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 The insurance has often been involved to minimize financial losses. As the product 
providers, the insurance companies must effectively manage risks to prevent 
errors in risk measurement. The amount of risk or loss experienced by the 
policyholder refers to the claim amount. The Value at Risk (VaR) is commonly used 
to measure risk. The VaR is calculated from the probability function, which can be 
obtained by evaluating the distribution of claims data. Most claim frequencies are 
small, but occasionally, huge claims appear. Therefore, the appropriate distribution 
would be characterized by a heavy-tailed. Thus, this research aims to model and 
evaluate insurance claims data using exponential, Weibull, Pareto, and lognormal 
distributions to assess financial risk through VaR. The insurance claims data were 
collected from a single insurance company and include 1,326 claims. This research 
specifically examines variables such as gender, diabetic status, smoking status, the 
number of claims, and the level of confidence. The data were analysed using 
descriptive statistics, Maximum Likelihood Estimation for parameter estimation, 
and Goodness of Fit tests to determine the best-fitting distribution, along with VaR 
calculations based on the results. The suitability of the distribution model is 
assessed through the VaR and is analysed based on the appropriate distribution of 
insurance claims data. It is obtained that the Weibull and lognormal distributions 
appropriately model insurance claims data. The highest VaR is observed in the 
claim data for female non-diabetic smokers, with a level of confidence of 99.5%. 
The lowest VaR is obtained from the claim data for male diabetic non-smokers, with 
a level of confidence of 90%. This approach enhances the prediction of large 
potential losses for specific demographic groups, aiding more informed decision-
making in premium pricing and risk management. The integration of heavy-tailed 
distributions in risk assessment, with a particular focus on demographic specificity, 
constitutes a substantial and novel contribution to this research. 
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A. INTRODUCTION  

Insurance claims usually have data with small claim sizes but in large frequencies, 

moreover, data with large claim sizes usually has small frequencies. The most suitable and 

widely used models for claim sizes are distributions of continuous random variable that assume 

positive values only and have “heavy tails”, that is distributions which allow for occasional 

occurrences of very large values (Gray & Pitts, 2012). The heavy-tailed behaviour is usually 

associated with large values of quantities such as the coefficient of variation, the skewness, and 

the kurtosis (Klugman et al., 2019).  The heavy-tailed distribution is characterized by the 

characteristics of insurance claim data that form a long tail, the mean values usually greater 

than the median so that they have a positive skewness, as well as a slower probability decrease 
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to values far from the mean characterized by larger kurtosis values. Heavy-tailed distributions 

include exponential, Weibull, Lognormal, Log-gamma, and generalized Pareto distributions 

(Riad et al., 2023; Xie, 2023). The Pareto distribution and the Weibull distribution with 𝜏 < 1 

have heavy tails dan thus relatively larger extreme quantiles (Klugman et al., 2019). The 

lognormal, Pareto, Weibull (of which the exponential is a sub-family), log-gamma families, and 

the three-parameter Burr family are considered as important distributions used as models in 

practice to modelling claim sizes (Gray & Pitts, 2012). The other families of heavy-tailed 

distributions such as normal (Gaussian) distribution, exponential and gamma are useful for 

reference and comparison purposes, and are included for completeness (Gray & Pitts, 2012). 

Hence, the heavy-tailed distributions that will be used in this paper are lognormal, Pareto, 

Weibull, and exponential. 

The risks faced by insurance companies tend to be related to the claim size. The number of 

insurance claims that the insurance company can provide to the insured party can be calculated 

based on the distribution model of the frequency of claims and the size of claims (Rohiim & 

Mutaqin, 2023). Hence, the risk measurement needs to be done so that the risk is at a controlled 

level to reduce the occurrence of losses to insurance companies. To avoid the risk one of the 

measuring tools that can be used to calculate the risk of large insurance claims is Value-at-risk 

(VaR) and T-VaR that had been studied by Adiyansyah et al. (2023) to modelling the claim sizes 

using tailed distribution on sample data from Badan Penyelenggara Jaminan Sosial (BPJS) 

Kesehatan. The VaR is a common and widely used risk measure, and it may be selected to 

determine the potential magnitude of risks in the future (Syuhada et al., 2023). The other 

application of Value-at-Risk is to analysing risk using automated threshold selection method in 

property insurance (Pahrany et al., 2024). Several researchers in the fields of mathematics and 

statistics have modelled the Value-at-Risk on insurance claims data, including Yousof et al. 

(2023) who modelled new distributions based on insurance data through key risk indicators, 

which include VaR, tail variance, conditional VaR, Tail Value at Risk, dan tail-mean variance.  

Yildirim (2015) uses VaR, historical simulation, and the Monte Carlo simulation method to 

determine insurance company losses caused by foreign exchange risk.  Keçeci & Sarul (2014); 

Zhao et al. (2022) applied various VaR models to insurance claim data and demonstrated the 

appropriateness of distributions in measurement accuracy.  

Analysis of VaR on insurance claims data through heavy-tailed distribution needs to be 

reviewed to determine the reliability of the insurance risk model through heavy-tailed 

distribution according to the nature of each insurance claim data, identify potential significant 

losses that may occur to insurance companies due to event, and provide a more realistic 

estimate of the possibility of extreme losses (Afify, et.al, 2020). Propose new heavy-tailed 

distribution called alpha power exponentiated exponential (APExE), then doing risk measures 

using VaR for the unemployment insurance data. Research about quantifying risk of South 

African taxi claims data and the Danish fire loss data using VaR and T-VaR for 19 standard 

parametric distribution including heavy-tailed distribution had already presented by 

(Marambakuyana & Shongwe, 2024). Moreover, those researches having the same approach 

using VaR for heavy-tailed distribution data on one category data.  

In this paper, insurance claim data will be modelled through selected heavy-tailed 

distributions, parameter estimation, the suitability of distribution models, and VaR through 
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appropriate distributions on insurance claim data. The data consisted of some categories, such 

as gender, diabetic status, and smoking habits. In addition to comparing the fit of different 

heavy-tailed distributions, this research adds a more comprehensive analysis of factors that 

affect insurance claim risks including the influence of real-world factors on claim amounts. This 

research further seeks to investigate how gender, diabetic status, or smoking habits may affect 

the VaR of the insurance claims, thereby enabling insurance companies to offer more tailored 

risk pricing. These categories will help the insurers to differentiate the risk profile of 

policyholders. Thus, would lead to estimating the risk more accurate compared to previous 

approaches that has only one category data. These risk estimates are more personalized and 

nuanced and so help insurers in the ability to set their rates and reserves in such a way that 

they can better choose the risk they are taking.  

 

B. METHODS 

The data was collected through documentation studies to acquire secondary data on 

insurance claims. The use of dummy data in this study is a practical choice for preliminary 

testing and modelling. It is justified to use dummy data in this research because dummy data 

allows for methodological testing, simplification, and controlled experimentation when real-

world data is unavailable or inaccessible. It provides a cost-effective way to explore the 

theoretical aspects of VaR estimation and model-fitting, which can be later be validated and 

calibrated with real insurance claim data. The key is to use dummy data as a stepping stone for 

more accurate once actual data is obtained. However, it is crucial to acknowledge the 

limitations of dummy data in representing real-world insurance claims. While useful for initial 

testing and theoretical validation, using dummy data is limited by its inability to fully capture 

the complexity, dependencies, and extremes present in real-world insurance claims. This limits 

the generalizability of the findings, the accuracy of risk estimates, and the reliability of the 

models when applied to real insurance settings. To overcome these limitations, researchers 

must eventually test their models on actual claim data to ensure the results are robust, realistic, 

and applicable in practical insurance risk management. For this research, the analytical process 

involves the following steps: 

1. Analyse insurance claims data and its distribution patterns using descriptive statistical 

methods.  

2. Categorize the insurance claims data into multiple groups. 

For this research, the data that were used divided into 8 categories: male diabetic 

smokers (male D-S), male diabetic non-smokers (male D-NS), male non-diabetic 

smokers (male ND-S), male non-diabetic non-smokers (male ND-NS), female diabetic 

smokers (female D-S), female diabetic non-smokers (female D-NS), female non-diabetic 

smokers (female ND-S), and female non-diabetic non-smokers (female ND-NS). 

3. Estimate the parameters for each data category using the Maximum Likelihood 

Estimation (MLE) technique. 

4. Select the suitable model to identify the best-fitting distribution for insurance claims 

data using the Goodness of Fit test (GoF). The GoF test in this research is conducted using 

the exponential, Weibull, Pareto, and lognormal distributions, all of which are heavy-

tailed distributions. These were selected specifically because of their ability to model 
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extreme values, as they capture the positive skewness, high kurtosis, and long tails that 

are characteristic of the insurance claims data used in this study. This makes them 

suitable for accurately reflecting the presence of rare but severe claims, which is a key 

feature of heavy-tailed data. The GoF test used is Akaike’s Information Criterion (AIC). 

The model or best distribution is selected based on the AIC value, with the distribution 

with the lowest AIC value being the best model or distribution. 

5. Calculate the risk amount in insurance claims data using the VaR distribution that aligns 

with the GoF test outcomes. For this research, the VaR is calculated using the VaR 

formula for each selected distribution with the high level of confidence of 90%, 95%, 

99%, and 99.5%.  

6. Draw the conclusions based on the analysis conducted. The analysis methods could be 

drawn as a flowchart on Figure 1. 

 

 
Figure 1. Flowchart of the Analysis Methods 

 

The insurance claim data used in this research is dummy data which contains 1,326 

insurance claims obtained from the kaggle.com website (Shukla, 2022). The data consists of 

information such as the claim amount, age, gender, BMI (Body Mass Index), blood pressure, 

number of children, diabetic status, smoking habits, and residential area of the insured 

individuals.  

 

 
Figure 2. Histogram of insurance claims data 

 

The histogram in Figure 2 illustrates the claim amount towards claims frequency.  This 

histogram clearly illustrates that the insurance claim data is long tailed. Most claims fall within 

the lower range (small amounts), with the highest frequency occurring around the lower claim 

amounts (close to zero). As the claim amounts increase, the frequency of occurrence decreases, 

which is indicative of a long tail. This pattern is typical of heavy-tailed distributions, where a 

large number of small claims are observed, but there is also a non-negligible probability of 
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extreme (high) claims. This justifies the use of heavy-tailed distributions conducted in this 

research. The following is a Box Diagram for each Data Category, as shown in Figure 3. 

 

 
Figure 3. Boxplots for Each Data Category 

 

Figure 3 shows the boxplot of each category data to see whether there are outliers in each 

category data. It can be seen from Figure 3 that the distribution of insurance claim values across 

various categories based on gender, diabetic status, and smoking status. Initial conclusions 

reveal that smokers, particularly diabetic smokers, tend to have higher and more variable claim 

values compared to non-smokers. Smokers generally exhibit a higher median and wider 

interquartile range (IQR), indicating more variability and larger claims. In contrast, non-

smokers have relatively lower claim amounts for both diabetic and non-diabetic groups, 

characterized by smaller IQRs and lower medians.  

The analysis also highlights subtle gender differences, with males generally having slightly 

higher claims in certain categories. For example, in categories like non-diabetic smokers, males 

appear to have a slightly higher median claim amount than females. The diabetic non-smoker 

and non-diabetic non-smoker categories almost have similar values while the non-diabetic non-

smoker category has more outliers than the diabetic non-smoker category. Likewise for the 

diabetic smokers and non-diabetic smokers category but without the outlier, the female non-

diabetic smoker category has slightly greater value than the diabetic smoker category and the 

male non-diabetic smokers category has a slightly lower value than the diabetic smoker 

category. 

In terms of outliers, there are several points outside the whiskers of the boxes, particularly 

in male non-smokers for both diabetic and non-diabetic, indicating exceptionally high claim 

values. These outliers suggest that a small number of individuals in these categories possess 

unusually high claims compared to others in the same category. Overall, the plot suggests that 

smoking status and diabetic status are significant factors influencing claim values, with 

smokers, particularly diabetics, experiencing higher claim amounts. Table 1 and Table 2 show 

that most of the data categories are right-skewed. However, the categories of D-S and ND-S for 

males can be said to be skewed to the left because the skewness of the data is negative.  
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Table 1. Statistic Descriptive of Each Categories Data of Male 

Statistic Descriptive 
All of 

the Data 
Male 

D-S D-NS ND-S ND-NS 
Variance (USD) 146,642,600 124,520,000 32,024,770 126,986,100 37,350,120 
𝑛 1,335 76 240 83 274 
Mean (USD) 13,252.75 32,314.22 8,001.01 33,708.41 8,240.91 
Std. Deviation (USD) 12,109.61 11,158.85 5,659.04 11,268.81 6,111.47 
Median (USD) 9,369.61 35,538.61 7,073.40 36,197.70 7,066.31 
Min (USD) 1,121.87  12,829.46 1,121.87 15,817.99 1,131.51 
Max (USD) 63,770.43  60,021.40 30,166.62 62,592.87 32,108.66 
Range (USD) 62,648.56 47,191.94 29,044.75 46,774.88 30,977.15 
Skewness 1.51  -0.08 1.3 -0.04 1.56 
Kurtosis 4.61  1.84 5.06 1.98 5.86 
1st Quartile 4,720  21,219 3,632 21,601 3,851 
3rd Quartile 16,604  41,990 10,968 41,387 10,804 
Sum (USD) 17,758,680  2,455,881 1,920,242 2,797,798 2,258,009 
Std. Error 330.81  1,280.01 365.29 1,236.91 369.21 

 

According to Table 1, the aggregate insurance claims data obtained a mean of 13,252.75 

and a median of 9,369.61, which indicates that the mean surpasses the median. Generally, when 

the mean exceeds the median, it suggests right skewness. Moreover, all of the insurance claim 

data have a skewness of 1.51 and a kurtosis of 4.61. With a kurtosis value exceeding 3, the 

insurance claims data exhibits heavy tails. Table 1 shows that the standard deviation of all the 

categories data is smaller than the mean, implying that the data are clustered closely around 

the mean value.  Most of the data categories have positive skewness except for male diabetic 

smokers and male non-diabetic smokers.  

 

Table 2. Statistic Descriptive of Each Categories Data of Female 

Statistic Descriptive 
Female 

D-S D-NS ND-S ND-NS 
Variance (USD) 132,207,700 35,831,290 153,697,800 37,646,770 
𝑛 60 263 55 284 
Mean (USD) 29,964.44 8,593.77 31,458.52 8,918.36 
Std. Deviation (USD) 11,498.16 5,985.92 12,397.49 6,135.70 
Median (USD) 27,285.91 7,626.99 29,141.36 7,645.54 
Min (USD) 13,844.51 1,607.51 16,420.49 1,621.88 
Max (USD) 55,135.40 36,910.61 63,770.43 36,580.28 
Range (USD) 41,290.89 35,303.10 47,349.94 34,958.40 
Skewness 0.27 1.66 0.44 1.54 
Kurtosis 1.74 6.98 2.14 6.07 
1st Quartile 19,923 4,144 19,567 4,355 
3rd Quartile 55,135 11,525 41,887 11,841 
Sum (USD) 1,797,866 2,260,161 1,730,218 2,532,816 
Std. Error 1,484.41 369.11 1,671.68 364.09 

 

From Table 1 and Table 2, most categories have a kurtosis value of more than 3, except for 

the category’s diabetic smokers and non-diabetic smokers. It can be inferred that most 

Insurance claim data categories have heavy-tailed distributions. The maximum value of the 

data is from the category of female ND-S, while the minimum value of the data is from male D-
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NS. Besides, the highest value of the first quartile is male ND-S, while the third quartile is female 

diabetics smokers. The category that has the highest value of sum is the “all of the data” 

category, however, the lowest value is female ND-S. On the other hand, the female ND-S 

category has the highest value of the standard error and the lowest value of the standard error 

is “all of the data”. It could be caused by the number of “all of the data” consisting of 1,340 

datums and the number of female ND-S consisting of 55 datums. Thus, this implies that the 

larger number of the data would lead to a small standard error value. 

 

C. RESULT AND DISCUSSION 

1. The Goodness of Fit 

Let 𝑋 represent the claim amount for each type of data. As illustrated in Table 1 and Table 

2, most insurance claims data categories are skewed to the right and heavy-tailed. The 

distribution is called a heavy-tailed if and only if its tail function fails to be bounded by any 

exponentially decreasing function (Dinh et al., 2016). Apart from that, distribution is said to 

have a heavy right tail if there are only positive moments up to a specific value or no positive 

moments. Distribution can also be classified as heavy-tailed if there is a decreasing hazard rate 

function (Klugman et al., 2019).  

 

Table 3. The Probability Density Function and Cumulative Distribution Function of  

Weibull, Pareto, Lognormal, and Exponential Distributions 

X Distribution Probability density function Cumulative distribution function 

Weibull (𝜃, 𝜏) 𝑓(𝑥) = {
𝜏(

𝑥

𝜃
)

𝜏
𝑒

−(
𝑥
𝜃

)
𝜏

𝑥
, 𝑥 ≥ 0

0,                 𝑥 < 0

  𝐹(𝑥) = {1 − 𝑒
−(

𝑥

𝜃
)

𝜏

, 𝑥 ≥ 0
0,                  𝑥 < 0

  

Pareto (𝛼, 𝜃) 𝑓(𝑥) = {
𝛼𝜃𝛼

(𝑥+𝜃)𝛼+1 , 𝑥 ≥ 0

0,              𝑥 < 0
  𝐹(𝑥) = {1 − (

𝜃

𝑥+𝜃
)

𝛼
, 𝑥 ≥ 0

0,                    𝑥 < 0
  

Lognormal (𝜇, 𝜎2) 𝑓(𝑥) = {
1

𝑥𝜎√2𝜋
𝑒𝑥𝑝 (−

(ln(𝑥)−𝜇)2

2𝜎2 ) , 𝑥 ≥ 0

0,                                            𝑥 < 0
  𝐹(𝑥) = {

Φ (
ln(𝑥)−𝜇

𝜎
) , 𝑥 ≥ 0

0,                    𝑥 < 0
  

Exponential (
1

𝜃
) 𝑓(𝑥) = {

1

𝜃
𝑒−

𝑥

𝜃 , 𝑥 ≥ 0

0,          𝑥 < 0
  𝐹(𝑥) = {1 − 𝑒−

𝑥

𝜃, 𝑥 ≥ 0
0,             𝑥 < 0

  

 

Insurance data sets are usually positive and have a unimodal shape and are skewed to the 

right also with heavy-tailed (Afify et al., 2020). These two properties are the properties of 

heavy-tailed distributions, so to model the extensive insurance claim data, lognormal 

distributions, exponential distributions, Pareto distributions, and Weibull distributions will be 

used (Riad et al., 2023; Xie, 2023). The probability density function and cumulative distribution 

function of those distributions will be shown in Table 3. Maximum likelihood estimation is one 

of the most critical approaches to estimation in all statistical inference (Walpole et al., 2012). 

This research uses maximum likelihood estimation to estimate the distribution parameter 

values based on data. Let 𝑋1 , 𝑋2, . . . , 𝑋𝑛 as 𝑛 sized random sample of a distribution with a 

parameter 𝜃 with unknown value with probability density function 𝑓(𝑥; 𝜃), the likelihood 

function for the random sample is as follows. 

 

𝐿(𝜃; 𝑥) = ∏ 𝑓(𝑥𝑖 ; 𝜃)𝑛
𝑖=1       (1) 
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with 𝑋 = (𝑥1 , 𝑥2 , . . . , 𝑥𝑛 ) and 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 assumed to be independent.  

 

𝑙(𝜃) = 𝑙𝑜𝑔 𝐿(𝜃; 𝑥) = ∑ 𝑙𝑜𝑔 𝑓(𝑥𝑖 ; 𝜃)𝑛
𝑖=1     (2) 

 
𝜕𝑙(𝜃)

𝜕𝜃
=

𝜕 ∑ 𝑙𝑜𝑔 𝑓(𝑥𝑖 ;𝜃)𝑛
𝑖=1

𝜕𝜃
= 0     (3) 

 

by deriving the log-likelihood function 𝜃, it will obtain 𝜃 𝑀𝐿𝐸 (Hogg et al., 2019). Parameter 

estimates were obtained using the maximum likelihood method from several heavy-tailed 

distributions for each data category.  

The Goodness of Fit test tests the model's suitability or distribution to the data. The 

Goodness of Fit index shows the difference between the observed value and the expected value 

from the model (Snipes & Taylor, 2014). This research uses the Goodness of Fit test to show 

which distribution best fits the data. Some Goodness of Fit tests, such as Kolmogorov-Smirnov 

and Anderson-Darling, can be used to determine the best data distribution. Kolmogorov-

Smirnov is a statistical test that measures the most significant discrepancy between the 

observed and hypothesized distribution (Zeng et al., 2015). Other than the Kolmogorov-

Smirnov and Anderson-Darling test, there are also Goodness of Fit Test criteria for models such 

as Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC). AIC is used 

to find the best approximation model for the unknown data-generating process. 

Using R studio, Akaike's Information Criterion values were obtained for each data category 

using Goodness of Fit tests. The most suitable distribution from the four heavy-tailed 

distributions is determined by reviewing the smallest AIC value of each distribution. AIC has 

the following equation: 

 

𝐴𝐼𝐶 =  −2 ln(𝐿) + 2𝑝     (4) 

 

with L being the likelihood under a model that is used, and p is the number of parameters of the 

model. The model or best distribution is the one that has the lowest AIC value. So, the following 

results are obtained in Table 4 (Snipes & Taylor, 2014)(Zeng et al., 2015).  

 

Table 4. The result of parameter estimation and the AIC’s value of Weibull and lognormal distribution 

𝒌 
Data 

Categories 

Weibull Lognormal 

𝝉𝒌 𝜽𝒌 𝝁𝒌 𝝈𝒌 𝐀𝐈𝐂𝒌 
𝝁-

logk 

𝝈-
logk 

𝐀𝐈𝐂𝒌 

1 Male D-S 3.31 36,145.70 32,428.18 10,790.39 932.30 5.71 0.38 941.13 
2 Male D-NS 1.49 8,891.43 8,033.29 5,488.10 2,534.31 4.12 0.77 2,537.69 
3 Male ND-S 3.41 37,632.47 33,813.48 10,954.31 1,019.86 5.76 0.37 1,028.47 
4 Male ND-NS 1.44 9,132.62 8,288.75 5,844.14 2,915.56 4.14 0.77 2,909.72 
5 Female D-S 2.90 33,736.57 30,082.55 11,270.68 739.31 5.63 0.40 738.90 
6 Female D-NS 1.55 9,615.51 8,648.13 5,697.36 2,799.92 4.22 0.70 2,783.02 
7 Female ND-S 2.79 35,465.15 31,575.71 12,247.04 685.84 5.67 0.40 682.53 
8 Female ND-NS 1.56 9,984.71 8,974.16 5,877.36 3,041.96 4.26 0.70 3,027.84 
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Table 4 shows that based on the smallest AIC value, the Weibull distribution is best 

described the data categories of male insureds who are smokers and suffer from diabetes with 

scale parameters 𝜃1 = 36,145.70  and shape parameters 𝜏1 = 3.31, male insureds who are non-

smokers but suffer from diabetes with scale parameter 𝜃2 = 8,891.43 and shape parameter 

𝜏2 = 1.49, and male insureds who smoke but do not suffer from diabetes with scale parameter 

𝜃3 = 37,632.47 and shape parameter 𝜏3 = 3.41 .  

On the other hand, also based on the lowest AIC value, the lognormal distribution is best 

described the data categories of male insureds who are non-smokers and do not suffer from 

diabetes with parameters 𝜇4-log= 4.14 and 𝜎4-log = 0.77, female D-S insureds with parameters 

𝜇5-log = 5.63 and 𝜎5-log = 0.40, female insureds who do not smoke but suffer from diabetes 

with parameters 𝜇6-log = 4.22 and 𝜎6-log = 0.70, female insured smokers without diabetes with 

parameters 𝜇7-log = 5.67 and 𝜎7-log = 0.40, and female insureds who are non-smokers without 

diabetes with parameters 𝜇8-log = 4.26 and 𝜎8-log = 0.70.  

Beside of the AIC value, if we compared some statistics values such as mean, median, and 

skewness of the categories based on the estimated parameter obtained from the fitted 

distribution with statistic descriptive derived in Table 1 and 2, it gave almost similar value. For 

example of the Weibull distribution that best described the data categories of male diabetic 

smokers with estimated parameters of 𝜃 = 36,145.70 and 𝜏 = 3.31 have estimated mean of 

32,428.18 while the actual mean value is 32,314.22, estimated median of 32,356.96 with the 

actual value of 35,538.61, and estimated skewness of 0.075 with actual value of 0.08 and 

skewed to the left. 

As presented in Table 4, the highest estimated parameter from the categories that fit with 

Weibull distribution is male non-diabetic smokers. In contrast, the lowest estimated parameter 

is male diabetic non-smokers. Those results have aligned with the highest and the lowest mean 

and standard deviation of that category. Moreover, the male ND-S has 2,797,798.37 USD total 

amount of claims, which is the highest total amount of claims among other categories. As can 

be seen in Table 4, for the categories that fit lognormal distribution, the female non-diabetic 

smoker has the highest mean log but has the lowest standard deviation log. It could happen 

because female non-diabetic smokers have 1,730,218.38 USD total amount of claims from 55 

claims, the lowest value of the total amount of claims among other categories that fit the 

lognormal distribution. Whereas male ND-NS had the lowest mean log and the highest standard 

deviation log with the second highest total amount of claims and number of claims among the 

lognormal fitted categories. 
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Figure 4. The result of the Goodness of Fit test on the data of male diabetic non-smokers 

 

One of the categories suitable for modelling with the Weibull distribution is data on male 

insureds who suffer from diabetes and are non-smokers. Figure 4 shows that among the four 

distributions, the Weibull distribution is the distribution that best suits the shape of the data 

histogram diagram. The Weibull distribution has two parameters, shape (τ) and scale (θ), which 

make it possible to describe various shapes of distribution curves, such as highly skewed or 

symmetrical, depending on the parameters (Wu et al., 2019). The curves of the Weibull 

distributions become bell-shaped if τ > 1 (Walpole et al., 2012). From the estimated model 

parameters for male diabetic non-smoker data, the shape parameter τ = 8,891.43 is obtained, 

which is more than 1, so the data distribution curve is bell-shaped. Due to those characteristics, 

Weibull distribution is commonly used in many research and applications to establish proper 

application in insurance, finance, engineering, economics, and biostatistics (Jurić, 2017). It 

could also be used to model the particle size distribution of a dust sample (Abousrafa et al., 

2024) and predict wind conditions and the inverse of wind direction (Aljeddani & Mohammed, 

2023). The Weibull distribution is the most widely used as it provides the characteristics of 

both the exponential and Rayleigh distributions (Ahmad & Hussain, 2017). The Weibull 

distribution can change exponentially when the shape parameter τ = 1 (Walpole et al., 2012). 
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Figure 5. The result of the Goodness of Fit test of female diabetic non-smoker insurer data 

 

On the other hand, data suitable to be modelled using the lognormal distribution is data on 

female non-diabetic smoker insureds. The histogram in Figure 5 shows that all the data for 

female diabetic non-smokers insured have long tails, but the graph for exponential and Pareto 

distribution gave the biggest claim frequency in the smallest claim amount while the Weibull 

and lognormal distribution gave the quite similar graph to the data’s histogram. In contrast, the 

boxplot of the claims data for female diabetic non-smokers insured in Figure 3 shows that the 

data has many outliers. The lognormal distribution is more suitable because it can 

accommodate long tails, which can handle the possibility of large claims that rarely occur but 

have a significant impact and cover the many outliers in the data. The lognormal distribution is 

a common approach for modelling long-tailed type data, such as automobile claim data 

(Nadarajah & Kwofie, 2022). In neuroscience and computer science, the long-tailed distribution 

of the strength or amplitude of a connection between two nodes can be modelled using the 

lognormal distribution (Teramae & Fukai, 2014).  

 

2. The Value at Risk 

After obtaining a suitable distribution for each group of claims data, the VaR value will be 

determined for each data category. The VaR is a risk measurement intensively used in business, 

finance, and insurance. The VaR is defined as a value or amount of capital required or 

determined to ensure, with a high level of confidence, that a company does not experience a 

technical bankruptcy (Klugman et al., 2019). The VaR may be defined as the quantile of asset 

returns distribution conditional on the last observation (Syuhada, 2020). From the result of the 

goodness of fit test, it is known that the suitable distributions are the Weibull and lognormal. 

The VaR for the Weibull distribution can be determined by: 

 

𝑉𝑎𝑅𝑝(𝑋)  =  𝜃[−𝑙𝑛(1 − 𝑝)]1/𝜏     (5) 
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Then, the VaR value for the lognormal distributions could be obtained with: 

 

𝑉𝑎𝑅𝑝(𝑋)  = 𝑒𝜇+𝑍𝑝𝜎     (6) 

 

Based on those equations, with the high level of confidence (𝑝) of 90%, 95%, 99%, and 

99.5% (Obadović et al., 2016) obtained VaR values for each data category. 

 

Table 5. The Value-at-Risk for each data category with respecify distribution clarity in Table 4 

Data 

Categories 
Dist. 

Amount of 

Claim 

Level of Confidence 

90% 

(USD) 

95% 

(USD) 

99% 

(USD) 

99.5% 

(USD) 

M
al

e 

D-S 

W
ei

b
u

ll
 

2,455,880.62 46,488.39 50,330.04 57,302.20 59,778.33 

D-NS 1,920,242.01 15,568.48 18,578.25 24,798.57 27,247.31 

ND-S 2,797,798.37 48,058.47 51,913.55 58,889.32 61,360.81 

ND-NS 

L
o

gn
o

rm
al

 2,258,008.66 16,928.49 22,510.37 37,981.56 46,065.45 

F
em

al
e 

D-S 1,797,866.19 46,235.45 53,542.61 70,093.25 77,414.95 

D-NS 2,260,161.15 16,707.81 21,606.30 34,637,96 41,224.87 

ND-S 1,730,218.38 48,408.22 56,031.48 73,285.93 80,914.45 

ND-NS 2,532,815.51 17,392.84 22,501.61 36,101.10 42,978.48 

 

It can be seen from Table 5, that based on the level of confidence 90%, 95%, 99%, and 

99.5%, the highest VaR in the male categories is VaR of the non-diabetic smokers with Weibull 

distribution. On the contrary, the lowest VaR is from male diabetic non-smokers with Weibull 

distribution. On the female categories, it is obvious that all the categories have the same 

distribution, which is a lognormal distribution. On the level of confidence 90%, 95%, 99%, and 

99.5%, the highest VaR in female categories is VaR of non-diabetic smokers while the lowest 

VaR is diabetic non-smokers. Based on those results, it is interesting that the gender (male and 

female) of insureds gave the same categories of VaR regarding how the non-diabetic smoker 

status is more affected than the diabetic non-smoker status. That condition is affected by the 

awareness of their health condition, because insureds who suffer from diabetes, whether the 

insureds are smokers or not, usually have more awareness of their health condition and tend 

to have regular medical check-ups so the amount of claim for insureds who is a diabetic non-

smoker has the lowest VaR. Meanwhile, the insureds who are non-diabetic smokers are less 

aware of their health condition because they feel healthy and ignore the initial symptoms, thus 

making the insureds who are non-diabetic smokers, whether male or female have the highest 

VaR. Regarding medical check-ups, the study found that smokers with diabetes are less likely 

to have visited a hospital clinic or seen a diabetes nurse in the last year compared to non-

smokers (Gucciardi et al., 2011). 

Generally, the female non-diabetic smoker with a 99.5% level of confidence has the highest 

VaR at 80,914.45 USD, and the male diabetic non-smoker with a 90% level of confidence has 

the lowest VaR at 15,568.48 USD. It shows that women with non-diabetic smoker status 

experience have a high average claim size. This situation is influenced by the metabolism of 

women's bodies, which are more susceptible to disease than men. In addition, women with non-

diabetic smoker status tend to be more ignorant of the early symptoms of disease caused by 
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smoking, so the claims offered tend to be larger. In contrast, male diabetic non-smokers tend to 

be more aware of the importance of health care to reduce the risk of complications, so they have 

a low number of claims but frequently do medical check-ups to diminish the risk of sudden 

large claims. 

 

3. Claim Insurance Data 

After obtaining the VaR for each data category, the graph on Figure 6 compares the VaR for 

male and female data. 

 

 
Figure 6. Comparison of the VaR values for each data category 

 

From Figure 6, the factors of gender, diabetic status, smoking status, and the level of 

confidence used influence the VaR. The greater VaR could be obtain if given a high level of 

confidence. For male insureds, the higher the level of confidence, the higher the VaR, but not as 

much as female insureds. It can be seen from Figure 6 that female tend to have higher VaR than 

male. As for female, the biggest VaR value is 80,914.45 derived from the female with non-

diabetic smoker with level of confidence of 99.5%, while for the male the biggest VaR value is 

61,360.81 derived from male non-diabetic smoker with level of confidence of 99.5%. There is 

big increase in VaR with the higher level of confidence for female insureds. It can also be seen 

that the diabetic status and smoking status factors are divided into four sub-categories. For 

male insureds, it appears that insureds who do not have diabetes and are smokers have the 

highest VaR for every level of confidences whether its 90%, 95%, 99%, or 99.5%. It is 

apparently seen that insured persons who have diabetics and are non-smokers have the lowest 

VaR. However, for female insureds, insureds who do not have diabetes and are smokers have 

the highest VaR. Also, the insurers who have diabetics and are non-smokers have the lowest 

VaR. From these results, it can be concluded that the observed factors influence the VaR, namely 

gender, diabetic status, and smoking status.   
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D. CONCLUSION AND SUGGESTIONS 

This research used heavy-tailed distributions to fit the data which describes the 

characteristics of insurance claim data that form a long tail. The heavy-tailed distribution used 

in this research are Weibull, Pareto, lognormal, and exponential distribution. Based on the 

results of the conducted research, the following conclusions can be drawn that the most 

appropriate distribution for modelling insurance claims data across various categories Weibull 

distribution that best describes the following categories, male diabetic smokers, male diabetic 

nonsmokers, and male nondiabetic smoker, and lognormal distribution is best describes the 

following categories, male non-diabetic non-smoker, female diabetic smoker, female diabetic 

non-smoker, female non-diabetic smoker, and female non-diabetic non-smoker. The Weibull 

and lognormal distribution are the best fitted distribution for the data based on the lowest AIC’s 

value obtained for each data categories that include gender and disease amongst the 

distributions used. Besides, comparing the statistics values such as mean, median, and 

skewness of the data that derived in Table 1 and 2 with value obtained using estimated 

parameter for the distribution gave quite similar results. 

The Value at Risk (VaR) obtained is influenced by the insured's gender, diabetic status, 

smoking status, and the level of confidence utilized. Specifically, when considering gender 

alone, the highest VaR value is observed in female claims data with a level of confidence of 

99.5%. However, when accounting for gender, smoker status, and diabetic status, the highest 

VaR value is found in female non-diabetic smoker claims data with a level of confidence of 

99.5%. On the contrary, the lowest VaR value was obtained in claims data for male diabetic non-

smokers with a level of confidence of 90%. The Value at Risk values obtained can be utilized to 

identify demographic categories that present higher risk and are more likely to file claims. The 

higher VaR value indicates greater potential risk and larger potential losses for the company. 

Consequently, insurance companies must calculate appropriate premiums and reserves based 

on the VaR results, while implementing effective risk management strategies to mitigate these 

risks. This research is constrained using dummy data, which limits its applicability. The 

incorporation of real data in future studies is expected to offer a more accurate assessment of 

financial risk conditions. Furthermore, the current simplistic approach to VaR analysis could be 

enhanced by employing a Generalized Linear Model (GLM) to achieve more robust financial risk 

estimations, providing a more precise quantification of the associated risks.  
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