the Lagrange Quadratic 

Weighted Fuzzy Time Series by using one particle that has the lowest MAPE value. The 

number of functions for Lagrange quadratic, described in Equation (10), is the same as 

the number of the linguistic variables. 

 

2. Identification of the linguistic variables 

Firstly, based on (2), we got the value of the Universe of Discourse for all models U = [19.1, 

27.9]. As the conventional fuzzy time series uses the equal length of the interval, thus the 

possible interval length within the universe of discourse range is 1. Therefore, the number of 

linguistic variables for the classical WFTS is 9: A1= [19, 20), A2= [20, 21), A3= [21, 22), A4= [22, 

23), A5= [23, 24), A6= [24, 25), A7= [25, 26), A8= [26, 27), A9= [27, 28]. 
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For the optimized model, each particle has different values of fuzzy set length. The 

following is an example of the linguistic variable of Particle number 4 before performing the 

optimization with PSO: A1= [19.1, 19.50), A2= [19.50, 20.6), A3= [20.6, 20.85), A4= [20.85, 23.11), 

A5= [23.11, 23.62), A6= [23.62, 24.31), A7= [24.31, 24.44), A8= [24.44, 26), A9= [26, 27.9]. After 

the last iteration, the following are the fuzzy sets values of the Particle 4: A1= [19.1, 19.52), A2= 

[19.52, 20.58), A3= [20.58, 20.86), A4= [20.86, 23.19), A5= [23.19, 23.59), A6= [23.59, 24.31), A7= 

[24.31, 24.5), A8= [24.5, 26.04), A9= [26.04, 27.9]. 

 

3. Selection of the best particle with PSO 

There are five particles, and each particle is implemented into one running of WFTS model 

in iterative way. They are also implemented inside the PSO function. Thus, after each PSO 

iteration, we get the performance evaluation of each particle. MAPE is the matrix used to 

evaluate each particle’s efficiency. Table 1 displays the evaluation of each particle from the 

initial iteration until the last iteration. We noticed that the error values decreased between the 

initial and final iterations. Initially, the lowest MAPE is 2,4387, and the highest is 3.1767. Upon 

the last iteration, all particles tend towards the least error values. All particles tend to move 

towards the best position because of the social component of the PSO –see (12). Particle 4 has 

the lowest error value at final iteration. Its MAPE value is equal to 2.3013. It was noticed that 

the PSO algorithm improved forecasting accuracy during the fuzzy length optimization process. 

The particle 4 is then used as the fuzzy interval set for the WFTS with Lagrange Quadratic, as 

shown in Table 1. 

 

Table 1. MAPE Calculation Based on the Model Iteration in Training Set 

Particles 
MAPE 

Initial iteration Final iteration 
Particle 1 2.5633 2.3175 
Particle 2 3.1767 2.3135 
Particle 3 2.7680 2.3014 
Particle 4 2.4387 2.3013 
Particle 5 2.6037 2.3077 

 

4. Estimation of the weight through LQP 

The number of Lagrange quadratic equations is the same as the number of fuzzy sets that 

have previously been calculated. Based on (10), the following is an example of one equation for 

the interval A1: 

 

𝐿(𝜔𝑖,1, 𝜆1) = ∑ 𝜔𝑖,1
2 𝜇𝑖,1

9
𝑖=1 + 2𝜆1(∑ 𝜔𝑖,1  −  19

𝑖=1 )    (15) 

 

to get the solution, we perform a partial derivative, on each Lagrange quadratic equation, with 

respect to 𝜔 and λ. The following is the example of the class interval A1: 

 
∂L(ωi,1,λ1)

∂𝜔𝑖
=  2 ∑ 2ωi,1μi,1

9
i=1 +  2λ1  =  0     (16) 
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∂L(ωi,1,λ1)

∂λi
= ∑ 2ωi,1

9
i=1 −  2 =  0      (17) 

 

in the final stage, the weights and membership values for each interval class are multiplied 

according to step 10 of the Lagrange Quadratic Weighted Fuzzy time series. 

 

5. Comparison of the Proposed model with the conventional Weighted Fuzzy Time 

Series 

Table 2 shows the assessment result of the model on the test data. The forecasting method 

used is a recursive forecasting over 30 days. Lower MAPE and RMSE values reflect an excellent 

model performance. The MAPE for WFTS without PSO is 2.4007, implying that, on average, its 

forecasts differ by 2.4% from the actual values. And its RMSE is 0.7323. After implementing the 

PSO on the WFTS, the MAPE and the RMSE have reduced to 2.3101 and 0.7311, respectively. 

Furthermore, the MAPE of the proposed dual optimization of the WFTS is around 1.05% and its 

RMSE is roughly 0.30. Thus, WFTS-PSO-LQP exceeds the traditional WFTS in both MAPE and 

RMSE metrics, as shown in Table 2. 

 

Table 2. Evaluation of the Model’s Forecasting 

Model MAPE RMSE 
WFTS 2.4007 0.7323 
WFTS-PSO 2.3101 0.7311 
WFTS-PSO-LQP 1.0591 0.3002 

 

Figure 3 illustrates a qualitative performance plot comparing the forecasting of 30 days 

using the classical WFTS and the new optimized models. The data visualization in Figure 3 

shows a strong correspondence between the plot lines of Actual AT and the proposed model. 

The proposed dual optimization surpasses the classical model. 

 

 
Figure. 3. Plotting test set of the actual AT data related to the WFTS and the Proposed model. 
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D. CONCLUSION AND SUGGESTIONS 

Forecasting an accurate Air Temperature is essential to human life as it affects our daily 

activities in various sectors. This research investigates an approach that implement dual 

optimization for Air temperature forecasting with a basis Weighted Fuzzy Time Series (WFTS) 

technique. The first optimization is by enhancing the fuzzy set interval values, and the second 

is through the weight of the linguistic variables. Finding the optimum interval length of the 

WFTS using PSO has improved the accuracy of the fuzzy model where the MAPE value of the 

forecast Air Temperature of the classical WFTS and the WFTS-PSO are 2.4007 and 2.3101, 

respectively. Moreover, the weight of the linguistic variables is optimized through LQP. The 

evaluations of the classical WFTS are MAPE= 2.4007, RMSE= 0.7323, and the proposed model 

are MAPE=1.0591, RMSE= 0.3002. Based on the result, it is noticed that the proposed dual 

optimization model excels the classical Weighted Fuzzy Time Series when applied to the test 

set of 30 days ahead. This approach determines the best interval values and provides ideal 

weights correlated to each data point, which provides strong insights for air temperature 

forecasting and assisting decision-makers in making decisions ahead of time about future 

temperature change. As the optimization of the fuzzy time series might be conducted through 

the interval length and the order or the lookback value for the FLRG, and this paper only covers 

the interval optimization, thus future research may conduct further study on optimizing the 

lookback value. In addition, implementing LQP on multivariate dataset still a challenge needs 

to be studied further. 
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