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 In this paper, we studied a mathematical model of tuberculosis with vaccination 
for the treatment of  tuberculosis. We considered an in-host tuberculosis model 
that described the interaction between Macrophages and Mycobacterium 
tuberculosis and investigated the effect of vaccination treatments on uninfected 
macrophages. Optimal control is applied to show the optimal vaccination and 
effective strategies to control the disease. The optimal control formula is obtained 
using the Hamiltonian function and Pontryagin's maximum principle. Finally, we 
perform numerical simulations to support the analytical results. The results 
suggest that control or vaccination is required if the maximal transmission of 
infection rate at which macrophages became infected is large. 
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A. INTRODUCTION  
Tuberculosis (TB) is the world's leading infectious disease caused by Mycobacterium 

tuberculosis (MTb). Many attempts have been proposed to explain the progression of TB 
disease by considering the influencing factors, including the mechanisms of bacterial response 
and immunity. However, the factors that influence the development of TB are not currently 
known with certainty. Motivated by this, we consider a within-host tuberculosis model in (Adi 
& Thobirin, 2020) with three components: uninfected macrophages, infected macrophages 
(𝑀𝑖), and MTb bacteria, denoted by 𝑀𝑢, 𝑀𝑖 , and 𝐵, respectively. The model is given in the 
following form of ordinary differential equation system  

 
𝑑𝑀𝑢

𝑑𝑡
= Λ − 𝜇𝑀𝑢 −

𝛽𝑀𝑢𝐵

1 + 𝛼𝐵
,

𝑀𝑖

𝑑𝑡
=

𝛽𝑀𝑢𝐵

1 + 𝛼𝐵
− 𝑐𝑀𝑖 −

𝑘𝑀𝑖

1 + 𝜀𝑀𝑖
,

𝑑𝐵

𝑑𝑡
= 𝑟𝑐𝑀𝑖 − 𝛾𝑀𝑢𝐵 − 𝑑𝐵.

 

     (1.1) 
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In this model (1.1), Λ and 𝜇 are a constant production rate and a natural death rate of 
uninfected macrophages, respectively. Parameter 𝛽 is the maximal transmission of infection 

rate at which macrophages became infected at a saturated incidence rate of 
𝛽𝑀𝑢𝐵

1+𝛼𝐵
, whit 

1

1+𝛼𝐵
 is 

an inhibition effect. Parameter 𝑟 and 𝑐 are the average numbers of the MTb bacteria released 
by infected macrophages and the rate of macrophages burst, respectively. The parameters 𝛾 is 
the MTb bacteria death rate by uninfected macrophages, and 𝑑 is MTb bacteria natural death 
rate. The infected macrophages die due to an adaptive immune response modeled in a 

density-dependent term,
𝑘𝑀𝑖

1+𝜀𝑀𝑖
, whereas 𝑘  is the maximum killing rate, and 𝜀  is a half-

saturation constant. 
In many works of literature of tuberculosis models, it is usually considered drug 

administration or vaccination, as in (Baba et al., 2020; Blaser et al., 2016; Brooks-Pollock et al., 
2014; Byrne et al., 2015; Kim et al., 2018; Kuddus et al., 2020; Kyu et al., 2018). Many of the TB 
models use optimal control theory regarding their treatment strategies (Agusto & Adekunle, 
2014; Baba et al., 2020; Bowong, 2010; Choi et al., 2015; Emvudu et al., 2011; Fatmawati et al., 
2020; Gao & Huang, 2018; Moualeu et al., 2015). In a within-host tuberculosis model, the 
immune response to bacteria is generally assumed, as in (Adi & Thobirin, 2020; Zhang, 2020; 
Zhang et al., 2020). This paper will apply the optimal control theory to a within-host 
tuberculosis model by considering the vaccination that affects macrophages. 

The purpose of this study is to determine the treatment strategies in a within-host 
tuberculosis model. We apply optimal control theory to determine optimal treatment that will 
maximize tuberculosis prevention efforts, such as vaccinations.  

 
 
B. METHODS  

In this section, in order to obtain the optimal strategies, we recall the basic theory of 
optimal control (Chambers et al., 1965). We consider a system of ordinary differential 
equations  

 �̇� = 𝐟(𝐱(𝑡)), 𝐱(0) = 𝐱0,     (2.1) 

 where 𝐱0 ∈ ℝ, 𝐟: ℝ𝑛 → ℝ𝑛, and 𝐱: [0,∞) → ℝ𝑛. Suppose that the right-hand side depends 

on a parameter 𝑢: [0,∞) → 𝐴, where 𝐴 ⊂ ℝ𝑚. Then the system becomes  

 �̇� = 𝐟(𝐱(𝑡), 𝑢(𝑡)), 𝐱(0) = 𝐱0, 𝐱(𝑇) free .    (2.2) 

In this system, the solution 𝐱(𝑡) depends on the control 𝑢(𝑡). The corresponding response 
of the system is a trajectory that corresponds to the control 𝑢(𝑡). In system (2.2), the control 
may be arbitrary, so the problem does not have a solution. Therefore, we need to find the best 
control to minimize or maximize the performance measure as an objective function. In a 
disease-control model, we need to find the control to minimize the cost of controlling the 
disease. For that purpose, a payoff functional is defined as follows  

 𝐽[𝑢] = ∫
𝑇

0
𝑔(𝐱(𝑡), 𝑢(𝑡))𝑑𝑡,      (2.3) 

 where 𝐱(𝑡) solves (2.2) for the specified control 𝑢(𝑡), with the given function 𝑔: ℝ𝑛 × 𝐴 →
ℝ and terminal time 𝑇 as well. The function 𝑔 is called the running payoff. Now, introduce the 
admissible controls  

 Ω = {𝑢(𝑡) ∈ 𝐿1(0, 𝑇): 𝑢(𝑡) ∈ 𝐴}.     (2.4) 

 The optimal control problem is to find a control 𝑢∗(𝑡) ∈Ω that minimizes or maximizes 
the payoff functional (2.3). A corresponding solution together with the optimal control gives 
the pair of optimal control (𝐱∗, 𝑢∗). 

If such a control 𝑢(𝑡) exists, it is called the optimal control. For maximum problem, the 
solution (𝐱∗, 𝑢∗), if exits, can be found by Pontryagin's maximum principle. According to the 
constraint in the Lagrangian problem, the time-varying Lagrange multiplier 𝜆(𝑡)  was 
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introduced. The function 𝜆(𝑡) is usually called an adjoint variable of the system. The 
comparable function, in this case, is the Hamiltonian function 𝐻, defined for all 𝑡 ∈ [0, 𝑇] by  

 𝐻(𝐱(𝑡), 𝑢(𝑡), 𝜆(𝑡)) = 𝑔(𝐱(𝑡), 𝑢(𝑡)) + ∑𝑛
𝑖=1 𝜆𝑖(𝑡)𝑓𝑖(𝐱(𝑡), 𝑢(𝑡)).   (2.5) 

 
The Pontryagin maximum principle is precisely formulated as follows . 
Theorem 1.  Let 𝑢∗(𝑡) be a piecewise control defined on [0, 𝑇] and 𝒙∗(𝑡) be the associated 

trajectory. Then there exists a nonzero adjoint vector function 𝜆∗(𝑡) that is a solution to the 
adjoint system  

 
�̇�(𝑡) = −

∂𝐻(𝐱(𝑡),𝑢(𝑡),𝜆(𝑡))

∂𝑥

𝜆(𝑇) = 0,
     (2.6) 

 so that 𝐱∗(𝑡) maximizes 𝐻(𝐱∗(𝑡), 𝑢(𝑡), 𝜆(𝑡)) for 𝑢(𝑡) ∈Ω, that is  

 𝐻(𝐱∗(𝑡), 𝑢∗(𝑡), 𝜆∗(𝑡)) ≥ 𝐻(𝐱∗(𝑡), 𝑢(𝑡), 𝜆∗(𝑡)), 𝑓𝑜𝑟  𝑎𝑙𝑙     𝑢(𝑡) ∈Ω.  (2.7) 

  
Thus, the necessary conditions for optimizing the Hamiltonian are:  

 

∂𝐻

∂𝑢
= 0 ⇒ 𝑔𝑢 + ∑𝑛

𝑖=1 𝜆𝑖(𝑡)(𝑓𝑖)𝑢 = 0,

�̇�𝑖(𝑡) = −
∂𝐻(𝐱(𝑡),𝑢(𝑡),𝜆(𝑡))

∂𝑥𝑖
⇒ �̇�𝑖(𝑡) = −𝑔𝑥𝑖

− ∑𝑛
𝑖=1 𝜆𝑖(𝑡)(𝑓𝑖)𝑥𝑖

,

𝜆(𝑇) = 0.

  (2.8) 

 Please refer to Pontryagin's book (Kaufman, 1964) and some extensions book, such as 
(Becker et al., 1989; Seierstad & Sydsaeter, 1977) for more details. 

 
 

C. RESULT AND DISCUSSION 
1. Optimal Control Problem 

This section reformulates and analyzes an optimal control problem for the model (1.1) to 
determine the optimal trajectories of uninfected macrophages, infected macrophages, and 
MTb bacteria in response to the optimal strategy. The control is chosen basis on the 
significant parameter used as the bifurcation parameter (Adi & Thobirin, 2020). We 
introduce a control function 𝑢(𝑡), which represents the effort of tuberculosis prevention, 
such as vaccination. The control model is given as follows 

 
𝑑𝑀𝑢

𝑑𝑡
= Λ − 𝜇𝑀𝑢 −

(1 − 𝑢(𝑡))𝛽𝑀𝑢𝐵

1 + 𝛼𝐵
,

𝑀𝑖

𝑑𝑡
=

(1 − 𝑢(𝑡))𝛽𝑀𝑢𝐵

1 + 𝛼𝐵
− 𝑐𝑀𝑖 −

𝑘𝑀𝑖

1 + 𝜀𝑀𝑖
,

𝑑𝐵

𝑑𝑡
= 𝑟𝑐𝑀𝑖 − 𝛾𝑀𝑢𝐵 − 𝑑𝐵,

 

      (3.1) 
 
where 𝑢(𝑡) represents a control strategy that cures a fraction of uninfected macrophages 

and reduces the rate at which macrophages leaves uninfected class towards the infected 
class. The control is bounded between 0 and 𝑢𝑚𝑎𝑥 . From a medical point of view, it is 
realistic to assume that 𝑢𝑚𝑎𝑥 < 1, since the vaccination is not completely effective. Let us 
define the set of admissible control as  

 
 Ω = {𝑢(𝑡) ∈ 𝐿1(0, 𝑇): 0 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥 , ∀𝑡 ∈ [0, 𝑇]}.   (3.2) 
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Then, optimal control theory is applied to determine the optimal treatment 
administration that will maximize the effort on tuberculosis prevention measures and the 
cost associated with this support. We define the set of state variables 𝑋(𝑡) =
(𝑀𝑢(𝑡), 𝑀𝑖(𝑡), 𝐵(𝑡)) and the objective functional as  

 𝐽[𝑢] = ∫
𝑇

0
(𝑀𝑢(𝑡) − 𝑀𝑖(𝑡) − 𝑢2(𝑡))𝑑𝑡.    (3.3) 

 
which consider the fraction of the uninfected macrophages (𝑀𝑢) and the infected 

macrophages (𝑀𝑖) and the cost associated with the support of transmission measure (𝑢). 
The optimal control problem is to find the control 𝑢∗  with corresponding state 

trajectories 𝑋∗ = (𝑀𝑢
∗ , 𝑀𝑖

∗, 𝐵∗) on the time interval [0, 𝑇], that maximizes the objective 
functional (3.3) subject to dynamical system constraints (3.1), that is  

 𝐽[𝑢∗] = max
Ω

𝐽[𝑢].      (3.4) 

 
Then, to apply Pontryagin's maximal principle in Theorem 1, we define the Hamiltonian 

as  

 

𝐻(𝑀𝑢, 𝑀𝑖 , 𝐵, 𝑢, 𝜆) = 𝑀𝑢(𝑡) − 𝑀𝑖(𝑡) − 𝑢2(𝑡) + 𝜆1
𝑑𝑀𝑢

𝑑𝑡
+ 𝜆2

𝑑𝑀𝑖

𝑑𝑡
+ 𝜆3

𝑑𝐵

𝑑𝑡

= 𝑀𝑢(𝑡) − 𝑀𝑖(𝑡) − 𝑢2(𝑡) + 𝜆1(Λ− 𝜇𝑀𝑢 −
(1−𝑢(𝑡))𝛽𝑀𝑢𝐵

1+𝛼𝐵
)

    +𝜆2(
(1−𝑢(𝑡))𝛽𝑀𝑢𝐵

1+𝛼𝐵
− 𝑐𝑀𝑖 −

𝑘𝑀𝑖

1+𝜀𝑀𝑖
)

    +𝜆3(𝑟𝑐𝑀𝑖 − 𝛾𝑀𝑢𝐵 − 𝑑𝐵).

 (3.5) 

 According to Pontryagin's maximum principle, for 𝑢∗ to be an optimal solution with 
corresponding optimal states 𝑋∗, the following conditions must be satisfied.  

 

𝑑𝑋

𝑑𝑡
= −

∂𝐻

∂𝜆𝑖
,

∂𝐻

∂𝑢
= 0,

𝑑𝜆𝑖

𝑑𝑡
= −

∂𝐻

∂𝑥
.

       (3.6) 

According to the optimal condition (3.6), we claim the optimal solution of system (3.1) in 
the following theorem. 

 
Theorem 2.  There exists an optimal control 𝑢∗ corresponding to the optimal solution 
𝑀𝑢

∗ , 𝑀𝑖
∗, 𝐵∗ that maximizes the objective function 𝐽[𝑢] over 𝛺. Moreover, there exist adjoint 

variables 𝜆𝑖, 𝑖 = 1,2,3, along with the transversality conditions 𝜆𝑖(𝑇) = 0 such that  

 

𝑑𝜆1

𝑑𝑡
= −1 + 𝜆1𝜇 − (𝜆1 − 𝜆2)

(1−𝑢(𝑡))𝛽𝐵∗(𝑡)

1+𝛼𝐵∗(𝑡)
− 𝜆3𝛾𝐵∗(𝑡),

𝑑𝜆2

𝑑𝑡
= 1 + 𝜆2(𝑐 +

𝑘

(1+𝜀𝑀𝑖
∗(𝑡))2 − 𝜆3𝑟𝑐,

𝑑𝜆3

𝑑𝑡
= (𝜆1 − 𝜆2)𝛽

(1−𝑢∗(𝑡))𝑀𝑢
∗ (𝑡)

(1+𝛼𝐵∗(𝑡))2
− 𝜆3𝑑.

   (3.7) 

 
Furthermore, associated optimal control 𝑢∗ is given by  

 𝑢∗(𝑡) = min{𝑢max, max{0,
𝛽(𝜆1−𝜆2)𝑀𝑢

∗ (𝑡)𝐵∗(𝑡)

2(1+𝛼𝐵∗(𝑡))
}}    (3.8) 

  
Proof. The adjoint system (3.7) is derived by taking partial derivatives of the Hamiltonian 
(3.5) with respect to the associated state variables so that  
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𝑑𝜆1

𝑑𝑡
= −

∂𝐻

∂𝑀𝑢
,    

𝑑𝜆2

𝑑𝑡
= −

∂𝐻

∂𝑀𝑖
,    

𝑑𝜆3

𝑑𝑡
= −

∂𝐻

∂𝐵
, 

together with the transversality conditions 𝜆𝑖(𝑇) = 0, 𝑖 = 1,2,3. The optimal control 𝑢∗ is 

defined by solving 
∂𝐻

∂𝑢
= 0. This lead to the condition of optimal control: −2𝑢(𝑡) + 𝛽(𝜆1 −

𝜆2)
𝑀𝑢(𝑡)𝐵(𝑡)

1+𝛼𝐵(𝑡)
= 0. Hence, we have  

𝑢(𝑡) =
𝛽(𝜆1 − 𝜆2)𝑀𝑢(𝑡)𝐵(𝑡)

2(1 + 𝛼𝐵(𝑡))
. 

Since 𝑢∗ must belong to Ω, we obtain  

𝑢∗ = {

0  𝑖𝑓  𝑢  ≤   0 
𝑢  𝑖𝑓  0 ≤   𝑢  ≤   1 ,
1  𝑖𝑓  𝑢  ≥   1 

 

which can also be characterized as  

𝑢∗(𝑡) = min{𝑢max, max{0,
𝛽(𝜆1 − 𝜆2)𝑀𝑢

∗(𝑡)𝐵∗(𝑡)

2(1 + 𝛼𝐵∗(𝑡))
}}. 

This completes the proof.   
 
2. Numerical Simulations  

This section gives some numerical simulations by using the ode45 solver in MATLAB to 
demonstrate the previous section's theoretical results. We compute numerically the 
Theorem 2 by implementing a forward-backward fourth-order Runge-Kutta method, as 
described in (Campos et al., 2020). The iterative method is starting with a guess on a 
control variable over the time interval [0, 𝑇] using a forward scheme. Then, using the 
transversality conditions 𝜆𝑖(𝑡) = 0, the co-state equation (3.7) are solved by a backward 
scheme. Furthermore, we update the control by using the state's new values and the value 
from (3.8). The iterative processes are stopped if the values reach convergence.  

 
Figure 1.  Solution of the System (3.4) with low transmission rates 𝛽 so that it does not require 

optimal control. 
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For the simulation, we consider a set of parameter values obtained from the literature 
(Adi & Thobirin, 2020; Zhang et al., 2020), with the unit volume in milliliters and time in 
days as follows  

 Λ = 3300, 𝜇 = 0.01, 𝛼 = 0.01, 𝑐 = 0.01, 𝑘 = 0.1, 𝜀 = 10, 
             𝑟 = 100,  𝛾 = 0.125 × 10−8, 𝑑 = 0.05,     (4.1) 

 
with variation of parameter 𝛽. The initial value for the uninfected macrophage, infected 
macrophage, and MTb bacteria are taken as 𝑀𝑢(0) = 300000, 𝑀𝑖(0) = 20, and 𝐵(0) = 500, 
respectively. Now, we consider the case of low transmission of infection rate at which the 
uninfected macrophages became infected and choose parameter 𝛽 = 1.5 × 10−8. Figure 1 
shows that the infected macrophages and the MTb bacteria population are reduced, and in 
this case, almost no macrophages will be infected by the MTb bacteria, and the MTb 
bacteria become extinct. This means, in cases of very low transmission, vaccination or 
control is not needed, and the Mtb bacteria and infected macrophages will disappear from 
the bodyFigure 1 shows that infected macrophages and MTb bacteria disappear from the 
body in about a year (after about the 300th day). This result is very different from the 
model without control in (Adi & Thobirin, 2020), where the value of the parameter 𝛽 =
2.28 × 10−8 which is smaller than 1.5 × 10−8 will results in the stable disease equilibrium 
point. 

 
Figure 2.  Results from optimal control with a set of parameter (4.1) and 𝛽 = 1.5 × 10−7 of 

uninfected macrophages, in dashed, compared with that of no control (solid). 
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Figure  3.  Results from optimal control with a set of parameter (4.1) and 𝛽 = 1.5 × 10−7 of   
  infected macrophages and MTb bacteria, in dashed, compared with that of no control (solid). 

  

 
Figure  4.  Optimal control 𝑢∗ for the optimal control problem (3.4) subject to the initial  
condition 𝑀𝑢(0) = 300000, 𝑀𝑖(0) = 20, and 𝐵(0) = 500 and the admissible control Ω. 

  
Now, we vary 𝛽 with a much higher transmission rate, which is about ten times as 

much, and keep all other parameter values as in (4.1). Since vaccination is not completely 
effective, in this simulation, we set 𝑢𝑚𝑎𝑥 = 0.85. Figure 2-3 show comparison trajectories 
for uninfected macrophages, infected macrophages, and MTb bacteria with and without 
control. Meanwhile, Figure 4 shows control variate over time. With the control, the 
number of uninfected macrophage populations is higher than without control. The 
increase in the number of uninfected macrophages is proportional to the decrease in the 
number of infected macrophages. As shown in Figure 3, with the initial condition of 
infected macrophages 20, without control, this number will increase to its maximum level 
in less than two years. Likewise, MTb bacteria's population continued to grow until it was 
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at a constant level for less than two years. Meanwhile, if given control, both population 
infected macrophages and MTb Bacteria will decrease and disappear from the body in 
about two years. Appropriate control is shown in Figure 4, and a control policy is obtained; 
in this case, the complete vaccination is given for approximately 900 days (30 months) 
then decreases within 100 days later.  

 
D. CONCLUSION AND SUGGESTIONS 

This paper has studied an optimal control problem for a within-host tuberculosis model 
describing the interaction between Microbacterium tuberculosis and macrophages. We 
determine the existence of optimal control analytically and characterize them using 
Pontryagin's maximum principle. The results suggest that control or vaccination is required if 
the parameter 𝛽 is large. We found that with 𝑢𝑚𝑎𝑥 = 0.85, the complete vaccination should be 
given for approximately 900 days (30 months) then decreased within 100 days later. 
Generally speaking, we suggest that for the tuberculosis disease to be successfully eradicated, 
it is necessary to optimize the treatment or vaccination. In other words, there is still a need to 
improve medical methods and technology. From the point of view of mathematical modeling, 
it is still necessary to develop a more realistic in-host TB model that considers the most 
relevant treatment methods and uses actual data to help doctors determine the right 
treatment for TB patients. Our future research will learn more about this. 
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