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 Understanding predator-prey dynamics is essential for maintaining ecological 
balance and biodiversity. Classical models often fail to capture complex biological 
behaviors such as prey defense mechanisms and nonlinear predation effects, which 
are vital for accurately describing real ecosystems. In light of this, there is a growing 
need to incorporate behavioral and functional complexity into mathematical 
models to better understand species interactions and their long-term ecological 
outcomes. This study aims to develop and analyze a predator-prey model that 
integrates two key ecological features: a Holling type III functional response and 
the anti-predator behavior exhibited by prey. The model assumes a habitat with 
limited carrying capacity to reflect environmental constraints. We formulate a 
nonlinear system of differential equations representing the interaction between 
prey and predator populations. The model is examined analytically by identifying 
equilibrium points and analyzing their local stability using the Routh-Hurwitz 
criteria. A literature-based theoretical analysis is supplemented with numerical 
simulations to validate and illustrate population dynamics. The model exhibits 
three equilibrium points: a trivial solution (extinction), a predator-free 
equilibrium, and a non-trivial saddle point representing coexistence. The non-
trivial equilibrium best reflects ecological reality, indicating stable coexistence 
where prey consumption is balanced by reproduction, and predator mortality 
aligns with energy intake. Numerical simulations show that prey populations 
initially grow rapidly, then decline as they reach carrying capacity, while predator 
populations grow after a time lag and eventually stabilize. The results are further 
supported by the eigenvalue analysis, confirming local asymptotic stability. The 
proposed model realistically captures predator-prey dynamics, demonstrating that 
the inclusion of anti-predator behavior and a Holling type III response significantly 
affects population trajectories and system stability. This framework provides a 
more ecologically valid approach for studying long-term species coexistence and 
highlights the importance of incorporating behavioral responses in ecological 
modeling.  
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——————————   ◆   —————————— 

 

A. INTRODUCTION  

Interactions in nature represent fundamental processes that sustain ecological balance and 

ensure the continuity of life on Earth. Scientifically, these interactions are not only vital to 

understand but also serve as the basis for modeling complex dynamics occurring in ecosystems 

(Pal et al., 2021). Mathematical modeling provides a powerful lens through which these natural 

interactions can be observed, analyzed, and predicted in a structured and replicable way 

(Bouderbala et al., 2019; Kumar et al., 2021). In various scientific domains, differential 

equations are employed to represent dynamic changes over time or space, capturing the 
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essence of evolving systems. For instance, in epidemiology, the spread of infectious diseases is 

frequently modeled using the Susceptible-Infected-Recovered (SIR) framework to predict 

disease outbreaks (Kortchemski, 2015; Pastor et al., 2021; Tuerxun et al., 2021).  

Likewise, physics and chemistry utilize partial differential equations to model phenomena 

such as heat conduction and chemical kinetics (Wang et al., 2018). This cross-disciplinary utility 

highlights how mathematical modeling transcends specific scientific fields, including ecology. 

Within ecological systems, predator-prey interactions are a classical example of interspecies 

dynamics that can be described through mathematical models. The foundational Lotka–

Volterra model serves as the basis for understanding the nonlinear interdependence between 

predators and their prey (Antwi-Fordjour et al., 2020; Luo & Wang, 2021; Vishwakarma & Sen, 

2021). However, its linear functional response oversimplifies predation mechanisms. Modern 

ecological modeling has progressed to adopt more biologically accurate formulations, such as 

the Holling Type III response, which introduces a nonlinear predation term that captures 

predator learning and prey refuge effects (Turkyilmazoglu, 2021). These adjustments better 

reflect the sigmoidal nature of predation and enhance model accuracy in representing real-

world ecological systems (Al-Salti et al., 2021). Incorporating functional response complexity 

is essential to depict saturation effects and adaptive predator behavior. 

The Holling Type III response introduces three phases of predation: an initial slow phase 

when prey density is low, an acceleration phase when predators effectively capture prey, and a 

saturation phase when predation approaches a biological limit due to handling time constraints 

(Dai et al., 2019; Xie et al., 2020). These stages introduce realistic mechanisms into predator-

prey models, significantly improving the representation of ecological interactions. Importantly, 

this nonlinear response adjusts predator efficiency depending on prey availability, thus 

aligning better with empirical observations. The transition from traditional linear assumptions 

to nonlinear formulations allows for capturing threshold effects, predator satiation, and other 

complexities observed in field studies (Antwi-Fordjour et al., 2020; Dubey et al., 2021; Purnomo 

et al., 2025; Sen et al., 2021). Consequently, Holling Type III functions form a cornerstone in 

modern ecological modeling. 

Beyond predation mechanics, another factor shaping prey survival and predator success is 

the behavioral adaptation of prey species. The concept of anti-predator behavior involves active 

responses by prey to mitigate predation threats (Bouderbala et al., 2019; Dubey et al., 2021). 

Distinguishing it from passive defense mechanisms like camouflage or grouping. While group 

defense assumes that increased population size offers safety in numbers. Anti-predator 

behavior reflects active resistance, such as counterattacks or strategic escape (Pratama et al., 

2023). Mathematical models incorporating these behaviors demonstrate that prey survival 

strategies influence predator mortality and population stability. For instance, prey that reach 

maturity may become more aggressive, reducing predator success rates and indirectly affecting 

overall population dynamics. 

Recent advances have also integrated additional ecological stressors into predator-prey 

models, such as infection and the Allee effect. These components add further depth to dynamic 

systems by modeling prey populations under simultaneous predation and disease pressures 

(Luo & Wang, 2021; Vishwakarma & Sen, 2021). The Allee effect, characterized by reduced 

reproduction or survival at low population densities, can exacerbate population decline when 
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combined with strong predation (Tuerxun et al., 2021). Moreover, when prey are infected, their 

vulnerability to predation may increase, compounding ecological stress. Studies incorporating 

both effects reveal nontrivial equilibrium states and potential extinction thresholds (Purnomo 

et al., 2025; Vishwakarma & Sen, 2021). These comprehensive approaches illustrate the 

complex interdependence of biological and environmental variables in shaping ecological 

trajectories. While group defense has received substantial modeling attention, anti-predator 

behavior remains relatively underexplored in quantitative terms. Recent studies, however, 

have begun modeling such behavior explicitly, revealing its influence on predator growth and 

prey survival (Bouderbala et al., 2019; Dubey et al., 2021). For example, anti-predator 

strategies may reduce the predator's net reproductive rate or shift the functional response 

threshold required for population maintenance (Huda & Imro’ah, 2024; Rihan & Rajivganthi, 

2020). Additional interventions, such as supplemental food for predators, have also been 

analyzed to prevent predator extinction and stabilize system dynamics (Liu et al., 2019). These 

factors collectively underscore the need for comprehensive predator-prey models that account 

for both behavioral responses and ecological constraints. 

This study aims to develop a predator-prey model that incorporates Holling Type III 

functional response and anti-predator behavior, set within an environment with limited 

carrying capacity. The research seeks to analyze the equilibrium states and local stability of the 

system through both analytical and numerical methods. By capturing both nonlinear predation 

dynamics and prey behavioral responses, the model is intended to provide a more ecologically 

realistic representation of species interactions. The ultimate goal is to contribute a robust 

mathematical framework capable of informing ecological sustainability and long-term 

population viability. 

 

B. METHODS 

This research is a literature study and analysis. The stages of the research carried out follow 

several research steps, formulation and testing of basic assumptions of the model, modeling 

anti-predator properties in the form of Lotka-Voltera and Holling Type III. The assumptions 

built are based on relevant research. Furthermore, at the model formulation stage, the concept 

of mathematical linear differential equations is given to find solutions to the equation. The final 

stage carried out is to conduct equilibrium point analysis, numerical simulations and analysis 

of population growth model trajectories. This research is an analytical research type with a 

literature study approach. The model developed in this research adopts the population 

dynamics model from research (Sirisubtawee et al., 2021). The aim of this research is to analyze 

the local stable equilibrium point. Apart from that, it will also show the integration of this stable 

equilibrium point with life in the population ecosystem. Based on the assumptions described, 

the mathematical model built is as follows: 

 

( )
2

2

1
Na

VN

k

N
rNtN

+
−








−=


, 

( ) NVcV
Na

VN
tV −−

+
= 


2

2

. 

(2) 



922  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 9, No. 3, July 2025, pp. 919-929   

 

 

with, ( )tN  and ( )tV  respectively are the population density of prey and predators. The 

assumed Holling Type III is a shape 
2

2

Na

VN

+


 where this model is a model that represents the 

characteristics of the sigmoid curve. The following are the trajectories of Holling Type III 

assumed in this study, as shown in Figure 1. 

 

 
Figure 1. Trajectories Respon Function Holling Type III 

 

All parameters in model (2) are considered realistically by considering the dimensions of 

these variables. The description of variables and parameters is presented in the following Table 

1. 

 

Table 1. Descriptive List of Variables and Parameters 

Parameters Dimensions Description 
N  biomass Prey population time dependent, 
V  biomass Predator population time dependent, 

r  times-1 Prey intrinsic growth rate, 
k  biomass Prey environmental carrying capacity, 

  biomass.time-1 Capturerate the predator 

a  biomass The reciprocal of group defense of predator 
  times-1 The density-independent death rate of predator 
c  biomass-1.time-1 The frequency of prey defense behaviors per unit time 

 

C. RESULT AND DISCUSSION  

1. Equilibrium Stability 

In this section, equilibrium analysis is conducted through linearization of the differential 

equations. The proposed model (2) employs linearized differential operators, yielding the 

following form: 
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From the analysis carried out, there are three equilibrium points that are associated and 

realistic to consider carrying out a stability test. The equilibrium points are as follows: 

a. Trivial equilibrium ( )0,00E , 

b. Equilibrium point ( )0,1 kE  in the absence of growth in predators or under other 

conditions the growth of the species grows exponentially. This condition can occur if the 

prey growth rate is balanced with other factors, for example searching capacity or other 

factors that support the ecosystem. It is clear that stability analysis cannot be carried out 

at this equilibrium point, because only prey species grow. 

c. Non-trivial equilibrium ( )*

2

*

22 ,VNE , this saddle point is an equilibrium point solution 

that represents stable population growth of prey and predator populations. This 

condition usually shows the population growth rate is zero. The prey population grows 

as much as the prey and the predator population dies as much as the prey population 

grows. Such a system is in dynamic equilibrium. Even though predator-prey interactions 

are still ongoing, the overall population of both has not changed. 

 

The equilibrium point ( )*

2

*

22 ,VNE  represents a biologically significant state for species 

sustainability in the ecosystem. We analyze this equilibrium using the Routh-Hurwitz stability 

criterion to evaluate population dynamics. Further characterization is performed through 

Jacobian matrix analysis and eigenvalue computation to determine the system's stability 

properties. Linearizing the system about equilibrium ( )*

2

*

22 ,VNE  yields the Jacobian matrix: 
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From the Jacobian matrix structure, we obtain the characteristic equation for system (3): 

 

( ) 023 =+++−+  aacc , (5) 

 

Mathematically, the value of testing the equilibrium point value is very dependent on the 

solution of the characteristic equation (5). This characteristic equation is a cubic equation or 

commonly referred to as a third order algebraic equation. The solution set is highly dependent 

on the discriminant value . The discriminant of the characteristic equation determines the 
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solution set is fundamental. On 0  So there are 3 different real roots. On 0=  then there 

are 3 real roots with at least 2 twin roots. While in condition 0  then there is 1 real root and 

2 complex conjugate roots iyx +=1 and iyx −=2 . Where   which is associated with 

characteristic equation (5) is as follows; 

 

( ) ( ) ( )32222222 418274  −+−+−−−−= acacaccaa , (6) 

 

From equation (6) it is clear that what provides meaningful values is the parameter ,,ca dan 

 . The next analysis of the equilibrium point is given certain parameters to provide simulation 

values for model (2).  

 

2. Numerical Simulation 

In this section the model simulation with parameter composition is given. Further analysis 

will show the equilibrium values and eigenvalues. Numerical simulations are also provided to 

see the population growth trajectories of each species. The parameters taken are based on valid, 

relevant and updated assumptions and references which are used as the main research 

reference. The parameters given are as follows,  

 

5.1=r , 100=k , 0008.0=c , 025.0= , 4.0= , and 2=a . 

 

Using the specified parameter values, Model (2) takes the following form:; 
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We derive the following non-trivial equilibrium point from model equation (6): 

 

( )0,00 =E  (7) 

( )0,0,1001 =E  (8) 

( )521.7097052,390.36743281
2
=E  (9) 

 

The three equilibrium points show non-negative results, this confirms that the proposed 

model (2) can be studied more deeply in stability analysis. Equilibrium point ( )*

2

*

22
,VNE  

analyzed to see the growth rate of both populations. The analysis was carried out using the 

Jacobian matrix stages and the Routh-Hurwitz criteria. At the equilibrium point ( )*

2

*

22 ,VNE  we 

obtain the form of the Jacobian matrix as follows; 
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From Jacobian matrix (10), we obtain the characteristic polynomial determining local stability: 

 

7590.0703829791.31099243 23 ++   (11) 

 

The Routh-Hurwitz stability conditions are satisfied if and only if all roots of the characteristic 

polynomial have negative real parts 0 , that’s is; 

 

92889-1.25490611 =  and 461216989-0.05608622 =  

 

The system satisfies both the necessary and sufficient conditions of the Routh-Hurwitz 

stability criterion. Equilibrium ( )*

2

*

22 ,VNE  meet local stability criteria, so that both populations 

can exist in an ecosystem.  Conditions like this in an ecosystem are ideal, because the presence 

or absence of disturbances will not affect the rate of population growth. This condition also 

shows the stability of the ecosystem resilience. We are aware of the lack of analysis to examine 

global stability in the proposed model. Local stable conditions can already describe the rate of 

population growth. Moreover, the basic assumptions of model (2) are prepared from simple 

and small ecosystem assumptions. We also provide trajectory analysis in the research 

discussion analysis to answer the research objectives. The following is an illustration of the 

equilibrium point of model (2), as shown in Figure 2. 

 

 
Figure 2. Phase Plane Trajectory 

 

The diagram in Figure 2 shows the system trajectory in state space ( )VN , , where the 

horizontal axis indicates the prey population and the vertical axis the predator population. The 

red point is the equilibrium point ( )VN ,  where the rate of population change is both zero. The 
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trajectory leading to that point indicates that the system is stable: the population will fluctuate 

and eventually return to the equilibrium value. This illustrates the existence of damping 

oscillations due to complex interactions between predators and prey. The trajectories of 

predator-prey population growth in equation (2) are as follows, as shown in Figure 3 dan Figure 

4. 

 

 
Figure 3. Trajectories prey species 

 

 
Figure 4. Trajectories predator species 

 

Meanwhile in Figure 3 and Figure 4, it is clear that the time dynamics of the prey and 

predator populations. Model (2) is in a dynamic system controlled by nonlinear interactions. 

Initially there are sharp fluctuations (oscillations) indicating initial instability, but the 

amplitude of the oscillations decreases over time. This is consistent with the phenomenon of 

self-regulating dynamics in which predator and prey populations adapt to each other's 

pressures and resource limits. The growth rate of prey is controlled by parameters r  and 

limited by the carrying capacity of the environment k . When prey increases, predator species 

also begin to increase due to the abundance of food sources. However, because of the direct 

interaction through the predator's absorption rate of prey (parameter  ) and predator 

mortality ( )  as well as functional competition ( )c  predator growth is not linear. After reaching 

a peak, both prey and predator populations show fluctuations in decreasing amplitude 

(damped oscillation), until finally converging to a fixed point. This indicates that the dynamic 

system of the predator-prey model reaches ecological balance: the growth rates of prey and 
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predators are equal to zero in the long term. At this point, the population is stable and has not 

changed significantly, consistent with a predator-prey system model that combines logistic 

growth and a saturation response function. Both populations reach a steady state which 

corresponds to the previously calculated equilibrium value. 

Predator-prey models, a locally stable equilibrium point represents a condition in which the 

populations of both predator and prey remain at certain levels and will return to this 

equilibrium in the short term if the ecosystem experiences a disturbance. The findings in the 

research results indicate that if the prey’s growth rate increases slightly, the predator 

population will also grow to stabilize the prey population back to its original level. This aligns 

with the study conducted by (Sirisubtawee et al., 2021), which asserts that the predator's 

growth rate, influenced by anti-predator behavioral interventions, continues to increase in 

response to the prey’s growth rate. This is further supported by the research of (Dubey et al., 

2021; Pratama et al., 2023), which demonstrates that anti-predator behavior in prey not only 

serves to avoid direct predation but also acts as a response to the fear induced by the presence 

of predators. This anti-predator characteristic is expressed through a reduction in the prey’s 

reproduction rate as a result of stress or heightened vigilance in response to predator threats. 

A decrease in the prey’s growth rate can occur even when predators cease direct predation. 

Therefore, the anti-predator parameter has a significant influence on the prey’s growth rate. As 

the anti-predator parameter increases, the equilibrium point still moves toward a center of 

stability. Fluctuations in the prey population’s growth occur only during the initial phase of 

predation. 

 

D. CONCLUSION AND SUGGESTIONS 

In the conclusion section of this paper we have discussed the analysis of the predator-prey 

model with the characteristics of the Holling Type III response function and anti-predator 

properties. The prey population is represented by )(tN , while predator populations by )(tV . 

The proposed predator-prey system, which incorporates density-dependent limitations 

through carrying capacity terms, is analyzed through: stability analysis of equilibrium points, 

numerical exploration of parameter space, and phase-space trajectory evaluation. There are 

three solutions that become equilibrium points, namely solution trivial equilibrium ( )0,00E , the 

equilibrium point ( )0,1 kE  in the absence of growth in predators or under other conditions the 

growth of the species grows exponentially, and in non-trivial equilibrium ( )*

2

*

22 ,VNE , saddle 

point. Of the three equilibrium points, the most realistic one for stability testing is the non-

trivial point ( )*

2

*

22 ,VNE . The equilibrium point solution represents the stable population 

growth of the prey and predator populations. This condition usually shows the population 

growth rate is zero. The prey population grows as much as the prey and the predator population 

dies as much as the prey population grows. Such a system is in dynamic equilibrium. Even 

though predator-prey interactions are still ongoing, the overall population of both has not 

changed. Model (2) employs the Routh-Hurwitz criterion to determine the local asymptotic 

stability of each population equilibrium. Numerical simulations reveal the eigenvalue spectrum 

associated with the system's Jacobian matrix, specifically: 92889-1.25490611 = , and 

461216989-0.05608622 = . Trajectory analysis shows the fluctuating growth of each 
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population. In prey populations, the growth rate is very significant at the beginning of the 

predation process and immediately declines when it has passed its peak point, while this 

condition is inversely proportional to predator species. However, both conditions are reaching 

their respective points of stability. A locally stable equilibrium point represents a condition in 

which the populations of both predator and prey are maintained at certain levels and will 

return to this point within a short time if a disturbance occurs in the ecosystem. The results 

presented in this study indicate that if the prey growth rate increases, even slightly, the 

predator population will also grow to restore the prey population to its original state. The 

growth of the predator population, influenced by anti-predator behavior intervention, remains 

capable of adjusting in response to changes in the prey's growth rate. Anti-predator behavior 

in prey is not solely aimed at avoiding direct predation but also acts as a response to fear 

triggered by the presence of predators. This anti-predator trait is reflected in a decrease in the 

prey's reproduction rate, which results from stress or heightened vigilance against predator 

threats. A reduction in the prey population growth may still occur even when predation ceases. 

Therefore, the anti-predator parameter significantly influences the prey population growth 

rate. As the anti-predator parameter increases, the system's equilibrium point continues to 

move toward a stable condition. Fluctuations in the prey population growth are only observed 

during the initial phase of predation. This study is currently limited to an analysis of local 

stability points; thus, further research is needed to explore global stability. The form of the 

functional response and the influence of anti-predator traits play a critical role in shaping the 

model. Future studies may also incorporate exploitation behaviors, such as harvesting, into the 

model. It is possible that the species under consideration could be exploited in ways that 

generate economic benefits. However, a fundamental requirement in the formulation of such 

models is ensuring the long-term sustainability of the ecosystem. 
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