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 We consider Susceptible-Infected-Recovered (SIR) models of infectious disease 
spread without and with vital dynamics. We recall some existing analytical 
approximate iterative methods for solving these models. We observe that all these 
methods solve the models accurately only for points close to the initialisation. 
These methods produce inaccurate, and even, unrealistic solutions to the SIR 
models if the time domain is sufficiently large. In this paper, our research 
objective is to propose an analytical-numerical iterative method, which is able to 
solve the SIR models accurately on the whole domain. The research method used is 

quantitative mathematical modelling with simulation. By implementing this 
analytical-numerical iterative method into a finite number of small consecutive 
subintervals of the domain, our research results show that the proposed method 

produces accurate solutions to the SIR models on the whole domain. 
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A. INTRODUCTION  
Susceptible-Infected-Recovered (SIR) models have been trusted for simulation of the 

spread of various infectious diseases (Harko et al., 2014). SIR models are very important in 
the prediction of the spread of various infectious diseases. Therefore, a simple but accurate 
method for solving these models is always desired. 

A number of articles have reported some properties, applications, and extensions of SIR 
models. Properties of SIR models have been reported by Gatto & Schellhorn (2021), 
Turkyilmazoglu (2021), Wu et al. (2021), as well as Kröger & Schlickeiser (2020). 
Interestingly, SIR models have been used to simulate the transmission of the new Coronavirus 
SARS-COV-2, which we know that this virus results in the global pandemic COVID-19 (Alenezi 
et al., 2021; Alqahtani, 2021; Din & Algehyne, 2021; Telles et al., 2021; Cadoni & Gaeta, 2020; 
Ifguis et al., 2020). Due to their simplicity and flexibility, SIR models have been extended to 
more complex models, such as, SEIR, BSEIR, SEIAR, and SEIQR models (Rahimi et al., 2021; 
Ucakan et al., 2021; De la Sen et al., 2020; Heng & Althaus 2020). 

Some analytical approximate methods have been available in the literature for solving SIR 
models. These methods are of the type of iterative and non-iterative. Non-iterative methods 
that provide analytical approximate solutions are, for example, that proposed by Barlow & 
Weinstein, 2020. Iterative methods are also available, such as variational iteration methods. 

http://journal.ummat.ac.id/index.php/jtam
mailto:sudi@usd.ac.id
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Rafei et al., (2007) proposed a variational iteration method in order to solve the classical SIR 
model. The analytical approximate iterative method is simple to implement and accurate for 
points close to the initialisation, but inaccurate for points far from the initialisation (Mungkasi, 
2021, 2020a, 2020b). In this paper, we limit our work to iterative methods. We aim to 
propose a new iterative method that is accurate on the whole domain. 

Several modifications of the variational iteration method have been proposed. One of the 
modifications is by optimising the Lagrange multipliers involved in the iterative formulas (He, 
2000; Biazar & Ghazvini, 2007; Darvishi et al., 2007). Another modification is by 
implementing the Gauss-Seidel technique in the variational iteration scheme (Alderremy et al., 
2020; Rangkuti et al., 2016; Tatari & Dehghan, 2009; Salkuyeh, 2008; Youssef & El-Arabawy, 
2007). Unfortunately, we show by computational experiments in this paper that these 
variational iteration modifications do not improve much the accuracy of the method in solving 
the SIR models, which are nonlinear. 

Our main contribution in this paper is to propose a combination of analytical and 
numerical techniques in solving the SIR models both without and with vital dynamics. That is, 
we propose a piecewise variational iteration method into a finite number of subintervals of 
the domain. We use the variational iteration method as our basis in our proposed method. We 
obtain that implementation of the variational iteration method piecewisely on the given 
domain leads to accurate solutions to the SIR models on that whole given domain. 

We recall the SIR epidemic models both without and with vital dynamics. As the name 
suggests, the whole population of the system consist of three compartments, namely, 
susceptible (S), infected (I), and recovered (R) subpopulations. Each of the subpopulations are 
disjoint. We denote 𝑡 the time variable, 𝑥(𝑡) the susceptible subpopulation, 𝑦(𝑡) the infected 
subpopulation, and 𝑧(𝑡) the recovered subpopulation. The vital dynamics include birth and 
death rates. We assume that, in the system, the total population 

𝑁 = 𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡) (1) 
is constant. 

The SIR model without vital dynamics is (Harko et al., 2014; Jordan & Smith, 2007; Rafei 
et al., 2007; Biazar, 2006; Kermack & McKendrick, 1927): 

𝑑𝑥

𝑑𝑡
= −𝛽𝑥(𝑡)𝑦(𝑡), (2) 

 
𝑑𝑦

𝑑𝑡
= 𝛽𝑥(𝑡)𝑦(𝑡) − 𝛾𝑦(𝑡), (3) 

 
𝑑𝑧

𝑑𝑡
= 𝛾𝑦(𝑡). (4) 

Here 𝛽 is the infection rate and 𝛾 is the recovery rate. Adding equations (2)-(4), we obtain 
that 𝑑𝑁/𝑑𝑡 =  0, which agrees with our assumption that the total population 𝑁 is constant. 

The SIR model with vital dynamics is (Harko et al., 2014; Brauer & Castillo-Chavez, 2012; 
Brauer et al., 2008; Murray, 2002; Daley & Gani, 2001): 

𝑑𝑥

𝑑𝑡
= −𝛽𝑥(𝑡)𝑦(𝑡) + 𝜇(𝑁 − 𝑥(𝑡)), 

(5) 

 
𝑑𝑦

𝑑𝑡
= 𝛽𝑥(𝑡)𝑦(𝑡) − (𝛾 + 𝜇)𝑦(𝑡), 

(6) 

 
𝑑𝑧

𝑑𝑡
= 𝛾𝑦(𝑡) − 𝜇𝑧(𝑡). 

(7) 
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Here the birth and the death rates are equal and denoted by 𝜇. Addition of equations (5)-(7) 
confirms our assumption that the total population 𝑁 =  𝑥(𝑡)  +  𝑦(𝑡)  +  𝑧(𝑡) is constant. 

The initial conditions are the values of 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) at time 𝑡 =  0, and in general, 
denoted by 

 
𝑥(0) = 𝑥0  and  𝑦(0) = 𝑦0  and  𝑧(0) = 𝑧0 (8) 

 
where 𝑥0,  𝑦0, and 𝑧0 are known constants. For computational experiments in this paper, we 
take the following initial conditions (Rafei et al., 2007; Biazar, 2006): 
 

𝑥0 = 20,      𝑦0 = 15,      𝑧0 = 10, (9) 
 
for all cases. For the case of the SIR model without vital dynamics, we take the following 
parameters (Rafei et al., 2007; Biazar, 2006): 
 

𝛽 = 0.01     and     𝛾 = 0.02. (10) 
 
For the case of the SIR model with vital dynamics, we take the additional parameter 
 

𝜇 = 0.04. (11) 
 
All variational iteration solutions are to be compared with reference solutions. The reference 
solutions are generated using the ode45 code of the MATLAB software with the relative 
tolerance is 2.22045 ×  10−14 and the absolute tolerance is 10−15. Please note that the value 
of the relative tolerance 2.22045 × 10−14 is the machine epsilon of the MATLAB software up 
to four significant figures of decimal places, and the value of the absolute tolerance 10−15 is 
below the machine epsilon. Therefore, any evaluation of computational error is maintained to 
be as accurate as possible. 

The rest of this paper is structured as follows. First, existing variational iteration methods 
and their behaviour for solving the SIR models are presented; then, we propose a new 
piecewise variational iteration method for solving the SIR models accurately. Afterwards, 
computational results are presented and discussed. Finally, the paper is concluded with some 
remarks that our research objective has been achieved. Please note that the research objective 
of this paper is to propose a new analytical-numerical iterative method, which is able to solve 
the SIR models accurately on a large domain. 

 
 
B. METHODS 

The type of research of this paper is modelling with simulation. To achieve our research 
objective, the present section consists of six subsections. We recall four variational iteration 
methods existing in the literature and provide the proposed method for solving the SIR 
epidemic models. The first is the scheme according to Rafei et al., (2007). The second is the 
Gauss-Seidel implementation to the first scheme. The third is a modified variational iteration 
method according to Biazar & Ghazvini (2007), Darvishi et al. (2007), as well as He (2000). 
The fourth is the Gauss-Seidel implementation to the third scheme. We also investigate the 
behaviour of the solutions produced using these four variational iteration methods existing in 
the literature, and obtain that the produced solutions are not accurate, and even not realistic, 
for large time values. After that, we present our proposed method in order to solve the SIR 
epidemic models accurately. 
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1. Rafei-Daniali-Ganji (RDG) scheme 
We note that the SIR model (2)-(4) is a special case of the SIR model (5)-(7) by setting 𝜇 =

0. Rafei et al. (2007) proposed a variational iteration scheme for solving the SIR model (2)-(4) 
without vital dynamics. In this subsection, we extend the derivation of Rafei et al. (2007) in 
order to solve the more general SIR model (5)-(7) involving vital dynamics. We shall call the 
resulting scheme as the RDG scheme due to Rafei et al. (2007), that is, Rafei-Daniali-Ganji 
(RDG). 

The correction functionals for equations (5)-(7) due to Rafei et al. (2007) are taken as 
 

𝑥𝑖+1(𝑡) = 𝑥𝑖(𝑡) + ∫ 𝜆1(𝜏) [
𝑑𝑥𝑖(𝜏)

𝑑𝜏
+ 𝛽�̅�𝑖(𝜏)�̅�𝑖(𝜏) − 𝜇(𝑁 − �̅�(𝜏))]

𝑡

0

𝑑𝜏, (12) 

 

𝑦𝑖+1(𝑡) = 𝑦𝑖(𝑡) + ∫ 𝜆2(𝜏) [
𝑑𝑦𝑖(𝜏)

𝑑𝜏
− 𝛽�̅�𝑖(𝜏)�̅�𝑖(𝜏) + (𝛾 + 𝜇)�̅�𝑖(𝜏)]

𝑡

0

𝑑𝜏, (13) 

 

𝑧𝑖+1(𝑡) = 𝑧𝑖(𝑡) + ∫ 𝜆3(𝜏) [
𝑑𝑧𝑖(𝜏)

𝑑𝜏
− 𝛾�̅�𝑖(𝜏) + 𝜇𝑧�̅�(𝜏)]

𝑡

0

𝑑𝜏, (14) 

 
where 𝜆1(𝜏),  𝜆2(𝜏),  and 𝜆3(𝜏)  are Lagrange multipliers; the restricted variations 

�̅�𝑖(𝜏),   �̅�𝑖(𝜏), and 𝑧�̅�(𝜏) mean 𝛿�̅�𝑖(𝜏) = 0, 𝛿�̅�𝑖(𝜏) = 0, and 𝛿𝑧�̅�(𝜏) = 0, respectively.  
We operate variations in equations (12)-(14), and we have 

𝛿𝑥𝑖+1(𝑡) = 𝛿𝑥𝑖(𝑡) + 𝛿 ∫ 𝜆1(𝜏)
𝑡

0

𝑑𝑥𝑖(𝜏), (15) 

 

𝛿𝑦𝑖+1(𝑡) = 𝛿𝑦𝑖(𝑡) + 𝛿 ∫ 𝜆2(𝜏)
𝑡

0

𝑑𝑦𝑖(𝜏), (16) 

 

𝛿𝑧𝑖+1(𝑡) = 𝛿𝑧𝑖(𝑡) + 𝛿 ∫ 𝜆3(𝜏)
𝑡

0

𝑑𝑧𝑖(𝜏). (17) 

Then, we implement integration in equations (15)-(17) by parts, and we have 

𝛿𝑥𝑖+1(𝑡) = 𝛿[𝑥𝑖(𝑡)(1 + 𝜆1(𝑡))] − 𝛿 ∫
𝑑𝜆1(𝜏)

𝑑𝜏

𝑡

0

𝑥𝑖(𝜏)𝑑𝜏, (18) 

 

𝛿𝑦𝑖+1(𝑡) = 𝛿[𝑦𝑖(𝑡)(1 + 𝜆2(𝑡))] − 𝛿 ∫
𝑑𝜆2(𝜏)

𝑑𝜏

𝑡

0

𝑦𝑖(𝜏)𝑑𝜏, (19) 

 

𝛿𝑧𝑖+1(𝑡) = 𝛿[𝑧𝑖(𝑡)(1 + 𝜆3(𝑡))] − 𝛿 ∫
𝑑𝜆3(𝜏)

𝑑𝜏
𝑧𝑖(𝜏)𝑑𝜏.

𝑡

0

 (20) 

Based on equations (18)-(20), we obtain stationary conditions 
 

𝜆1
′ (𝜏) = 0,        1 + 𝜆1(𝜏)|𝜏=𝑡 = 0, (21) 

 
𝜆2

′ (𝜏) = 0,        1 + 𝜆2(𝜏)|𝜏=𝑡 = 0, (22) 
 

𝜆3
′ (𝜏) = 0,        1 + 𝜆3(𝜏)|𝜏=𝑡 = 0. (23) 
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Therefore, the Lagrange multipliers are 
 

𝜆1(𝜏) = 𝜆2(𝜏) = 𝜆3(𝜏) = −1. (24) 
 

The variational iteration method of Rafei et al., (2007) for solving equations (5)-(7) is 
 

𝑥𝑖+1(𝑡) = 𝑥𝑖(𝑡) − ∫ [
𝑑𝑥𝑖(𝜏)

𝑑𝜏
+ 𝛽𝑥𝑖(𝜏)𝑦𝑖(𝜏) − 𝜇(𝑁 − 𝑥𝑖(𝜏))]

𝑡

0

𝑑𝜏, (25) 

 

𝑦𝑖+1(𝑡) = 𝑦𝑖(𝑡) − ∫ [
𝑑𝑦𝑖(𝜏)

𝑑𝜏
− 𝛽𝑥𝑖(𝜏)𝑦𝑖(𝜏) + (𝛾 + 𝜇)𝑦𝑖(𝜏)]

𝑡

0

𝑑𝜏, (26) 

 

𝑧𝑖+1(𝑡) = 𝑧𝑖(𝑡) − ∫ [
𝑑𝑧𝑖(𝜏)

𝑑𝜏
− 𝛾𝑦𝑖(𝜏) + 𝜇𝑧𝑖(𝜏)]

𝑡

0

𝑑𝜏. (27) 

  
In this paper, iterative formulas (25)-(27) are called the RDG scheme due to Rafei et al. 

(2007), that is, Rafei-Daniali-Ganji (RDG). 
 

2. Gauss-Seidel–Rafei-Daniali-Ganji (GS-RDG) scheme 
An idea to improve the convergence speed of the iterations of the RDG scheme to the 

exact solution is by using the newest values in each of next iterations. This idea follows from 
the Gauss-Seidel technique for solving systems of linear algebraic equations. It has been 
implemented by a number of authors, such as Alderremy et al. (2020), Rangkuti et al. (2016), 
Tatari & Dehghan (2009), Salkuyeh (2008), as well as Youssef & El-Arabawy (2007). In this 
paper, the resulting scheme of the implementation of the Gauss-Seidel technique to the 
scheme of Rafei et al., (2007) is called the Gauss-Seidel–Rafei-Daniali-Ganji (GS-RDG) scheme. 

Observing the models (2)-(4) and (5)-(7), we identify that the equation for 𝑦(𝑡) involves 
more parameters than those for 𝑥(𝑡) and 𝑧(𝑡). For this reason, in the GS-RDG scheme we 
rearrange the order of equations (2)-(4) and that of (5)-(7) to be for 𝑦(𝑡), 𝑥(𝑡), and 𝑧(𝑡), 
respectively. The GS-RDG scheme is 

𝑦𝑖+1(𝑡) = 𝑦𝑖(𝑡) − ∫ 𝜆1(𝜏) [
𝑑𝑦𝑖(𝜏)

𝑑𝜏
+ 𝛽𝑥𝑖(𝜏)𝑦𝑖(𝜏) + (𝛾 + 𝜇)𝑦𝑖(𝜏)]

𝑡

0

𝑑𝜏, (28) 

 

𝑥𝑖+1(𝑡) = 𝑥𝑖(𝑡) − ∫ [
𝑑𝑥𝑖(𝜏)

𝑑𝜏
+ 𝛽𝑥𝑖(𝜏)𝑦𝑖+1(𝜏) − 𝜇(𝑁 − 𝑥𝑖(𝜏))]

𝑡

0

𝑑𝜏, (29) 

 

𝑧𝑖+1(𝑡) = 𝑧𝑖(𝑡) − ∫ [
𝑑𝑧𝑖(𝜏)

𝑑𝜏
− 𝛾𝑦𝑖+1(𝜏) + 𝜇𝑧𝑖(𝜏)]

𝑡

0

𝑑𝜏. (30) 

 
3. Modified-Rafei-Daniali-Ganji (MRDG) scheme 

The original variational iteration method was proposed by He (1999). For systems of 
equations Biazar & Ghazvini (2007), Darvishi et al. (2007), as well as He (2000) presented a 
rather different scheme. In this paper, that different scheme for solving equations (5)-(7) is 
called the modified-Rafei-Daniali-Ganji (MRDG) scheme. 

The correction functionals for equations (5)-(7) due to He (2000) are taken as 
 

𝑥𝑖+1(𝑡) = 𝑥𝑖(𝑡) + ∫ [
𝑑𝑥𝑖(𝜏)

𝑑𝜏
+ 𝛽�̅�𝑖(𝜏)�̅�𝑖(𝜏) − 𝜇(𝑁 − 𝑥(𝜏))]

𝑡

0

𝑑𝜏, (31) 
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𝑦𝑖+1(𝑡) = 𝑦𝑖(𝑡) + ∫ 𝜆2(𝜏) [
𝑑𝑦𝑖(𝜏)

𝑑𝜏
− 𝛽�̅�𝑖(𝜏)�̅�𝑖(𝜏) + (𝛾 + 𝜇)𝑦(𝜏)]

𝑡

0

𝑑𝜏, (32) 

 

𝑧𝑖+1(𝑡) = 𝑧𝑖(𝑡) + ∫ 𝜆3(𝜏) [
𝑑𝑧𝑖(𝜏)

𝑑𝜏
− 𝛾�̅�𝑖(𝜏) + 𝜇𝑧(𝜏)]

𝑡

0

𝑑𝜏, (33) 

  

where 𝜆1(𝜏),  𝜆2(𝜏), and 𝜆3(𝜏)  are Lagrange multipliers; the restricted variations 

�̅�𝑖(𝜏),  �̅�𝑖(𝜏), and 𝑧�̅�(𝜏) mean 𝛿�̅�𝑖(𝜏) = 0,  𝛿�̅�𝑖(𝜏) = 0, and 𝛿𝑧�̅�(𝜏) = 0, respectively. 
We operate variations to equations (31)-(33), and we have 

 

𝛿𝑥𝑖+1(𝑡) = 𝛿𝑥𝑖(𝑡) + 𝛿 ∫ 𝜆1(𝜏)
𝑡

0

[
𝑑𝑥𝑖(𝜏)

𝑑𝜏
+ 𝜇𝑥𝑖(𝜏)] 𝑑𝜏, (34) 

 

𝛿𝑦𝑖+1(𝑡) = 𝛿𝑦𝑖(𝑡) + 𝛿 ∫ 𝜆2(𝜏)
𝑡

0

[
𝑑𝑦𝑖(𝜏)

𝑑𝜏
+ (𝛾 + 𝜇)𝑦𝑖(𝜏)] 𝑑𝜏, (35) 

 

𝛿𝑧𝑖+1(𝑡) = 𝛿𝑧𝑖(𝑡) + 𝛿 ∫ 𝜆3(𝜏)
𝑡

0

[
𝑑𝑧𝑖(𝜏)

𝑑𝜏
+ 𝜇𝑧𝑖(𝜏)] 𝑑𝜏. (36) 

 
Then, we implement integration in equations (34)-(36) by parts, and we have 

 

𝛿𝑥𝑖+1(𝑡) = 𝛿[𝑥𝑖(𝑡)(1 + 𝜆1(𝑡))] − 𝛿 ∫ (
𝑑𝜆1(𝜏)

𝑑𝜏
− 𝜇𝜆1(𝜏)) 𝑥𝑖(𝜏)

𝑡

0

𝑑𝜏, (37) 

 

𝛿𝑦𝑖+1(𝑡) = 𝛿[𝑦𝑖(𝑡)(1 + 𝜆2(𝑡))] − 𝛿 ∫ (
𝑑𝜆2(𝜏)

𝑑𝜏
− (𝛾 + 𝜇)𝜆2(𝜏)) 𝑦𝑖(𝜏)

𝑡

0

𝑑𝜏, (38) 

 

𝛿𝑧𝑖+1(𝑡) = 𝛿[𝑧𝑖(𝑡)(1 + 𝜆3(𝑡))] − 𝛿 ∫ (
𝑑𝜆3(𝜏)

𝑑𝜏
− 𝜇𝜆3(𝜏)) 𝑧𝑖(𝜏)

𝑡

0

𝑑𝜏. (39) 

 
Based on equations (37)-(39), we obtain stationary conditions 

 
𝜆1

′ (𝜏) − 𝜇𝜆1(𝜏) = 0,        1 + 𝜆1(𝜏)|𝜏=𝑡 = 0, (40) 
 

𝜆2
′ (𝜏) − (𝛾 + 𝜇)𝜆2(𝜏) = 0,        1 + 𝜆2(𝜏)|𝜏=𝑡 = 0, (41) 

 
𝜆3

′ (𝜏) − 𝜇𝜆3(𝜏) = 0,        1 + 𝜆3(𝜏)|𝜏=𝑡 = 0. (42) 
 

Therefore, the Lagrange multipliers are 
 

𝜆1(𝜏) = −𝑒𝜇(𝜏−𝑡), 𝜆2(𝜏) = −𝑒(𝛾+𝜇)(𝜏−𝑡), 𝜆3(𝜏) = −𝑒𝜇(𝜏−𝑡). (43) 
 

The MRDG scheme for solving equations (5)-(7) is 
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𝑥𝑖+1(𝑡) = 𝑥𝑖(𝑡) − ∫ 𝑒𝜇(𝜏−𝑡) [
𝑑𝑥𝑖(𝜏)

𝑑𝜏
+ 𝛽𝑥𝑖(𝜏)𝑦𝑖(𝜏) − 𝜇(𝑁 − 𝑥𝑖(𝜏))]

𝑡

0

𝑑𝜏, (44) 

 

𝑦𝑖+1(𝑡) = 𝑦𝑖(𝑡) − ∫ 𝑒(𝛾+𝜇)(𝜏−𝑡) [
𝑑𝑦𝑖(𝜏)

𝑑𝜏
− 𝛽𝑥𝑖(𝜏)𝑦𝑖(𝜏) + (𝛾 + 𝜇)𝑦𝑖(𝜏)]

𝑡

0

𝑑𝜏, (45) 

 

𝑧𝑖+1(𝑡) = 𝑧𝑖(𝑡) − ∫ 𝑒𝜇(𝜏−𝑡) [
𝑑𝑧𝑖(𝜏)

𝑑𝜏
− 𝛾𝑦𝑖(𝜏) + 𝜇𝑧𝑖(𝜏)]

𝑡

0

𝑑𝜏. (46) 

 
 

4. Gauss-Seidel–modified-Rafei-Daniali-Ganji (GS-MRDG) scheme 
For the implementation of the Gauss-Seidel technique into the MRDG scheme, once again 

we implement the idea of Alderremy et al. (2020), Rangkuti et al. (2016), Tatari & Dehghan 
(2009), Salkuyeh (2008), as well as Youssef & El-Arabawy (2007). Again, we rearrange the 

order of the equations to be for 𝑦(𝑡),  𝑥(𝑡), and 𝑧(𝑡), respectively. The resulting scheme is 
called the GS-MRDG scheme. 

The GS-MRDG scheme is given by 

𝑦𝑖+1(𝑡) = 𝑦𝑖(𝑡) − ∫ 𝑒(𝛾+𝜇)(𝜏−𝑡) [
𝑑𝑦𝑖(𝜏)

𝑑𝜏
− 𝛽𝑥𝑖(𝜏)𝑦𝑖(𝜏) + (𝛾 + 𝜇)𝑦𝑖(𝜏)]

𝑡

0

𝑑𝜏, (47) 

 

𝑥𝑖+1(𝑡) = 𝑥𝑖(𝑡) − ∫ 𝑒𝜇(𝜏−𝑡) [
𝑑𝑥𝑖(𝜏)

𝑑𝜏
+ 𝛽𝑥𝑖(𝜏)𝑦𝑖+1(𝜏) − 𝜇(𝑁 − 𝑥𝑖(𝜏))]

𝑡

0

𝑑𝜏, (48) 

 

𝑧𝑖+1(𝑡) = 𝑧𝑖(𝑡) − ∫ 𝑒𝜇(𝜏−𝑡) [
𝑑𝑧𝑖(𝜏)

𝑑𝜏
− 𝛾𝑦𝑖+1(𝜏) + 𝜇𝑧𝑖(𝜏)]

𝑡

0

𝑑𝜏. (49) 

 
 

5. Behaviour of the existing variational iteration solutions 
In this subsection, we investigate the behaviour of the existing variational iteration 

solutions to the SIR epidemic models without and with vital dynamics. 
The behaviour of the RDG, GS-RDG, MRDG, and GS-MRDG solutions to the SIR model 

without vital dynamics are as follows. All RDG, GS-RDG, MRDG, and GS-MRDG solutions give 
accurate approximations to the exact solutions around the initial conditions. However, they 
are not accurate for the values of 𝑡 far from the initial points. The RDG, GS-RDG, MRDG, and 
GS-MRDG solutions at their third iterations together with the reference solutions are shown in 
Figure 1 for 𝑥(𝑡). These solutions are inaccurate and unrealistic for large values of 𝑡. In 
Figure  1, all RDG, GS-RDG, MRDG, and GS-MRDG solutions give negative numbers of 
population 𝑥(𝑡) at 𝑡 = 12.  

An attempt to overcome this inaccuracy is by increasing the number of iterations of the 
variational iteration method. However, the RDG, GS-RDG, MRDG, and GS-MRDG solutions are 
still inaccurate and unrealistic for sufficiently large values of 𝑡. We can also double check these 
results in Figure 1 of Rafei et al. (2007) confirming that for large values of t, the RDG solutions 
are inaccurate and unrealistic. They approaches either ∞ or −∞ as 𝑡 tends to ∞. Note that 
similar behaviour occurs for the RDG, GS-RDG,MRDG, and GS-MRDG solutions 𝑦(𝑡) and 𝑧(𝑡), 
but we do not show the plots in this paper as their behaviour is clearly the same. 
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Figure 1. Reference solution 𝑥(𝑡) together with RDG, GS-RDG, MRDG, and GS-MRDG  

solutions of the SIR model without vital dynamics for 𝑥3(𝑡) at their third iteration. 
 
Now we report here the behaviour of the RDG, GS-RDG, MRDG, and GS-MRDG solutions to 

the SIR model with vital dynamics. Similar to the results for the SIR model without vital 
dynamics, all RDG, GSRDG, MRDG, and GS-MRDG solutions give accurate approximations to 
the exact solutions around the initial conditions. They are inaccurate for the values of 𝑡 far 
from the initial point of time. These solutions are inaccurate for large values of 𝑡. We may 
increase the number of iterations of the variational iteration method in the hope to get more 
accurate solutions. However, all RDG, GS-RDG, MRDG, and GS-MRDG solutions are still 
inaccurate and unrealistic for sufficiently large values of 𝑡. The larger the value of 𝑡 leads to 
the more inaccurate the RDG, GS-RDG, MRDG, and GS-MRDG solutions. 

 
6. Proposed piecewise variational iteration method for SIR epidemic models 

In this subsection, we propose an analytical-numerical iterative method, which is a 
piecewise variational iteration method for solving SIR epidemic models. We observe that the 
RDG scheme is the simplest existing scheme amongst the available existing scheme presented 
in the previous subsections, yet it behaves similarly to other existing schemes. That is, it is 
accurate around the initial conditions and becomes less and less accurate at points far from 
the initialisations. The piecewise variational iteration method that we propose takes the 
strength of the RDG scheme and avoid the weakness of this scheme. 

The piecewise variational iteration method combines analytical and numerical techniques. 
The analytical technique is the RDG scheme. The numerical technique is the implementation 
of the RDG scheme in a finite number of subintervals of the domain. Therefore, we obtain a 
very accurate method for solving SIR epidemic models. In this paper, we call the piecewise 
variational iteration method for solving the SIR models (2)-(4) and (5)-(7) the piecewise 
Rafei-Daniali-Ganji (PW-RDG) scheme, which is the analytical-numerical iterative method that 
we propose. As equations (2)-(4) are special cases of equations (5)-(7), we shall focus our 
work in this subsection on equations (5)-(7). 

The RDG scheme for solving equations (5)-(7) can be simplified to 
 

𝑥𝑖+1(𝑡) = 𝑥(0) + ∫ [−𝛽𝑥𝑖(𝜏)𝑦𝑖(𝜏) + 𝜇(𝑁 − 𝑥𝑖(𝜏))]
𝑡

0

𝑑𝜏, (50) 

 

𝑦𝑖+1(𝑡) = 𝑦(0) + ∫ [𝛽𝑥𝑖(𝜏)𝑦𝑖(𝜏) − (𝛾 + 𝜇)𝑦𝑖(𝜏))]
𝑡

0

𝑑𝜏, (51) 
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𝑧𝑖+1(𝑡) = 𝑧(0) + ∫ [𝛾𝑦𝑖(𝜏) − 𝜇𝑧𝑖(𝜏)]
𝑡

0

𝑑𝜏. (52) 

 
Suppose that we want to find the solutions to the SIR epidemic models on the time 

domain [0, 𝑇] for a given positive constant 𝑇. Suppose also that we want to use 𝐾 number of 
iterations of the RDG scheme into our PW-RDG scheme. Here 𝐾 is a specified positive integer. 
The PW-RDG scheme works as follows: 
 The interval 𝐼 = [0, 𝑇] is discretised into a finite number of discrete time 𝑡0, 𝑡1, 𝑡2, … , 𝑡𝐽, so 

we have uniform subintervals 𝐼𝑗 , where 𝑗 = 1, 2, 3, … , 𝐽 for a speficied positive integer 𝐽. 

Here 𝐼𝑗 = [𝑡𝑗−1, 𝑡𝑗], where the time step ∆𝑡 = 𝑡𝑗 − 𝑡𝑗−1 is constant, 𝑡0 = 0 and 𝑡𝐽 = 𝑇. 

 The simplified RDG scheme (50)-(52) is iterated 𝐾  times in each of subintervals 
𝐼1, 𝐼2, 𝐼3, … , 𝐼𝐽  consecutively. Here 𝑥𝑖,𝑗(𝑡) means the PW-RDG solution for 𝑥(𝑡) at the 𝑖th 

iteration of the RDG scheme on the 𝑗th subinterval. 
 The PW-RDG scheme is for 𝑗 = 1, 2, … , 𝐽 and for 𝑖 =  0, 1, 2, … , 𝐾 − 1 given by 

 

𝑥𝑖+1,𝑗(𝑡) = 𝑥𝐾,𝑗−1(𝑡𝑗−1) + ∫ [−𝛽𝑥𝑖,𝑗(𝜏)𝑦𝑖,𝑗(𝜏) + 𝜇 (𝑁 − 𝑥𝑖,𝑗(𝜏))]
𝑡

𝑡𝑗−1

𝑑𝜏, (53) 

 

𝑦𝑖+1,𝑗(𝑡) = 𝑦𝐾,𝑗−1(𝑡𝑗−1) + ∫ [𝛽𝑥𝑖,𝑗(𝜏)𝑦𝑖,𝑗(𝜏) − (𝛾 + 𝜇)𝑦𝑖,𝑗(𝜏)]
𝑡

𝑡𝑗−1

𝑑𝜏, (54) 

 

𝑧𝑖+1,𝑗(𝑡) = 𝑧𝐾,𝑗−1(𝑡𝑗−1) + ∫ [𝛾𝑦𝑖,𝑗(𝜏) − 𝜇𝑧𝑖,𝑗(𝜏)]
𝑡

𝑡𝑗−1

𝑑𝜏, (55) 

 
where we set that 
 

𝑥𝑖,0(𝑡0) = 𝑥(0),    𝑦𝑖,0(𝑡0) = 𝑦(0),     𝑧𝑖,0(𝑡0) = 𝑧(0) (56) 
 
for all 𝑖. We also set that 
 

𝑥0,𝑗(𝑡) = 𝑥𝐾,𝑗−1(𝑡𝑗−1), (57) 
 

𝑦0,𝑗(𝑡) = 𝑦𝐾,𝑗−1(𝑡𝑗−1), (58) 
 

𝑧0,𝑗(𝑡) = 𝑧𝐾,𝑗−1(𝑡𝑗−1), (59) 

for all 𝑗. 
 
 As a special case, if we take 𝐾 = 1, then the iteration of the PW-RDG scheme is done 

once for each subinterval and the resulting scheme is: 
 

𝑥1,𝑗(𝑡) = 𝑥1,𝑗−1(𝑡𝑗−1) + (𝑡 − 𝑡𝑗−1) [−𝛽𝑥1,𝑗−1(𝑡𝑗−1)𝑦1,𝑗−1(𝑡𝑗−1) + 𝜇 (𝑁 − 𝑥1,𝑗−1(𝑡𝑗−1))], (60) 
 

  
𝑦1,𝑗(𝑡) = 𝑦1,𝑗−1(𝑡𝑗−1) + (𝑡 − 𝑡𝑗−1)[𝛽𝑥1,𝑗−1(𝑡𝑗−1)𝑦1,𝑗−1(𝑡𝑗−1) − (𝛾 + 𝜇)𝑦1,𝑗−1(𝑡𝑗−1)], (61) 
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𝑧1,𝑗(𝑡) = 𝑧1,𝑗−1(𝑡𝑗−1) + (𝑡 − 𝑡𝑗−1)[𝛾𝑦1,𝑗−1(𝑡𝑗−1) − 𝜇𝑧1,𝑗−1(𝑡𝑗−1)]. 

 
(62) 

 
 

C. RESULTS AND DISCUSSION 
We recall that the type of research of this paper is modelling with simulation. The 

mathematical models, equations (2)-(4) and (5)-(7), have been presented in the Introduction 
section. The solving methods (including the one that we propose) have been given in the 
Methods section. In line with our research objective and the solving methods, now, in this 
section we shall present the results of our computational experiments on our proposed PW-
RDG method and give discussion about them. We provide the results in a figure representative 
for the solution curves and in tables for the convergence rates of the PW-RDG solutions. 
 
1. Results and discussion for the SIR model without vital dynamics 

Simulation results of the PW-RDG scheme for the SIR model without vital dynamics are as 
follows. The PWRDG solutions using two iterations in the RDG scheme (using 𝐾 = 2) together 
with the Euler and the reference solutions are shown in Figure 2 for 𝑥(𝑡). In this figure, we use 
𝑡 = 1. We obtain accurate PW-RDG solutions in the whole domain. In addition, Figure 2 show 
that the RDG solutions (using 𝐾 = 2) are more accurate than the standard Euler solutions. 
(Note that the same behaviour occurs for solutions 𝑦(𝑡) and 𝑧(𝑡).) 

 

 
Figure 2. Reference, Euler, and PW-RDG solutions (PW-RDG using 𝐾 = 2) of the SIR  

model without vital dynamics for 𝑥(𝑡). 
 

To investigate the convergence rates of the PW-RDG solutions, we record the average of 
the absolute errors in Table 1 when we use 𝐾 = 1, which means that only one RDG iteration is 
applied in the PW-RDG scheme; in Table 2 when we use 𝐾 = 2, which means that two RDG 
iterations are evolved in the PW-RDG scheme; and in Table 3 when we use 𝐾 = 3, which 
means that three RDG iterations are implemented in the PW-RDG scheme. The convergence 
rate (error order) is computed using the formula 

Error order =
log (

E1
E2

)

log (
∆𝑡1

∆𝑡2
)

 (63) 

in which we assume that if we use time step ∆𝑡1, the average of absolute errors is 𝐸1; if we use 
time step ∆𝑡2, the average of absolute errors is 𝐸2. We infer from Tables 1-3 that as ∆𝑡 tends to 
zero, the error orders approach 𝐾. This suggests that to obtain a PW-RDG method having 𝐾th 
order of accuracy, we need to implement 𝐾 number of RDG iterations in the PW-RDG scheme. 



272  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 5, No. 2, October 2021, pp. 262-275  

 

 

Table 1. Order of accuracy of the PW-RDG method with one iteration (𝐾 = 1) for the SIR model 
without vital dynamics. Here 𝐸𝑥, 𝐸𝑦 , and 𝐸𝑧  are the average of absolute errors for 𝑥(𝑡), 𝑦(𝑡), and 

𝑧(𝑡), respectively, computed in the corresponding discrete time. The error order approaches 1. 
∆𝒕 𝑬𝒙 𝑬𝒙 order 𝑬𝒚 𝑬𝒚 order 𝑬𝒛 𝑬𝒛 order 

2.5  0.5492554 – 0.6310201 – 0.1165101  – 

1.0  0.2430276 0.89 0.2654760 0.94 0.0451447  1.03 

0.5  0.1250796 0.96 0.1350267 0.98 0.0223067  1.02 

0.2  0.0508945 0.98 0.0545387 0.99 0.0088479  1.01 

0.1  0.0255915 0.99 0.0273573 1.00 0.0044115  1.00 

 
Table 2. Order of accuracy of the PW-RDG method with two iterations (𝐾 = 2) for the SIR model 
without vital dynamics. Here 𝐸𝑥 , 𝐸𝑦 , and 𝐸𝑧  are the average of absolute errors for 𝑥(𝑡), 𝑦(𝑡), and 

𝑧(𝑡), respectively, computed in the corresponding discrete time. The error order approaches 2. 
∆𝒕 𝑬𝒙 𝑬𝒙 order 𝑬𝒚 𝑬𝒚 order 𝑬𝒛 𝑬𝒛 order 

2.5  0.1377848 – 0.1556682 – 0.0185411 – 

1.0  0.0170910 2.28 0.0200790 2.24 0.0030384 1.97 

0.5  0.0039697 2.11 0.0047312 2.09 0.0007768 1.97 

0.2  0.0006093 2.05 0.0007326 2.04 0.0001263 1.98 

0.1  0.0001503 2.02 0.0001812 2.02 0.0000318 1.99 

 
Table 3. Order of accuracy of the PW-RDG method with three iterations (𝐾 = 3) for the SIR model 

without vital dynamics. Here 𝐸𝑥, 𝐸𝑦 , and 𝐸𝑧  are the average of absolute errors for 𝑥(𝑡), 𝑦(𝑡), and 

𝑧(𝑡), respectively, computed in the corresponding discrete time. The error order approaches 3. 
∆𝒕 𝑬𝒙 𝑬𝒙 order 𝑬𝒚 𝑬𝒚 order 𝑬𝒛 𝑬𝒛 order 

2.5  0.5492554 – 0.0201791 – 0.0020808 – 

1.0  0.2430276 3.25 0.0010459 3.23 0.0001249 3.07 

0.5  0.1250796 3.12 0.0001214 3.11 0.0000153 3.03 

0.2  0.0508945 3.05 0.0000074 3.05 0.0000010 3.01 

0.1  0.0255915 3.02 0.0000009 3.02 0.0000001 3.00 

 
 
2. Results and discussion for the SIR model with vital dynamics 

The behaviour of simulation results for the SIR model with vital dynamics is similar to 
those in the case of the SIR model without vital dynamics. That is, we obtain accurate PW-RDG 
solutions in the whole domain, even for large values of 𝑡. 

Results about orders of accuracy of the PW-RDG scheme for solving the SIR model with 
vital dynamics are recorded in Tables 4-6. Tables 4 contains the errors and the error orders 
when we use only one RDG iteration in the PW-RDG scheme, and we obtain that the resulting 
scheme is of the first order of accuracy. That is, as ∆𝑡 approaches zero, the error order tends 
to one. Table 5 contains the errors and the error orders when we use two RDG iterations in 
the PW-RDG scheme, and the resulting scheme is of the second order of accuracy. 
Furthermore, if we apply three RDG iterations in the PW-RDG scheme, we obtain that the 
scheme is of third order of accuracy, as indicated in Table 6. To obtain solutions with small 
errors, we should take small time step ∆𝑡. Further, to get higher order accurate PW-RDG 
method, we need to use more RDG iterations in our proposed PW-RDG scheme. 
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Table 4. Order of accuracy of the PW-RDG method with one iteration (𝐾 = 1) for the SIR model with 
vital dynamics. Here 𝐸𝑥, 𝐸𝑦 , and 𝐸𝑧  are the average of absolute errors for 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡), 

respectively, computed in the corresponding discrete time. The error order approaches 1. 
∆𝒕 𝑬𝒙 𝑬𝒙 order 𝑬𝒚 𝑬𝒚 order 𝑬𝒛 𝑬𝒛 order 

2.5  0.4108263 – 0.4681403 – 0.0869522 – 

1.0  0.1771760 0.92 0.1939965 0.96 0.0324878 1.07 

0.5  0.0905963 0.97 0.0982654 0.98 0.0157995 1.04 

0.2  0.0367262 0.99 0.0396248 0.99 0.0062168 1.02 

0.1  0.0184425 0.99 0.0198666 1.00 0.0030909 1.01 

 
Table 5. Order of accuracy of the PW-RDG method with two iterations (𝐾 = 2) for the SIR model with 

vital dynamics. Here 𝐸𝑥, 𝐸𝑦 , and 𝐸𝑧  are the average of absolute errors for 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡), 

respectively, computed in the corresponding discrete time. The error order approaches 2. 
∆𝒕 𝑬𝒙 𝑬𝒙 order 𝑬𝒚 𝑬𝒚 order 𝑬𝒛 𝑬𝒛 order 

2.5  0.0875634 – 0.1010713 – 0.0149249 – 

1.0  0.0113417 2.23 0.0134358 2.20 0.0022068 2.09 

0.5  0.0026780 2.08 0.0031870 2.08 0.0005423 2.02 

0.2  0.0004145 2.04 0.0004951 2.03 0.0000860 2.01 

0.1  0.0001025 2.02 0.0001226 2.01 0.0000215 2.00 

 
Table 6. Order of accuracy of the PW-RDG method with three iterations (𝐾 = 3) for the SIR model 
with vital dynamics. Here 𝐸𝑥 , 𝐸𝑦 , and 𝐸𝑧  are the average of absolute errors for 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡),  

respectively, computed in the corresponding discrete time. The error order approaches 3. 
∆𝒕 𝑬𝒙 𝑬𝒙 order 𝑬𝒚 𝑬𝒚 order 𝑬𝒛 𝑬𝒛 order 

2.5  0.0105877 – 0.0122606 – 0.0016811 – 

1.0  0.0005556 3.22 0.0006537 3.20 0.0001006 3.07 

0.5  0.0000648 3.10 0.0000767 3.09 0.0000123 3.03 

0.2  0.0000040 3.05 0.0000047 3.04 0.0000008 3.01 

0.1  0.0000005 3.02 0.0000006 3.02 0.0000001 3.01 

 

 

D. CONCLUSION AND SUGGESTIONS 

An analytical-numerical iterative method has been proposed to solve the SIR epidemic 
models without and with vital dynamics. We obtain that analytical approximate methods 
cannot provide accurate solutions for large time domains in solving these models. In contrast, 
our proposed analytical-numerical iterative method solves the models accurately in the whole 
domain. The order of accuracy of our proposed method can be increased simply by taking 
more number of iterations of the variational iteration method being implemented piecewisely. 
In addition, taking smaller size of subintervals in the analytical-numerical iterative method 
leads to smaller error. 

With the promising results in this paper, at least two future research directions are 
suggested as follows. First, research on extending the method for solving partial differential 
equations could be conducted. Second, parallel and/or distributed algorithm of the proposed 
method is also possible to do. Each topic can be carried out independently. 
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