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 The Financial Services Authority (OJK) has issued Regulation of the Financial 
Services Authority of the Republic of Indonesia Number 5 Year 2023. Article 11 
paragraph 1d explains the limitations of assets allowed in the form of investment, 
investment in the form of shares listed on the stock exchange for each issuer is a 
maximum of 10% of the total investment and a maximum of 40% of the total 
investment. The investment manager of a life insurance company needs to adjust 
its investment portfolio. In 1991, Konno and Yamazaki proposed an approach to 
the portfolio selection problem with Mean Absolute Deviation (MAD) model. This 
model can be solved using linear programming, effectively solving high-
dimensional portfolio optimization problems. Another problem in stock portfolio 
formation is that the ever-changing financial markets demand the development of 
models to understand and forecast stock price behavior. One method that has been 
widely used to model stock price movements is the generalized Wiener Process. 
The generalized Wiener process provides a framework that can accommodate the 
stochastic nature of stock price changes, thus allowing portfolio managers to be 
more sensitive to unanticipated market fluctuations. The stock price change model 
using the Generalized Wiener Process is very good at predicting stock price 
changes. The results of this stock price prediction can then be used to find the 
optimal portfolio using the MAD model. The portfolio optimization problem with 
the MAD model can be solved using linear programming to obtain the optimal stock 
portfolio for life insurance companies. 
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A. INTRODUCTION  

In general, the income of life insurance companies can be divided into several categories, 

including premium income as the primary source of income, investment returns obtained from 

investment activities, reinsurance claims, and other income. The government has issued 

Minister of Finance Regulation No. 53/2012 on the Financial Health of Insurance Companies 

and Reinsurance Companies, particularly in terms of income from investment returns. The 

purpose of this regulation is to prevent life insurance companies from making aggressive 

investments that may be contrary to the characteristics of life insurance companies. 

The Financial Services Authority (OJK), as the institution that organizes the regulatory 

system and supervises all activities in the financial services sector, issued Regulation of the 

Financial Services Authority of the Republic of Indonesia Number 5 of 2023. This POJK 

determines the amount of funds that life insurance companies can invest, the types of 
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investment instruments allowed, and their limits. Article 11, paragraph 1d explains the 

limitations of assets allowed in the form of investment, investment in the form of shares listed 

on the stock exchange for each issuer is a maximum of 10% (ten per cent) of the total 

investment and a maximum of 40% (forty per cent) of the total investment. Thus, investment 

managers of life insurance companies need to adjust their investment portfolios, especially 

stock investment portfolios. 

This portfolio problem is an important issue for investment managers Banihashemi & 

Navidi (2017) in risk management in finance who aim to find the optimal allocation among 

multiple assets (Aksaraylı & Pala, 2018; Deng et al., 2012). In general, investment managers 

have a wide range of possibilities for portfolio composition, and the problem is to choose the 

composition that maximizes investment returns and minimizes risk (Li et al., 2019; Liu, 2011).  

Markowitz (1952) proposed an approach to the portfolio selection problem with the mean-

variance (MV) model based on two assumptions, namely, historical prices reflect future prices, 

and there is a correlation between stocks (Kalayci et al., 2020). This model is based on the mean 

or average approach to calculate returns and uses variance to measure the risk of a portfolio 

(Huang & Yang, 2020; Li & Zhang, 2021). The Markowitz-type portfolio selection problem is to 

minimize variance limited by portfolio budget constraints and desired returns (Grechuk & 

Zabarankin, 2014; Lv et al., 2016; Ramos et al., 2023). The Markowitz portfolio optimization 

model has yet to be used extensively to construct large-scale portfolios. One reason is the 

computational difficulties associated with solving large-scale quadratic programming 

problems with dense covariance matrices (Qin et al., 2016), making it computationally 

ineffective for solving complex portfolio models (Erwin & Engelbrecht, 2023).  

Konno & Yamazaki (1991) introduced the Mean Absolute Deviation (MAD) model as an 

alternative to the mean-variance model (Hosseini-Nodeh et al., 2023; Ma et al., 2023; Zhang & 

Zhang, 2014). This model has a linear approximation, which eliminates most of the difficulties 

associated with the mean-variance model (Qin, 2017), so it can be solved using linear programs 

(Vanti & Supandi, 2020), and is effective for solving high-dimensional portfolio optimization 

problems. 

Another problem in stock portfolio construction is that the ever-changing financial markets 

demand the development of models to understand and forecast the behavior of stock prices. 

The value of stock prices constantly changes over time and in an uncertain direction. One 

method that has been used extensively to model stock price movements is the Generalized 

Wiener Process. Wiener processes provide a framework that can accommodate the stochastic 

nature of stock price changes, thus making portfolio managers more sensitive to unanticipated 

market fluctuations.  

Researchers are interested in knowing the steps of the Generalized Wiener Process 

methodology as a basis for stock price models and the formulation of optimal portfolio 

formation using the Mean Absolute Deviation (MAD) model. By integrating this model into the 

investment decision-making process, life insurance companies can find an optimal portfolio 

solution that maximizes returns while effectively controlling risk. The Mean Absolute Deviation 

(MAD) model with additional buy-in threshold and cardinality constraints in forming optimal 

portfolios. The portfolio obtained can be a recommendation for investment managers when 

compiling their stock investment portfolio. The buy-in threshold constraint aims to avoid the 
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proportion of shares that are too small or too large, and this aims to fulfill the share proportion 

limit set in POJK No. 5 of 2023. Meanwhile, the cardinality constraint aims to limit the number 

of assets in the optimal portfolio (Le Thi & Moeini, 2014). 

 

B. METHODS 

This stock portfolio formation research can be used for stock portfolio recommendations 

used by life insurance companies. Portfolios will be formed using the Mean Absolute Deviation 

(MAD) model with additional buy-in threshold and cardinality constraints. The initial step of 

portfolio formation is to evaluate the performance of the stocks used based on the return and 

risk of each stock. Furthermore, stock price predictions are made using the generalized winner 

process. Stock prices are assumed to follow a generalized Wiener process. The Wiener model 

can be found by first finding the price change model. Assuming a constant rate of return and 

constant volatility the stock price change model is 

 

                                                       ∆𝑆 = 𝜇𝑆∆𝑡 + 𝜎𝑆𝜀√∆𝑡                                                                      (1) 

 

where, 𝑆 is stock price; ∆𝑆 is change in stock price; ∆𝑡 is change in time 𝑡; 𝜇 is expected return; 

𝜎 is volatility of the stock price;  and 𝜀 is Wiener process ~ ∅(0,1). The predicted stock price is 

used as an estimate of the expected return of each stock in the portfolio. The MAD model then 

optimizes the weights of stocks in the portfolio with the objective of minimizing the average 

absolute deviation of actual returns to predicted returns. 

1. Type and Source of Data 

The type of data used in this study is quantitative secondary data. Data obtained from the 

Indonesia Stock Exchange (IDX) website www.idx.co.id in the form of a list of company shares 

listed in the LQ45 Index from January 2018 to Januari 2024 on the IDX and yahoo.finance.com 

in the form of historical monthly closing stock price data. The supporting data relevant to the 

research is obtained from literature, research reports, and electronic media. 

The data time period from January 2018 to January 2024 was selected for stock portfolio 

optimization as it encompasses a comprehensive range of market conditions, including the pre- 

and post-pandemic phases, as well as the post-pandemic recovery period. This time span allows 

for a comprehensive examination of stock performance under diverse economic cycles and 

market conditions, thereby ensuring that the optimization model is capable of capturing long-

term dynamics and significant market fluctuations. Data from the IDX (Indonesia Stock 

Exchange) was selected to provide specific information on the Indonesian stock market, which 

is relevant to local investors. Meanwhile, Yahoo Finance provides historical and real-time data 

covering global markets, enabling comparative analysis and benchmarking. The use of data 

from these two sources will support stock performance evaluation, risk and return 

measurement, and optimization model, thus helping to achieve the research objectives by 

combining local and global views in effective portfolio design. 
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2. Data Collection Technique 

The sample was drawn by purposive sampling with the following criteria: (a) Consistent 

stocks that become research samples must always be listed on the LQ45 index from January 

2018 to January 2024; and (b) Ten stocks with the highest return. 

 

3. Number of Sample 

The population in this study consists of stocks that are members of the LQ45 Index 

consisting of 45 stocks. Of the 45 stocks, only a few meet the first and second criteria. The data 

used to calculate return and risk is monthly stock price data for five years, from January 2018 

to Desember 2023. Based on the resulting return value, ten issuers with the highest return were 

selected to form a portfolio. 

 

4. Data Processing and Analysis 

The optimal portfolio of stocks based on the Mean Absolute Deviation model and the Mean 

Semi absolute Deviation model with additional buy-in threshold and cardinality constraints is 

formed with the following steps: 

a. Selecting stable stocks in the LQ45 Index for the last six periods. 

b. Calculating the actual returns of the selected individual stocks. 

c. Calculating the average return of individual stocks. 

d. Selecting the stocks that have the highest returns. 

e. Develop the mean absolute deviation with additional buy-in threshold and cardinality 

constraints. 

f. Solving the model to obtain the optimum portfolio model using linear programming. 

g. Calculate portfolio returns and stock portfolio risk from both models. 

 

The portfolio optimization problem using the MAD model is a problem with the Linear 

Programming (LP). Linear programming is a mathematical method used to optimize an 

objective function by meeting a number of specified constraints, where the objective function 

and constraints are expressed in linear form. In the context of portfolio optimization using the 

MAD  model, linear programming can be applied to minimize the average deviation of expected 

returns in an investment portfolio. The MAD model focuses on reducing the average deviation 

of actual returns to expected returns. The solution of the MAD model portfolio optimization 

problem can be solved using the JuMP package in Julia programming. JuMP is a collection of 

support packages and modeling languages for solving mathematical optimization problems in 

Julia. 

The Mean-Absolute Deviation model is used to improve the Markowitz mean-variance 

model both computationally and theoretically. Konno and Yamazaki proposed a linear 

programming portfolio selection model using mean absolute deviation as an alternative 

measure of risk. Simplicity and ease of computation are considered the most essential 

advantages of the Mean-Absolute Deviation model. Hence, this model can quickly optimize a 

portfolio even when considering many assets. In particular, the mean absolute deviation model 

has been applied to problems with asymmetric distributions of the rate of return (Gupta et al., 

2014). The mean absolute deviation (MAD) is a statistical measure representing the average 
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distance between each data value and the mean of a data set. Portfolio risk measured as 

absolute deviation denoted by m(x) is expressed as follows: 

 

𝑚(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐸 [|∑ 𝑅𝑖𝑥𝑖 − 𝐸 [∑ 𝑅𝑖𝑥𝑖

𝑛

𝑖=1

]

𝑛

𝑖=1

|] (2) 

 

where 𝑅𝑖 is Random variable representing the rate of return of asset-𝑖; and 𝑥𝑖 is proportion of 

aset- 𝑖 . Thus, the portfolio optimization problem with risk measures using mean absolute 

deviation is as follows: 

 

min 𝐸 [|∑ 𝑅𝑖𝑥𝑖 − 𝐸 [∑ 𝑅𝑖𝑥𝑖

𝑛

𝑖=1

]

𝑛

𝑖=1

|] (3) 

subject to 

∑ 𝑟𝑖𝑥𝑖

𝑛

𝑖=1

= 𝑟0 

∑ 𝑥𝑖

𝑛

𝑖=1

= 1    

𝑥𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑛 

(4) 

 

 

The expected value of a random variable can be approximated by the average derived from 

historical data or future projrctions. Suppose 𝑟𝑖𝑡  is the realization of the random variable 𝑅𝑖 

over the period 𝑡 (𝑡 =  1, … , 𝑇), which is assumed to be available through historical data or 

future projections. In this case, 𝑟𝑖𝑡  comes from the stock price prediction data that has been 

obtained. In addition, the expected value of the random variable can be approximated by an 

average derived from these data, expressed as follows: 

 

𝑟𝑖 = 𝐸[𝑅𝑖] = ∑
𝑟𝑖𝑡

𝑇

𝑇

𝑡=1

 (5) 

 

The portfolio risk 𝑚(𝑥1, 𝑥2, … , 𝑥𝑛) can be approximated as follows:  

 

𝑚(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐸 [|∑ 𝑅𝑖𝑥𝑖 − 𝐸 [∑ 𝑅𝑖𝑥𝑖

𝑛

𝑖=1

]

𝑛

𝑖=1

|] =
1

𝑇
∑ |∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑛

𝑖=1

|

𝑇

𝑖=1

 (6) 

 

The portfolio optimization problem leads to the following minimization problem. 

 

min
1

𝑇
∑ |∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑛

𝑖=1

|

𝑇

𝑖=1

 (7) 
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subject to 

∑ 𝑟𝑖𝑥𝑖

𝑛

𝑖=1

= 𝑟0 

∑ 𝑥𝑖

𝑛

𝑖=1

= 1    

𝑥𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑛 

(8) 

 

The optimization problem is nonlinear and non-smooth due to the existence of absolute-

valued functions, so these functions must be reconstructed to eliminate their influence and 

simplify the optimization problem. The functions can be expressed in the following form. 

 

min
1

𝑇
∑ 𝑝𝑡

𝑇

𝑡=1

 (9) 

subject to 

𝑝𝑡 + ∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑇

𝑡=1

≥ 0, 𝑡 = 1, 2, … , 𝑇 

𝑝𝑡 − ∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑇

𝑡=1

≥ 0, 𝑡 = 1, 2, … , 𝑇 

∑ 𝑟𝑖𝑥𝑖

𝑛

𝑖=1

= 𝑟0  

∑ 𝑥𝑖

𝑛

𝑖=1

= 1 

𝑝𝑡 ≥ 0, 𝑡 = 1, 2 , … , 𝑇 

𝑥𝑖 ≥ 0, 𝑖 = 1, 2 , … , 𝑛 

(10) 

where, 

𝑝𝑡 = |∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑛

𝑖=1

| = max (∑(𝑟𝑖𝑡 − 𝑟𝑖)

𝑛

𝑖=1

𝑥𝑖 , − ∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑛

𝑖=1

) (11) 

 

The optimization problem will be added buy-in threshold constraints and cardinality 

constraints. The buy-in threshold constraint aims to avoid the proportion of shares that are too 

small or too large. This aims to fulfill the share proportion limit set in POJK No. 5 of 2023. While 

the cardinality constraint aims to limit the number of assets in the optimal portfolio. Suppose 

𝜀𝑖  is the lower limit of the 𝑖 -th share proportion, 𝜂𝑖  is the upper limit of the 𝑖 -th share 

proportion, and 𝐾  is the desired number of shares in the portfolio. The buy-in threshold 

constraint and cardinality constraint can be written as follows, 

 

 

 

 



1058  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 8, No. 4, October 2024, pp. 1052-1066 

 

 

𝜀𝑖𝑧𝑖 ≤ 𝑥𝑖 ≤ 𝜂𝑖𝑧𝑖, 𝑖 = 1, 2, … , 𝑛 

∑ 𝑧𝑖

𝑛

𝑖=1

= 𝐾 
(12) 

 

where, 

𝑧𝑖 = {
1,     if the 𝑖 − th stock is included in the portfolio
0,        otherwise                                                              

 (13) 

 

The complete portfolio optimisation model using the Mean Absolute Deviation model with 

additional buy-in threshold constraints and cardinality constraints is written as follows, 

 

min
1

𝑇
∑ 𝑝𝑡

𝑇

𝑡=1

 (14) 

subject to 

𝑝𝑡 + ∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑇

𝑡=1

≥ 0, 𝑡 = 1, 2, … , 𝑇 

𝑝𝑡 − ∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑇

𝑡=1

≥ 0, 𝑡 = 1, 2, … , 𝑇 

∑ 𝑟𝑖𝑥𝑖

𝑛

𝑖=1

= 𝑟0  

∑ 𝑥𝑖

𝑛

𝑖=1

= 1 

∑ 𝑧𝑖

𝑛

𝑖=1

= 𝐾 

𝜀𝑖𝑧𝑖 ≤ 𝑥𝑖 ≤ 𝜂𝑖𝑧𝑖, 𝑖 = 1, 2, … , 𝑛 

𝑝𝑡 ≥ 0, 𝑡 = 1, 2 , … , 𝑇 

𝑥𝑖 ≥ 0, 𝑖 = 1, 2 , … , 𝑛 

𝑝𝑡 = |∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑛

𝑖=1

| = max (∑(𝑟𝑖𝑡 − 𝑟𝑖)

𝑛

𝑖=1

𝑥𝑖 , − ∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑛

𝑖=1

) 

 

(15) 

 

C. RESULT AND DISCUSSION 

1. Stock selection for portfolio optimization in the LQ45 Index 

The stock portfolio optimization model for life insurance companies is formed based on 

historical data of monthly closing prices of company shares that are consistently listed on the 

LQ45 index during the period February 2019 to January 2024 and will be selected 10 stocks 

that have the highest mean return. The list of companies can be seen in Table 1. 
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Table 1. List of portfolio candidate stocks 

Stock code Company name Mean return Volatility 
ANTM Aneka Tambang Tbk. 0.02547 0.16513 
ADRO Adaro Energy Tbk. 0.01938 0.12913 
INCO Vale Indonesia Tbk. 0.01237 0.12313 
BBRI Bank Rakyat Indonesia (Persero) Tbk. 0.01213 0.07717 
BMRI Bank Mandiri (Persero) Tbk. 0.01173 0.07995 
BBCA Bank Central Asia Tbk. 0.01125 0.05197 
BBNI Bank Negara Indonesia (Persero) Tbk. 0.00962 0.10726 
EXCL XL Axiata Tbk. 0.00546 0.10398 
TLKM Telekomunikasi Indonesia (Persero) Tbk. 0.00282 0.06371 
KLBF Kalbe Farma Tbk. 0.00273 0.06062 

 

Mean return shows the average monthly return during the observation period. Volatility is 

a statistical measure that shows changes in stock prices within a certain period. Prior to stock 

portfolio optimization, the stocks listed in Table 1 will first form a stock price model using 

Wiener process generalization. This stock price model will then be used to predict monthly 

stock prices from January 2024 to December 2024. The results of this stock price prediction 

will be used for portfolio optimization using the MAD and Semi-MAD models.  

 

2. Stock Price Model using Generalized Wiener Processes 

Equation (1) is used to model the stock prices on the list of candidate portfolio stocks. Based 

on the mean return and volatility data in table 1. After obtaining the stock price change model, 

a Monte Carlo simulation will be carried out to obtain a stock price prediction. The step of 

Wiener process generalization and Monte Carlo simulation in stock price prediction involves 

two key methods in stochastic analysis and forecasting. Wiener processes, or Brownian 

processes, are used to model stock price movements as a continuous series of random 

fluctuations, allowing to capture market volatility and price dynamics. In this generalization, 

the model is extended to include additional factors such as drift and variable volatility, which 

can be matched to historical stock data. Monte Carlo simulation is then applied by generating a 

large number of simulated future stock price paths based on the generalized Wiener model. By 

calculating various possible future price scenarios, Monte Carlo simulation provides an in-

depth probability distribution of stock prices, aiding in risk estimation and more informed 

investment decision-making. The stock price model can be seen in Table 2. 

 

Table 2. Stock price change model 

Stock code Stock price change model MAPE 
ANTM ∆𝑆 = 0.002122𝑆 + 0.047669𝑆𝜀 4.8192 
ADRO ∆𝑆 = 0.001615𝑆 + 0.037278𝑆𝜀 18.4489 
INCO ∆𝑆 = 0.001031𝑆 + 0.035544𝑆𝜀 7.8658 
BBRI ∆𝑆 = 0.001011𝑆 + 0.022278𝑆𝜀 6.26689 
BMRI ∆𝑆 = 0.000978𝑆 + 0.023079𝑆𝜀 5.4020 
BBCA ∆𝑆 = 0.000938𝑆 + 0.015003𝑆𝜀 3.9945 
BBNI ∆𝑆 = 0.000802𝑆 + 0.030963𝑆𝜀 4.1188 
EXCL ∆𝑆 = 0.000455𝑆 + 0.0300160𝜀 7.5818 
TLKM ∆𝑆 = 0.000938𝑆 + 0.015003𝑆𝜀 4.3207 
KLBF ∆𝑆 = 0.000938𝑆 + 0.015003𝑆𝜀 8.9577 
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Mean absolute percentage error (MAPE) is a statistical measure that assesses the accuracy 

of a forecasting method. If the MAPE value is less than 10%, it can be said that the ability of the 

forecasting model is very good to forecast changes in stock prices. If the MAPE value is less than 

10% - 20%, it can be said that the ability of the forecasting model is good to forecast changes in 

stock prices. However, high MAPE values, such as in the case of ADRO stock (18.4489), indicate 

that the predicted stock price has a significant deviation from the actual price, about 18.45% 

from the average actual price. The implication of the high MAPE value is that investors should 

be aware of the high level of uncertainty in the ADRO stock price prediction, as this may lead to 

inappropriate investment decisions. To overcome or minimize the high MAPE, it is 

recommended to improve the quality of data used in the prediction model, consider additional 

factors that may affect ADRO's stock price such as industry news or unexpected market 

conditions, and improve or adjust the prediction model used to more accurately reflect actual 

stock price movements. Thus, investors can improve their investment decisions by minimizing 

the impact of high prediction uncertainty. Based on Table 2, all stock price change models can 

be used to predict monthly stock prices in the period January - December 2024. The prediction 

result data can be seen in Table 3. 
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3. Portfolio Optimization Using the MAD Model 

The optimal portfolio selection model is employed to analyze the results of monthly stock 

price predictions in 2024. In addition, assumptions regarding the lower and upper limits of the 

proportion of shares are made to fulfil the proportion limits regulated in POJK No. 5 of 2023. 

The assumption is that the amount of stock investment is 40% of the total investment. 

Consequently, the upper limit of the proportion for each issuer is 25% (μ = 0.25), while the 

lower limit is set at 5% (ε = 0.05). The stock portfolio optimization problem, which seeks to 

identify the optimal asset allocation using the MAD model, is formulated as follows: 

 

min
1

𝑇
∑ 𝑝𝑡

12

𝑡=1

 (16) 

subject to 

 

𝑝1 − 0.02300𝑥1 − 0.00391𝑥2 − 0.01869𝑥3 + 0.05759𝑥4 − 0.02176𝑥5 + 0.00718𝑥6

+ 0.02196𝑥7 − 0.05516𝑥8 − 0.02436𝑥9 − 0.00408𝑥10 ≥ 0 

𝑝2 − 0.02287𝑥1 + 0.00734𝑥2 − 0.00905𝑥3 + 0.02124𝑥4 − 0.02503𝑥5 + 0.05990𝑥6

+ 0.00409𝑥7 − 0.03737𝑥8 − 0.00718𝑥9 − 0.02335𝑥10 ≥ 0 

𝑝3 − 0.03396𝑥1 − 0.00153𝑥2 + 0.01407𝑥3 − 0.01921𝑥4 − 0.00410𝑥5 − 0.01620𝑥6

− 0.01365𝑥7 + 0.01979𝑥8 + 0.01038𝑥9 + 0.00932𝑥10 ≥ 0 

𝑝4 + 0.02055𝑥1 + 0.01360𝑥2 + 0.01557𝑥3 − 0.05831𝑥4 − 0.02666𝑥5 − 0.10148𝑥6

+ 0.01651𝑥7 − 0.00937𝑥8 − 0.01130𝑥9 + 0.00435𝑥10 ≥ 0 

𝑝5 + 0.08629𝑥1 − 0.01852𝑥2 + 0.01589𝑥3 + 0.01513𝑥4 + 0.02186𝑥5 − 0.06522𝑥6

+ 0.00953𝑥7 − 0.01017𝑥8 + 0.00303𝑥9 − 0.04284𝑥10 ≥ 0 

𝑝6 − 0.01094𝑥1 + 0.00716𝑥2 − 0.00794𝑥3 + 0.02709𝑥4 + 0.04593𝑥5 − 0.03148𝑥6

+ 0.00260𝑥7 + 0.03603𝑥8 − 0.01107𝑥9 + 0.00674𝑥10 ≥ 0 

𝑝7 + 0.05080𝑥1 − 0.05347𝑥2 + 0.03072𝑥3 + 0.00888𝑥4 + 0.01145𝑥5 − 0.01461𝑥6

− 0.02113𝑥7 + 0.00114𝑥8 + 0.00253𝑥9 + 0.01941𝑥10 ≥ 0 

𝑝8 + 0.00725𝑥1 − 0.01725𝑥2 − 0.03666𝑥3 − 0.01914𝑥4 + 0.03760𝑥5 + 0.06833𝑥6

− 0.00456𝑥7 − 0.02207𝑥8 − 0.00366𝑥9 + 0.01214𝑥10 ≥ 0 

𝑝9 − 0.02892𝑥1 + 0.05228𝑥2 + 0.01690𝑥3 − 0.06995𝑥4 − 0.01524𝑥5 + 0.00929𝑥6

− 0.00412𝑥7 − 0.00481𝑥8 + 0.01231𝑥9 + 0.00746𝑥10 ≥ 0 

𝑝10 + 0.02373𝑥1 − 0.01143𝑥2 + 0.00570𝑥3 + 0.00489𝑥4 + 0.02306𝑥5 − 0.00560𝑥6

− 0.02447𝑥7 + 0.02476𝑥8 + 0.04354𝑥9 + 0.00098𝑥10 ≥ 0 

𝑝11 + 0.00711𝑥1 + 0.01918𝑥2 − 0.00841𝑥3 + 0.00201𝑥4 − 0.00735𝑥5 + 0.04096𝑥6

+ 0.00950𝑥7 + 0.02139𝑥8 − 0.02387𝑥9 + 0.00694𝑥10 ≥ 0 

𝑝12 − 0.07598𝑥1 + 0.00655𝑥2 − 0.01807𝑥3 + 0.02973𝑥4 − 0.03982𝑥5 + 0.04894𝑥6

+ 0.00374𝑥7 + 0.03581𝑥8 + 0.00968𝑥9 + 0.00294𝑥10 ≥ 0 

𝑝1 + 0.02300𝑥1 + 0.00391𝑥2 + 0.01869𝑥3 − 0.05759𝑥4 + 0.02176𝑥5 − 0.00718𝑥6

− 0.02196𝑥7 + 0.05516𝑥8 + 0.02436𝑥9 + 0.00408𝑥10 ≥ 0 

𝑝2 + 0.02287𝑥1 − 0.00734𝑥2 + 0.00905𝑥3 − 0.02124𝑥4 + 0.02503𝑥5 − 0.05990𝑥6

− 0.00409𝑥7 + 0.03737𝑥8 + 0.00718𝑥9 + 0.02335𝑥10 ≥ 0 

𝑝3 + 0.03396𝑥1 + 0.00153𝑥2 − 0.01407𝑥3 + 0.01921𝑥4 + 0.00410𝑥5 + 0.01620𝑥6

+ 0.01365𝑥7 − 0.01979𝑥8 − 0.01038𝑥9 − 0.00932𝑥10 ≥ 0 
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𝑝4 − 0.02055𝑥1 − 0.01360𝑥2 − 0.01557𝑥3 + 0.05831𝑥4 + 0.02666𝑥5 + 0.10148𝑥6

− 0.01651𝑥7 + 0.00937𝑥8 + 0.01130𝑥9 − 0.00435𝑥10 ≥ 0 

𝑝5 − 0.08629𝑥1 + 0.01852𝑥2 − 0.01589𝑥3 − 0.01513𝑥4 − 0.02186𝑥5 + 0.06522𝑥6

− 0.00953𝑥7 + 0.01017𝑥8 − 0.00303𝑥9 + 0.04284𝑥10 ≥ 0 

𝑝6 + 0.01094𝑥1 − 0.00716𝑥2 + 0.00794𝑥3 − 0.02709𝑥4 − 0.04593𝑥5 + 0.03148𝑥6

− 0.00260𝑥7 − 0.03603𝑥8 + 0.01107𝑥9 − 0.00674𝑥10 ≥ 0 

𝑝7 − 0.05080𝑥1 + 0.05347𝑥2 − 0.03072𝑥3 − 0.00888𝑥4 − 0.01145𝑥5 + 0.01461𝑥6

+ 0.02113𝑥7 − 0.00114𝑥8 − 0.00253𝑥9 − 0.01941𝑥10 ≥ 0 

𝑝8 − 0.00725𝑥1 + 0.01725𝑥2 + 0.03666𝑥3 + 0.01914𝑥4 − 0.03760𝑥5 − 0.06833𝑥6

+ 0.00456𝑥7 + 0.02207𝑥8 + 0.00366𝑥9 − 0.01214𝑥10 ≥ 0 

𝑝9 + 0.02892𝑥1 − 0.05228𝑥2 − 0.01690𝑥3 + 0.06995𝑥4 + 0.01524𝑥5 − 0.00929𝑥6

+ 0.00412𝑥7 + 0.00481𝑥8 − 0.01231𝑥9 − 0.00746𝑥10 ≥ 0 

𝑝10 − 0.02373𝑥1 + 0.01143𝑥2 − 0.00570𝑥3 − 0.00489𝑥4 − 0.02306𝑥5 + 0.00560𝑥6

+ 0.02447𝑥7 − 0.02476𝑥8 − 0.04354𝑥9 − 0.00098𝑥10 ≥ 0 

𝑝11 − 0.00711𝑥1 − 0.01918𝑥2 + 0.00841𝑥3 − 0.00201𝑥4 + 0.00735𝑥5 − 0.04096𝑥6

− 0.00950𝑥7 − 0.02139𝑥8 + 0.02387𝑥9 − 0.00694𝑥10 ≥ 0 

𝑝12 + 0.07598𝑥1 − 0.00655𝑥2 + 0.01807𝑥3 − 0.02973𝑥4 + 0.03982𝑥5 − 0.04894𝑥6

− 0.00374𝑥7 − 0.03581𝑥8 − 0.00968𝑥9 − 0.00294𝑥10 ≥ 0 

 

0.02798𝑥1 + 0.02282𝑥2 + 0.01675𝑥3 + 0.01580𝑥4 + 0.01563𝑥5 + 0.01311𝑥6

+ 0.01274𝑥7 + 0.00819𝑥8 + 0.00322𝑥9 + 0.00288𝑥10 = 𝑟0 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9 + 𝑥10 = 1 

𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 + 𝑧5 + 𝑧6 + 𝑧7 + 𝑧8 + 𝑧9 + 𝑧10 = 𝐾 

𝜀𝑖𝑧𝑖 ≤ 𝑥𝑖 ≤ 𝜂𝑖𝑧𝑖 , 𝑖 = 1, 2, … , 𝑛 

𝑝𝑡 ≥ 0, 𝑡 = 1, 2 , … , 𝑇 

𝑥𝑖 ≥ 0, 𝑖 = 1, 2 , … , 𝑛 

 

The above portfolio optimization problem is solved using the JuMP package in Julia 

programming. Jump is a collection of support packages and modeling languages for solving 

mathematical optimization problems. The solution of the portfolio optimization problem can 

be seen in Table 4. 

 
Table 4. The solution of the portfolio optimization 

Parameter Portfolio Allocation Risk 
𝐾 = 5 

𝑟 = 0.014897 
ANTM ADRO INCO BBRI BMRI 0.0084399 

0 0.17268 0 0.25000 0 
BBCA BBNI EXCL TLKM KLBF 

0.25000 0 0.12882 0.19850 0 
𝐾 = 6 

𝑟 = 0.014897 
ANTM ADRO INCO BBRI BMRI 0.0078346 

0.12330 0 0 0.25000 0 
BBCA BBNI EXCL TLKM KLBF 

0.19331 0.10339 0 0.25000 0.08000 
𝐾 = 7 

𝑟 = 0.014897 
ANTM ADRO INCO BBRI BMRI 0.0073414 

0.09742 0.05907 0 0.25000 0 
BBCA BBNI EXCL TLKM KLBF 

0.25000 0.09470 0 0.14800 0.10081 
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Parameter Portfolio Allocation Risk 
𝐾 = 5 

𝑟 = 0.018621 
ANTM ADRO INCO BBRI BMRI 0.0120440 

0.19145 0.25000 0 0.25000 0 
BBCA BBNI EXCL TLKM KLBF 

0.25000 0 0 0 0.05855 
𝐾 = 6 

𝑟 = 0.018621 
ANTM ADRO INCO BBRI BMRI 0.0103772 

0.21198 0.23490 0 0.17968 0 
BBCA BBNI EXCL TLKM KLBF 

0.21464 0.10880 0 0 0.05000 
𝐾 = 7 

𝑟 = 0.018621 
ANTM ADRO INCO BBRI BMRI 0.0103772 

0.21198 0.23490 0 0.17968 0 
BBCA BBNI EXCL TLKM KLBF 

0.16464 0.10880 0 0.05000 0.05000 
𝐾 = 5 

𝑟 = 0.02 
ANTM ADRO INCO BBRI BMRI 0.0163923 

0.25000 0.25000 0 0.25000 0.18614 
BBCA BBNI EXCL TLKM KLBF 

0 0 0 0 0.06386 
𝐾 = 6 

𝑟 = 0.02 
ANTM ADRO INCO BBRI BMRI 0.0150769 

0.25000 0.25000 0 0.25000 0.14048 
BBCA BBNI EXCL TLKM KLBF 

0 0 0 0.05952 0.05000 
𝐾 = 7 

𝑟 = 0.02 
ANTM ADRO INCO BBRI BMRI 0.0141316 

0.25000 0.25000 0.07760 0.25000 0.05832 
BBCA BBNI EXCL TLKM KLBF 

0.06408 0 0 0 0.05000 

 

Table 4 shows the results of portfolio optimization with variations in the parameters 𝐾 

(number of stocks in the portfolio) and 𝑟  (expected rate of return). Each combination of 

parameters results in different portfolio allocations to specific stocks, as well as varying levels 

of risk. First, note that different 𝐾 parameters (5, 6, and 7) affect the number of stocks taken 

into the portfolio, which in turn affects the diversification and potential risk of the portfolio. At 

each value of 𝐾 , the portfolio allocation is divided between different stocks with varying 

weights. For example, in the case of 𝐾 = 5 with 𝑟 = 0.02, the portfolio has the highest allocation 

to ADRO, BBRI, and BMRI stocks with a weight of 25% each of the total portfolio, indicating a 

preference for these stocks under conditions of higher expected returns. 

Secondly, the analysis of changes in the r parameter shows how the level of expected return 

affects the asset allocation in the portfolio. The higher the level of r, the higher the allocation to 

stocks with higher expected returns. For example, at 𝑟 = 0.02, stocks such as ADRO and ANTM 

receive a larger allocation than when 𝑟 = 0.014897, reflecting the increased expected return 

on the investment. Third, portfolio risk is assessed through allocations to stocks that have 

different volatility and price fluctuations. For example, a reduced allocation to a particular stock 

may reduce the overall portfolio risk, depending on the correlation between the stocks in the 

portfolio. 

 

D. CONCLUSION AND SUGGESTIONS 

The stock price change model using the Generalized Wiener Process provides a MAPE value 

between 4% - 18%, so it can be said to be good at predicting stock price changes. The results of 

this stock price prediction can then be used to find the optimal portfolio using the MAD model. 
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The Mean Absolute Deviation (MAD) model takes into account all portfolio return deviations 

from the expected value, both below and above the expected value. So the purpose of this MAD 

model is to minimize the MAD value as a portfolio risk. In addition, this MAD model is a problem 

with linear equations, so it can be solved using linear programming. The portfolio results 

obtained depend on the parameter values used. In this study used 3 different values for each 

parameter K and r used, the results show different portfolios for each parameter value as shown 

in table 4. The results of this portfolio can be used by investment managers of insurance 

companies in compiling their stock investment portfolios. 

Further research can be done by reconstructing the portfolio optimization problem into a 

Multi-objective linear programming (MOLP) optimization problem. MOLP is a linear 

programming problem that has more than one objective function at a time. The objective 

function that can be optimized is maximizing portfolio return and minimizing portfolio risk 

simultaneously. So it helps integrate various objectives and constraints in the investment 

decision-making process. However, the implementation of Multi-Objective Linear 

Programming (MOLP) in portfolio construction may face significant challenges, including high 

calculation complexity and difficulty in determining and quantifying preferences between 

various objectives.  
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