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 Some conjectures related to the radical theory of rings are still open. Hence, the 
research on the radical theory of rings is still being investigated by some 
prominent authors. On the other hand, some results on the radical theory of rings 
can be implemented in another branch or structure. In radical theory, it is 
interesting to bring some radical classes into graded versions. In this chance, we 
implement a qualitative method to conduct the research to bring the Brown-
McCoy radical class to the restricted graded Brown-McCoy radical class as 
research objective. We start from some known facts on the Brown-McCoy radical 
class and furthermore, let 𝐺 be a group, we explain the Brown-McCoy radical 
restricted with respect to the group 𝐺. The result of this paper, we describe the 
Brown-McCoy radical in restricted graded version and it is denoted by 𝒢𝐺 . 
Furthermore, we also give the fact by explaining 𝒢𝐺 (𝐴) = (𝒢(𝐴))𝐺 , for any ring 𝐴, 
as the final outcome of this paper. 
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A. INTRODUCTION  
In this paper, we use 𝐼 ⊲ 𝑅 to express 𝐼 ideal of 𝑅. Let 𝑅 be a ring and let 𝑎 be a nonzero 

element of 𝑅. The element 𝑎 is called a nilpotent element if 𝑎𝑛 = 0 for some 𝑛 ∈ ℤ+. If ∀𝑎 ∈
𝑅, 𝑎𝑛 = 0 for some 𝑛 ∈ ℤ+, 𝑅 is called a nil ring. Based on its history, the concept of radical 
class was observed by K�̈�ethe by investigating the property of the class 𝒩 = {𝑅 |∀𝑟 ∈ 𝑅, ∃𝑛 ∈
ℤ+ ∋ 𝑟𝑛 = 0} of rings. In other words, the class 𝒩 consists of all nil rings (Gardner & 
Wiegandt, 2004). K�̈�ethe also discovered some facts on the class 𝒩 of all nil rings. For all 
rings 𝑅 ∈ 𝒩 then /𝐼 ∈ 𝒩, ∀𝐼 ⊲ 𝑅. Furthermore, the largest ideal 𝐼 of a ring 𝑅 which consists 
of nilpotent elements, is also the member of the class 𝒩. Finally, if there exists ring 𝑅 and 𝐼 ⊲ 
𝑅 ∋ 𝐼 ∈ 𝒩 and 𝑅/𝐼 ∈ 𝒩  implies 𝑅 ∈ 𝒩. These properties of the class 𝒩 of all nil rings 
motivated Amitsur and Kurosh to define a radical class of rings. A class of rings 𝛾 is said to be 
radical if 𝐴/𝐼 ∈ 𝛾, ∀0 ≠ 𝐼 proper ideal of 𝐴, for every ring 𝑅, 𝛾(𝑅) = Σ{𝐼 ⊲ 𝑅|𝐼 ∈ 𝛾} ∈ 𝛾 and for 
every ring 𝑅, there exist an ideal 𝐼 of 𝑅 and 𝐼, 𝑅/𝐼 ∈ 𝛾 implies 𝑅 ∈ 𝛾 (Gardner & Wiegandt, 
2004). Directly, we can infer that the class 𝒩 of all nil rings is a radical class. However, the 
class 𝒩0 = {𝑅 is a ring | 𝑅𝑛 = {0} for some 𝑛 ∈ ℤ+} is not a radical class. In the development of 
radical theory, there are two types radical based on the construction. The lower radical and 
the upper radical. The lower radical ℒ𝒩0 of the class 𝒩0 is being investigated by Baer, and it is 
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denoted by 𝛽. Furthermore, since it follows from the fact that the radical class 𝛽 is precisely 
the upper radical class of the class of all prime rings, the Baer radical class 𝛽 is also called the 
prime radical class of rings. On the other hand, the class ℒ of all locally nilpotent rings forms a 
radical class of rings and it is called the Levitzki radical. The structure of Levitzki radical can 
be seen in (Gardner & Wiegandt, 2004), and the implementation of Levitzki radical in a skew 
polynomial ring can be seen in (Hong & Kim, 2019).  

The nilpotent property of skew generalized power series ring has been discussed in 
(Ouyang & Liu, 2013). Moreover, a nilpotent derived from the implementation Jacobson 
radical class 𝒥 = {𝐴|(𝐴,∘) forms a group, where 𝑎 ∘ 𝑏 = 𝑎 + 𝑏 − 𝑎𝑏  for every 𝑎, 𝑏 ∈ 𝐴}  of 
graded group ring is described in (Ilić-Georgijević, 2021). The definition of a graded ring will 
be given later in Definition 7 in this section. In fact, it follows from (Prasetyo & Melati, 2020) 
that the Jacobson radical 𝒥(𝐴) of a ring 𝐴 is two-sided brace. Some property of nilpotent 
group and the property of skew left brace of nilpotent type are described in (Smoktunowicz, 
2018) and (Cedó et al., 2019). 

On the other hand, 0 ≠ 𝐽 ⊲ 𝑅, 𝐽 is essential if 𝐽 ∩ 𝐾 ≠ {0}, ∀0 ≠ 𝐾 ⊲ 𝑅 and it will be 
denoted by 𝐽 ⊲∘ 𝑅. Moreover,  𝜇 is special if 𝜇 consists of prime rings, for every ring 𝑅 ∈ 𝜇 
then every nonzero ideal 𝐼 of 𝑅 is also contained in 𝜇, and for every essential ideal 𝐽 of 𝑅 such 
that 𝐽 ∈ 𝜇 implies 𝑅 ∈ 𝜇. An upper radical class 𝑈(𝜇) of a special class 𝜇 is special. It follows 
from the fact that 𝛽 is precisely 𝑈(𝜋), where 𝜋 is the class of all prime rings. Hence, 𝛽 is 
special.  Some properties related to special classes of rings and their generalization and their 
implementation in the development of the radical theory of rings and modules can be seen in 
(France-Jackson et al., 2015; Prasetyo et al., 2017, 2020; Prasetyo, Setyaningsih, et al., 2016; 
Prasetyo, Wijayanti, et al., 2016; Wahyuni et al., 2017).  

Furthermore, the class of all simple rings with unity is denoted by ℳ. The upper radical 
𝑈(ℳ) was being observed by Brown and McCoy, and it is called the Brown-McCoy radical 
class, and it is denoted by 𝒢 (Gardner & Wiegandt, 2004). On the other hand, Emil Ilić-
Georgijević in his paper (Ili’c-Georgijevi’c, 2016) introduce a large graded Brown-McCoy 
radical of a graded ring and compare with the classical graded Brown-McCoy of a graded ring. 
In this paper, for a fixed group 𝐺, we scrutinize the restricted 𝐺 −graded Brown-McCoy 
radical which is denoted by 𝒢𝐺  by using fundamental concept of radical class of ring for graded. 
Moreover for any ring 𝐴, we explain what 𝒢𝐺(𝐴) is.  

 
We provide some examples of simple rings with unity and their counterexamples. 
Example 1.  
Consider the following concrete simple rings with unity 

1. Every field is a simple ring with unity. 
2. Let 𝐹 be a field. Then the set 𝑀𝑛(𝐹) of all matrices of the size 𝑛 × 𝑛 over 𝐹 forms a 

simple ring with unity 
 
We give simple concrete rings which do not contain unity. 
Example 2.  

1. Let 𝑀∞(𝑅) be the ring of all infinite matrices which are row infinite over a ring 𝑅, that 
is, every matrix in 𝑀∞(𝑅) has a countably infinite number of rows, but almost all 
entries in each row are equal to 0. In the case, 𝑅 is a field, then 𝑀∞(𝑅) is simple. Clearly, 
the center of  𝑀∞(𝑅) is {0}. Therefore, the simple ring 𝑀∞(𝑅) does not contain the 
identity element. 

2. The ideal 2ℤ4 = {0,2} of ℤ4 = {0,1,2,3} is a simple ring, and it does not have unity. 
The Cayley tables of the addition and multiplication modulo 4 of ℤ4 respectively are 
shown in Table 1 and Table 2 below. 
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Table 1. Addition modulo 4 of ℤ4  Table 2. Multiplication modulo 4 of ℤ4 

+4 0 1 2 3   +4 0 1 2 3 
0 0 1 2 3   0 0 0 0 0 

1 1 2 3 0   1 0 1 2 3 
2 2 3 0 1   2 0 2 0 2 
3 3 0 1 2   3 0 3 2 1 

 
We further use the set ℤ4 of all integer numbers modulo 4 to construct a graded ring in 

Example 9. In fact, for every special class 𝜇 of rings, 𝜇 is essentially closed. However, every 
class of prime rings does not necessarily to be essentially closed. We provide the following 
examples to make these conditions clear. 

 
Example 3. 
The class 𝜋 is special (Gardner & Wiegandt, 2004). 

 
Example 4. 
Let 𝑅 be a prime ring. The prime ring 𝑅 is called a ∗ −ring if 𝑅/𝐼 ∈ 𝛽 for every nonzero proper 
ideal 𝐼 of 𝑅. The definition of ∗ −ring was introduced by Halina Korolczuk in 1981 (Prasetyo et 
al., 2017). Let ∗ be the symbol to express the class of all ∗ −rings. However, ∗ is not closed 
under essential extension. 

It follows from Example 4 that there is a class of prime rings, but it is not essentially 
closed. This condition motivated the existence of the definition of essential cover and essential 
closure. 
 
Definition 5.  
Let 𝛿 be any class of rings. The essential cover of 𝛿 is denoted by 휀(𝛿), and it is defined as 
휀(𝛿) = {𝐴|∃𝐵 ⊲∘ 𝐴 ∋ 𝐵 ∈ 𝛿}. Moreover, if 𝛿 is closed under essential extension, then 휀(𝛿) = 𝛿 . 
Furthermore, the set 𝛿𝑘 = ⋃ 𝛿𝑡∞

𝑡=0 = 0 is the essential closure of 𝛿 , where 𝛿(0) = 𝛿  and 

𝛿(𝑡+1) = 휀(𝛿(𝑡)). 
In general, the essential closure 𝜇𝑘  of a special class of rings 𝜇 is 𝜇 itself since 𝜇(𝑡) = 𝜇 for 

every 𝑡 ∈ {0,1,2, … }. However, in the case of nonspecial class of ring, the essential closure 𝛿𝑘  
of 𝛿 strictly contains 𝛿. We provide the following example. 
 
Example 6. 
It follows from Example 4 that the class ∗ is not special. The essential closure of ∗𝑘  of ∗ strictly 
contains ∗.   

A graded ring is one of the kinds of rings such that its structure is being investigated by 
prominent authors. We give highlight some research outcomes related to the existence of 
graded rings. In the point of view of an epsilon category, the multiplicity of graded algebras 
and epsilon-strongly groupoid graded can be found in (Das, 2021) and (Nystedt et al., 2020), 
respectively. The studies on graded ring related to Leavitt path algebra can be seen in (R. 
Hazrat, 2014; Roozbeh Hazrat et al., 2018; Lännström, 2020; Vaš, 2020a, 2020b). 
Furthermore, the studies on graded ring related to the specific structure of rings and modules, 
namely weakly prime ring, non-commutative rings, prime spectrum, unique factorization 
rings, positively graded rings, simple rings, 𝑆 −Noetherian ring, and Dedekind rings can be 
accessed in (Abu-Dawwasb, 2018; Al-Zoubi & Jaradat, 2018; Alshehry & Abu-Dawwasb, 2021; 
Çeken & Alkan, 2015; Ernanto et al., 2020; Kim & Lim, 2020; Nystedt & Öinert, 2020; Wahyuni 
et al., 2020; Wijayanti et al., 2020) respectively. Thus, it is interesting to investigate some 
further properties and structures related to graded rings. On the other hand, the purpose of 
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this research is to determine what 𝒢𝐺(𝑅) is. Finally, in the following definition, we provide the 
definition a graded ring.  
 
Definition 7. 
Let 𝐺 be a monoid. A ring 𝑅 is a 𝐺 −graded ring if 𝑅 =⊕𝑔∈𝐺 𝑅𝑔 where the set {𝑅𝑔|𝑔 ∈ 𝐺} is the 

collection of additive subgroups of 𝑅 ∋ 𝑅𝑔𝑅ℎ ⊆ 𝑅𝑔ℎ∀ 𝑔, ℎ ∈ 𝐺 (Kim & Lim, 2020). In order to 

make the reader be clear in understanding the concept of a graded ring, we provide the 
following examples. 
 
Example 8. 
Let 𝑅(𝑥) be the set of all infinite sequences (𝑎0, 𝑎1, 𝑎2, 𝑎3, … ) where 𝑎𝑖 ∈ 𝑅 and 𝑅 is a ring for 
every 𝑖 ∈ {0,1,2,3, … } and where there exists 𝑛 ∈ 𝐺 = {0,1,2,3 … } such that for all integers 𝑘 ≥
𝑛, 𝑎𝑘 = 0 . Directly we can infer that the polynomial ring 𝑅(𝑥) =⊕𝑔∈𝐺 𝑅𝑔 where 𝑅0 =

(𝑎0, 0,0, … ), 𝑅1 = (0, 𝑎1, 0,0, … ), … 𝑅𝑔 = (0,0, … , 𝑎𝑔, 0,0, … )  such that 𝑅𝑔𝑅ℎ ⊆ 𝑅𝑔ℎ  for every 

𝑔, ℎ ∈ 𝐺. The polynomial 𝑅(𝑥) is graded, and it is graded by its degree. Therefore, for every 
ring 𝑅, the graded ring naturally exists. We also provide another example of a graded ring as 
follows. 
 
Example 9. 
Consider the set ℤ4 = {0,1,2,3} and let 𝐴 be any ring. Now the set 𝑀2×2(𝐴) is the set of all 2 ×

2 matrices over ring 𝐴 . Define 𝐴0 = (
𝐴 0
0 𝐴

) , 𝐴1 = (
0 0
0 0

) , 𝐴2 = (
0 𝐴
𝐴 0

) , 𝐴3 = (
0 0
0 0

). We 

therefore have 𝐴 = 𝐴0 ⊕ 𝐴1 ⊕ 𝐴2 ⊕ 𝐴3 and 𝐴𝑔𝐴ℎ ⊆ 𝐴𝑔ℎ for every 𝑔, ℎ ∈ 𝑍4. Thus, we can 

infer that 𝐴 is a ℤ4 −graded ring. 
 

Some further and nontrivial examples of graded rings can be accessed in (Alshehry & Abu-
Dawwasb, 2021) and (Pratibha et al., 2017). Moreover, the monoid 𝐺 can be strictly replaced 
by any arbitrary group. Let 𝑅 and 𝑆 be graded rings with respect to 𝐺, the symbol 𝑅𝑢 will 
denote the underlying ungraded ring. A ring homomorphism 𝑓 which maps 𝑅 to 𝑆 is called a 
graded homomorphism of degree (ℎ, 𝑘) if 𝑓(𝑅𝑔) ⊆ 𝑆ℎ𝑔𝑘 , ∀𝑔 ∈ 𝐺. The existence of this graded 

homomorphism motivated the existence of the definition of graded radical. For simply, the 
definition of graded radical class can be seen in Definition 2 in (Fang & Stewart, 1992), which 
is similar to the definition of radical class in the graded version.  

Furthermore, we shall follow the construction of the restricted graded radical introduced 
by Hongjin Fang and Patrick Stewart in their paper (Fang & Stewart, 1992).  Let 𝛾 be radical, 
𝛾𝐺 = {𝑅|𝑅 is a 𝐺 −graded ring and 𝐴𝑢 ∈ 𝛾}. Moreover, for further consideration, it will be 
called a graded radical 𝛾𝐺  of 𝛾. 

Some properties of graded radical related to the normality and specialty of the graded 
radical can be seen in (Fang & Stewart, 1992). The previous work on Brown-McCoy has been 
developed by Emil Ilić-Georgijević  in 2016. He introduced a large Brown-McCoy radical for 
graded ring (Ili’c-Georgijevi’c, 2016). Moreover, the aim of this research is to describe what 
restricted graded Brown-McCoy radical 𝒢𝐺  is by following the work of (Fang & Stewart, 1992) 
and for every ring 𝐴, we also describe what 𝒢𝐺(𝐴) is. The flowchart of this research can be 
seen in the Figure 1 below. 
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Figure 1. The Research Flowchart 
 
 

B. METHODS 
This research is conducted using a qualitative method derived from facts and known 

concepts from a literature study.  To gain some properties of radical of rings, we follow some 
concepts and radical construction (Gardner & Wiegandt, 2004). There are lower radical class 
and upper radical class. In this part, we focus on the upper radical class construction. We post 
the known result in the early part of Section C. We start with the structure of what the Brown-
McCoy radical of a ring actually is and prove the property completely. In the development of 
graded radicals, the graded version of the radical class of rings has been being investigated. 
Gardner and Plant, in their paper (Gardner & Plant, 2009), investigated and compared the 
Jacobson radical and graded Jacobson radical. The homogeneity radicals defined by the 
nilpotency of a graded semigroup ring are described in (Hong et al., 2018). Some further 
fundamental structures of graded radical of rings can also be studied from (Lee & Puczylowski, 
2014), (Hong et al., 2014) and (Mazurek et al., 2015). However, we shall follow the concept of 
restricted graded radical which was introduced by (Fang & Stewart, 1992) to construct the 
restricted graded Brown-McCoy radical. Finally, in virtue of the construction of the restricted 
graded Brown-McCoy radical; we can determine the structure of the restricted graded Brown-
McCoy radical. 

 
 

C. RESULT AND DISCUSSION 
We separate this part into two subsections. In the first part, we describe what the Brown-

McCoy of a ring actually is. Moreover, in the second part, we describe the construction of 
restricted graded Brown-McCoy radical and give some of its properties. 

 
 

Radical theory of rings 
(Initiated by K�̈�ethe in 

1930) 

Fundamental properties and concept related 
to radical classes of rings were developed and 
completely described in (Gardner & Wiegandt, 

2004) 

(Fang & Stewart, 1992) developed graded 
radical class of rings and later (Ili’c-

Georgijevi’c, 2016) introduce a large graded 
Brown-McCoy radical 

Some implementation of the 
fundamental properties of radical 

class were found, for example: 
construction of brace (Prasetyo & 

Melati, 2020) 

In this research, we follow the work of (Fang & 
Stewart, 1992) to determine what the restricted 

graded Brown-McCoy 𝒢𝐺  is and for any ring 𝐴, we 
explain what  𝒢𝐺(𝐴) is. 
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1. Brown-McCoy Radical 
We start this part with this proposition as a reminder and we give complete proof. 

Proposition 10. (Gardner & Wiegandt, 2004) 
Let 𝐴 be any ring, 𝒢(𝐴) =∩ {𝐼𝜆|𝐴/𝐼𝜆 ∈ ℳ}  
Proof.  

In fact, 𝒢 = 𝒰(ℳ) = {𝐴| there is no 𝐴/𝐼 ∈ ℳ for every 𝐼 ideal of 𝐴}y. Now let 𝐴 ∈ ℳ. 
Suppose 𝐼 and 𝐾 be ideals of 𝐴 such that 𝐼𝐾 = {0}. Since the ring 𝐴 is a simple ring, in the case 
of 𝐾 = 𝐴 implies 𝐼 = {0} or in the case of 𝐼 = 𝐴 implies  𝐾 = {0}. Hence, {0} is a prime ideal of 
𝐴. Thus, 𝐴 is prime. So, we may deduce that ℳ consists of prime rings. Furthermore ℳ is 
hereditary, and it is essentially closed. This gives ℳ  is special. Thus 𝒢  is hereditary. 
Furthermore, since ℳ is essentially closed, the essential cover ℰℳ of ℳ coincide with ℳ. It 
follows from Theorem 3.7.2 in (Gardner & Wiegandt, 2004) that 𝒢(𝐴) =∩ {𝐼𝜆|𝐴/𝐼𝜆 ∈ ℳ}. 
            ▀ 
2. Graded Brown-McCoy Radical 

Let 𝐺 be any group. It follows from the construction of restricted 𝐺 −graded radical 
described in (Fang & Stewart, 1992) that a restricted 𝐺 −graded Brown-McCoy radical class 
can be defined as 𝒢𝐺 = {𝐴 is a 𝐺 −graded ring |𝐴𝑢 ∈ 𝒢}, where 𝐴𝑢 is underlying ungraded of 
the ring 𝐴. For further consideration, we call the class of rings 𝒢𝐺  by graded Brown-McCoy 
radical. In the next theorem, we will show that the graded Brown-McCoy radical 𝒢𝐺  is 
hereditary. 
 

Theorem 11.  
Let 𝐺 be any group. The restricted 𝐺 −graded Brown-McCoy radical 𝒢𝐺  is hereditary. 
Proof. 
It can be directly inferred by the hereditaries of the Brown-McCoy radical 𝒢  and 
Proposition 2 in (Fang & Stewart, 1992) that 𝒢𝐺  is hereditary. However, we will provide the 
proof in detail for the reader. Now let 𝐴 ∈ 𝒢𝐺  and let 𝐼 be any nonzero homogenous proper 
ideal of 𝐴. Then 𝐴 =⊕𝑔∈𝐺 𝐴𝑔 and 𝐼 =⊕ℎ∈𝐺 𝐼 ∩ 𝐴ℎ . Hence, 𝐼 is a 𝐺 −graded ring. It is clear 

that 𝐼𝑢 is a ideal of 𝐴𝑢 ∈ 𝒢. Since 𝒢 is hereditary, 𝐼𝑢 ∈ 𝒢. So, we can deduce that 𝐼 ∈ 𝒢𝐺 . Thus, 
𝒢𝐺  is hereditary.       ▀ 
 
The hereditaries of 𝒢𝐺  explained in Theorem 11 implies the following property. 
 
Theorem 12. 
Let 𝐺 be any group, 𝒢𝐺(𝐴) is the intersection of all 𝐺 −graded ideals 𝐼 of 𝐴 such that 𝐴/𝐼 is 
𝐺 −graded simple ring with unity, where 𝐴 is a 𝐺 −graded ring. 
Proof. 
Let 𝐴 be any 𝐺 −graded ring. In virtue of Theorem 2, 𝒢𝐺  is hereditary. Furthermore, since 
𝒢𝐺  is hereditary and it follows from Proposition 2 in (Fang & Stewart, 1992) that 𝒢𝐺(𝐴) =
(𝒢(𝐴))𝐺 , where (𝒢(𝐴))𝐺 =⊕𝑔∈𝐺 {𝒢(𝐴) ∩ 𝐴𝑔|𝑔 ∈ 𝐺}. Now let {𝐼𝜆}, 𝜆 ∈ Λ, where Λ is index, be 

the collection of all ideals of 𝐴 such that 𝐴/𝐼𝜆 ∈ ℳ. Define 𝐼𝜆
𝐺 =⊕𝑔∈𝐺 𝐼𝜆 ∩ 𝐴𝑔 for every 𝜆 ∈ Λ. 

It is clear that 𝐼𝜆
𝐺 is a 𝐺 −graded ideal of 𝐴 such that 𝐼𝜆

𝐺 is simple 𝐺 −graded with unity. Now 
the intersection of all {𝐼𝜆}, 𝜆 ∈ Λ is  
 

∩𝜆∈Λ 𝐼𝜆
𝐺 =∩𝜆∈Λ {⊕𝑔∈𝐺 𝐼𝜆 ∩ 𝐴𝑔}  

 =⊕𝑔∈𝐺 {(∩𝜆∈Λ 𝐼𝜆) ∩ 𝐴𝑔}  

∩𝜆∈Λ 𝐼𝜆
𝐺 =⊕𝑔∈𝐺 {𝒢(𝐴) ∩ 𝐴𝑔|𝑔 ∈ 𝐺} (1) 
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On the other hand,  
𝒢𝐺(𝐴) = (𝒢(𝐴))𝐺       (2) 

 
It follows from equations (1) and (2) that (𝒢(𝐴))𝐺 is precisely the intersection of all 
𝐺 −graded ideals 𝐼 of 𝐴 such that 𝐴/𝐼 is 𝐺 −graded simple ring with unity which completes 
the proof. ▀ 
 
On the other hand, a radical class is called an 𝑁 −radical if it is normal and supernilpotent. 

The detail of the definition of normal and supernilpotent can be accessed in (Gardner & 
Wiegandt, 2004). In fact, the Brown-McCoy radical is not an 𝑁 −radical as also explained in 
(Gardner & Wiegandt, 2004) which implies that the property explained in Theorem 3.18.14 in 
(Gardner & Wiegandt, 2004) does not hold for a ring of Morita context 𝑇. However, it is 
interesting to investigate how about the restricted graded version for the Brown-McCoy 
radical. If the property also does not hold for the restricted version, then a counter-example 
should be exist.  
 
D. CONCLUSION AND SUGGESTIONS 

It follows from the research outcomes of this research that for a fixed group 𝐺, we can 
contruct the restricted graded Brown-McCoy and let 𝐴  be ring, 𝒢𝐺 (𝐴) =∩ {𝐼𝜆|𝐴/𝐼𝜆  is a 
𝐺 −graded which is a member of ℳ} . For further research, we can be continue to investigate 
the restricted 𝐺 −graded for Levitzki radical, Thierrin radical, anti simple radical, and Behrens 
radical. 
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