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 Inventory of raw materials is a big deal in every production process, both in 
company production and home business production. In order to meet consumer 
demand, a business must be able to determine the amount of inventory that 
should be provided. The purpose of this research is to choose an alternative 
selection of ordering raw materials that produce the maximum amount of raw 
materials with minimum costs. The raw material referred to in this study is 
pandan leaves used to make pandan mats. Analysis of raw material inventory 
used in this research was the Markov decision process with the policy iteration 
method by considering the discount factor. From the analysis conducted, it is 
obtained alternative policies that must be taken by producers to meet raw 
materials with minimum costs. The results of this study can be a consideration for 
business actors in the study location in deciding the optimal ordering policy that 
should be taken to obtain the minimum operational cost. 
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A. INTRODUCTION  

Materials or goods stored that will be used to fulfill the production process are called 

inventories. Inventory of raw materials is a major factor that is important to companies in 

supporting the smooth operation of the production process, both in large companies and in 

small companies such as home-based business products or small "home made" products. Raw 

material is a material that is used in the manufacture of a product, then processed so that it 

becomes a finished product for sale (Ristono, 2009). 

In optimal control of raw material inventory, the company must provide an amount of 

certain raw material at a certain time. This kind of procurement is due to the fact that the 

number of arrivals of requests cannot be known with certainty, so it will lead to a less than 

optimal inventory level and cause costs that should be measured. In an effort to overcome the 

fluctuating demand for raw material prices, a method is needed that can link current demand 

with previous demand. One of them is by using the Markov decision process (Mani et al., 

2021). 
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The Markov decision process is a system that can move one particular state to another 

possible state by considering several alternative policies (Hasan & Iqbal, 2004). The decision-

maker must take an action from those set of alternatives. This action affects the probability of 

the transition to the next move and brings a profit or loss after that. The transition probability 

matrix and the income (cost) matrix depend on the decision alternatives that can be used. The 

goal is to determine decisions that optimize the expected revenue or costs of that process.  

The applications of Markov decision process can be seen in the field of medical science 

(Bennett & Hauser, 2013) which studies how to determine optimal decisions in health 

services. Furthermore, in the field of telecommunication (Ksentini et al., 2014; Y. J. Liu et al., 

2017), each of which studies the transfer of telecommunications services and election for 

machine type communications using reinforcement learning based Markov decision process. 

Research in other fields can also be seen such as in the field of transportation (Iversen et al., 

2014; Ong & Kochenderfer, 2017; Shou et al., 2020), social science (Rong et al., 2016), game 

application (Zheng & Siami Namin, 2018), and Internet of Things (Yousefi et al., 2020). 

One method of making decisions in the Markov decision process is the policy iteration 

method. In this method, the policies taken are evaluated first, and then policy improvements 

are made so that convergent improvement results are obtained (Feinberg & Shwartz, 2002). 

An example of an analysis using the policy iteration method in previous research can be seen 

in (Fürnkranz et al., 2012), (D. Liu & Wei, 2013), (Luo et al., 2014), (Alla et al., 2015), (Pérolat 

et al., 2016), (Wu & Shen, 2017), and (Yang & Wei, 2018). 

One of the cases related to the problem in this research is the inventory of raw materials. 

The raw material used in this research is pandan leaves. Pandan leaves are one of the raw 

materials for woven pandanus mats or in Acehnese called "Tika Seukee" which are generally 

obtained from self-cultivated gardens and can be cultivated quickly and easily in Aceh, 

especially in North Aceh Regency. If the raw materials are not sufficient, then the craftsmen 

can obtain raw materials from wholesale results obtained from other regional farmers. 

Therefore, this study provides an application of the Markov decision process to determine the 

optimal inventory of raw materials in the pandanus mat weaving business. Research related 

to inventory with Markov decision process can be seen in (Noorida, 2003), (Sarjono et al., 

2011), (Layla, 2016), (Ferreira et al., 2018), and (Oktaviyani et al., 2018). For example, 

(Noorida, 2003) studies an analysis of fire tube boiler stock inventory using the policy 

iteration method without considering the discount factor. The thing that distinguishes this 

research from what has been done is that in this study an inventory analysis was carried out 

by involving the discount factor. This means that the price of raw materials is expected to 

increase in the future and this is more realistic in real terms. 

 

B. METHODS 

The data used are primary data obtained directly from woven pandanus mat craftsmen in 

Meunasah Aron Village, Muara Batu District, North Aceh Regency. The data in Table 1 is the 

amount of raw material inventory (Pandan leaves) for 2 years, starting from January to 

December 2018 and 2019, as shown in Table 1. 
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Table 1. The Amount of Raw Material Inventory in 2 Years 

Month Year 2018 (Kg) Year 2019 (Kg) 
January 24 34 

February 16 24 
March 22 30 
April 26 25 
May 30 35 
June 35 45 
July 20 42 

August 28 18 
September 24 20 

October 26 25 
November 18 41 
December 27 32 

 

In addition to the raw material inventory data, data on raw material price, raw material 

ordering cost, and raw material storage cost are given as follows: 

1. The raw material price for pandan leaves is IDR 50.000/Kg. 

2. The average of raw material ordering cost (IDR/Month) in 2 years (2018 and 2019) is 

presented in Table 2. 

 

Table 2. The Average of Raw Material Ordering Costs in 2 Years 

No Cost Type Cost (IDR/Month) 
1 Shipping cost to the destination 350.000 
2 Inspection cost 30.000 
3 Miscellaneous cost 50.000 

Total 430.000 

 

3. The average of raw material storage cost (IDR/Kg) in 2 years (2018 and 2019) is 

presented in Table 3. 

 

Table 3. The Average of Raw Material Storage Costs in 2 Years 

No Cost Type Percent of Raw Material Prices (%) Cost (IDR/Kg) 

1 
Warehouse facility cost 
(maintenance cost) 

4 2.000 

2 Miscellaneous cost 2 1.000 
            Total 6 3.000 

 

The steps for solving the problem with the Markov decision process are given as follows: 

1. Determine the possible state for the initial inventory (𝑖) and determine the ordering-level 

alternative decisions (𝑥) from the results of the frequency distribution. 

2. Determine the transition probability matrix of the obtained state. The probability of each 

initial inventory state 𝑖 to the initial inventory state 𝑗 at each ordering-level alternative 

(𝑥) is 𝑝𝑖𝑗(𝑥), where the initial inventory state 𝑖 will transition to the initial inventory state 

𝑗 for 𝑗 = 𝑖 + 𝑥 − 𝑑 and the result of probabilities is arranged in a square matrix 𝑃 with the 

elements in the 𝑃  matrix being 𝑝𝑖𝑗(𝑥) , where 𝑝𝑖𝑗(𝑥) = 𝑝(𝑑) , 𝑝(𝑑)  represents the 

probability of raw materials ordering demand. The basis for determining this probability 
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can be studied in (Taylor & Samuel, 1998), (Ching & Ng, 2006), and (Ross, 2010). 

3. Find the shortage cost. In each state 𝑖 and each decision 𝑥, the shortage cost can be 

calculated using the equation: 

𝐸 = 𝑎 + 𝑏 ( ∑ (𝑑 − 𝑖 − 𝑥)𝑝(𝑑)

𝑑>𝑖+𝑥

) , 𝑖 = 0,⋯ 𝑛 (1) 

with: 

𝑎: ordering costs, can be seen in Table 2, which is IDR 430.000, 

𝑏 : storage costs, can be seen in Table 3, which is IDR 3.000, 

𝑑 : raw materials ordering demand, provided that 𝑑 > 𝑖 + 𝑥, 

𝑖 : initial inventory state, 

𝑥 : ordering-level alternative decisions. 

 

4. Determine the total cost matrix. The total cost of inventory for each initial inventory (𝑖) 

and each ordering-level alternative (𝑥) is given by the equation: 

𝐶𝑖(𝑥) = 𝑎 + 𝑏𝑖 + 𝐸 (2) 

with: 

𝐶𝑖(𝑥) : total cost of each initial inventory (𝑖) at each ordering-level alternative (𝑥), 

𝑎  : ordering costs, can be seen in Table 2, which is IDR 430.000, 

𝑏  : storage costs, can be seen in Table 3, which is IDR 3.000, 

𝐸  : shortage cost. 

 

Furthermore, for each calculation of the total cost of inventory at each initial inventory (𝑖) 

and each ordering-level alternative (𝑥), the smallest total cost will be chosen. The total 

cost matrix is arranged in a column 𝐶 matrix with the entries being 𝐶𝑖(𝑥). 

 

5. Calculating the optimal solution using the policy iteration method with a discount factor. 

The discount factor (𝛼) is a multiplier to calculate the future value of money when valued 

in the present time. The presence of a discount factor (𝛼 < 1) can result in a change in the 

optimal policy, compared to the case without a discount (𝛼 = 1) (Littman et al., 2013). 

The steps for the solution are as follows: 

a. Determine the initial policy 𝑥𝑖
(𝑘)

 marked with the initial policy (𝑘 = 0) and take any 

ordering-level alternative 𝑥 = 𝑥𝑖
(𝑘)

 for each initial inventory (𝑖) , and construct a 

probability matrix and its cost matrix. 

b. Evaluate the routine policy is to determine 𝑓𝑖
(𝑘)

 for each initial inventory (𝑖) which is 

the solution to the linear equation, namely in the equation: 

𝑓𝑖
(𝑘)

= 𝐶𝑖 (𝑥) +  𝛼 ∑ 𝑝𝑖𝑗𝑗 (𝑥)𝑓𝑗
(𝑘)

,  𝑖, 𝑗 = 0, ⋯ , 𝑛 (3) 

with: 

∑ 𝑝𝑖𝑗𝑗 (𝑥)𝑓𝑗
(𝑘)

 : the probability sum of each initial inventory state (𝑖) to the initial 

inventory state (𝑗) in each ordering-level alternative (𝑥) for the initial 

inventory state (𝑗), 

𝐶𝑖(𝑥)  : minimum total cost, 
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𝛼 : discount factor, discount factor must be 𝛼 < 1, while the discount factor 

here is 0.98, 

𝑘 : initial policy, that is 𝑘 = 0. 

To solve the system of linear equations, LINDO (Linear Interactive Discrete Optimizer) 

program is used. 

c. Improvements to the routine policy 𝑥𝑖
(𝑘+1)

 is determining a new policy (𝑘 + 1) by 

finding an ordering-level alternative (𝑥), 𝑥 = 𝑥𝑖
(𝑘+1)

 for each initial inventory (𝑖) that 

can be seen in the equation: 

(𝐶𝑖(𝑥) + 𝛼 ∑ 𝑝𝑖𝑗𝑗 (𝑥)𝑓𝑗
(𝑘)

 ), 𝑖, 𝑗 = 0,⋯ 𝑛. (4) 

with: 

∑ 𝑝𝑖𝑗𝑗 (𝑥)𝑓𝑗
(𝑘)

 : the probability sum of each initial inventory state (𝑖) to the initial 

inventory state (𝑗) in each ordering-level alternative (𝑥) for the initial 

inventory state (𝑗), 

𝐶𝑖(𝑥) : total cost for each initial inventory (𝑖)  with each ordering-level 

alternative (𝑥), 

𝛼 : discount factor, discount factor must be 𝛼 < 1, while the discount 

factor here is 0.98, 

𝑘 : new policy 𝑘 + 1 = 1. 

 

d. If the new policy 𝑘 + 1 differs from the initial policy 𝑘 = 0 by at least one state, 

increase the count of 𝑘 by one and return to step two, as shown in Figure 1. 

 

 
Figure 1. Problem-Solving Flow Using the Policy Iteration Method 

 

 

 

Step 1

•Determination of Initial State in the form of starting inventory amount and possible
order-level alternatives.

Step 2
•Determination the transition probability matrix from the analyzed data.

Step 3
•Determination of Shortage Cost and Total Cost.

Step 4

•Calculating the optimal solution using the policy iteration method with a discount
factor.

Step 5
•Improvements to the routine policy to obtain most optimal policy.
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C. RESULT AND DISCUSSION 

1. Frequency Distribution Table 

Data on the amount of raw material inventory for two years in Table 1 is presented in a 

frequency distribution Table 4. 

 

Table 4. Frequency Distribution of Raw Material Inventory Used 

Amount Used 
Raw Materials Ordering 

Demand (𝒅) 
Frequency Probability 𝑷(𝑫 = 𝒅) 

16 − 20 kg 20 kg 5 0,21 
21 − 25 kg 25 kg 6 0,25 
26 − 30 kg 30 kg 6 0,25 
31 − 35 kg 35 kg 4 0,17 
36 − 40 kg 40 kg 0 0 
41 − 45 kg 45 kg 3     0,12 

 

Table 4 describes about the frequency distribution of raw material inventory used, which 

contains raw materials ordering demand, its frequency, and the probability for each interval 

class. Frequency is the amount of data included I   n each interval class, namely the number of 

raw materials used and the number of frequencies is the total number of data 𝑛. Raw 

materials ordering demand (𝑑) is taken from the number of upper edges of each interval class. 

While the probability is 
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎 (𝑛)
. The probability of raw materials ordering demand 

(𝑑) for the first interval class (16-20 kg) is 5/24 = 0.21. The same way is obtained for the 

other intervals. 

 

2. Analysis of the Markov Decision Process 

The Markov decision process has elements, namely state (𝑖) and decision (𝑥), in this case 

the state is referred to as initial inventory (𝑖) and the decision is referred to as an ordering-

level alternative (𝑥). From Table 4, two assumptions are obtained, where the first assumption 

is the possible state for initial inventory (𝑖) as many as 6 states are obtained starting from 0 

kg, 5 kg, 10 kg, 15 kg, 20 kg, 25 kg, where the distance between the top edges each interval 

class is 5 kg. Second, it can be assumed that the ordering-level alternatives (𝑥) are 20 kg, 25 

kg, 30 kg, 35 kg, 40 kg, 45 kg which is the upper edge of each interval class, and the demand 

for raw material ordering (𝑑) corresponds to the ordering-level alternatives. The order is 20 

kg, 25 kg, 30 kg, 35 kg, 40 kg, or 45 kg. Table 5 is a table of the state of the initial inventory (𝑖) 

and the ordering-level alternative (𝑥), as shown in Table 5. 

 

Table 5. Initial Inventory (𝑖) and Ordering-Level Alternative (𝑥) 

Initial Inventory (Kg) Ordering-Level Alternative (Kg) 
0 20 25 30 35 40 45 
5 20 25 30 35 40 - 

10 20 25 30 35 - - 
15 20 25 30 - - - 
20 20 25 - - - - 
25 20 - - - - - 
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For example, if the initial inventory (𝑖) is 0 kg, then there are 6 alternative choices for the 

ordering-level (𝑥), namely orders of 20 kg, 25 kg, 30 kg, 35 kg, 40 kg, and 45 kg. The total for 

each line of raw material inventory must be less or equal with 45 kg, because in Table 1 it can 

be seen that the maximum amount of raw material inventory is 45 kg. The empty entry from 

Table 5 describes that there is no alternative to order in that ordering-level alternatives.  

 

3. Transition Probability, Shortage Cost, and Total Cost 

The probability of each initial inventory state 𝑖 to the initial inventory state 𝑗 at each 

ordering-level alternative (𝑥) is 𝑝𝑖𝑗(𝑥), where the initial inventory state 𝑖 will transition to the 

initial inventory state 𝑗 for 𝑗 = 𝑖 + 𝑥 − 𝑑 and the result of probabilities is arranged in a square 

matrix 𝑃 with the elements in the 𝑃  matrix being 𝑝𝑖𝑗(𝑥), where 𝑝𝑖𝑗(𝑥) = 𝑝(𝑑), for 𝑝(𝑑) 

represents the probability of raw materials ordering demand. For each initial inventory (𝑖) 

and each ordering-level alternative (𝑥), the shortage cost can be calculated using equation (1). 

The total cost (𝐶) for each initial inventory (𝑖) at each ordering-level alternative (𝑥) can be 

calculated using equation (2). 

The following steps are given to calculate the transition probability (𝑝𝑖𝑗), shortage cost 

(𝐸), and total cost ((𝐶𝑖(𝑥)) using Table 4 and Table 5 for initial inventory (𝒊) 0 kg. From 

Table 5, if the initial inventory is 0 kg, then there are 6 alternative choices for the ordering-

level (𝑥), namely the order of 20 kg, 25 kg, 30 kg, 35 kg, 40 kg, and 45 kg, and the raw 

materials ordering demand (𝑑) begins of 20 kg, 25 kg, 30 kg, 35 kg, 40 kg, and 45 kg. 

Calculation of the raw materials ordering demand (𝑑) stops when 𝑗 = 0, where 𝑖 = 𝑗. The 

probability value can be seen in Table 4. For the ordering-level (𝑥) 20 kg, then: 

a. Transition Probability 𝑝𝑖𝑗(𝑥) 

If 𝑥 = 20 kg and 𝑗 = 0 kg then 𝑗 = 𝑖 + 𝑥 − 𝑑 → 𝑑 = 𝑖 + 𝑥 − 𝑗 = 0 + 20 − 0 = 20. 

𝑝𝑖𝑗(𝑥)     = 𝑝(𝐷 ≥ 𝑑) 

𝑝0,0(20) = 𝑝(𝐷 ≥ 20) 

𝑝0,0(20) = 0,21 +  0,25 +   0,25 +  0,17 +  0 +  0,12 =  1. 

b. Shortage Cost 

For 𝑖 = 0 kg, 𝑥 = 20 kg, with 𝑑 > 𝑖 + 𝑥 then 𝑑 starts from 25 kg, 30 kg, 35 kg, 40 kg, 

and 45 kg, and the value of 𝑝(𝑑) can be seen in Table 4. 

𝐸 = 𝑎 + 𝑏 ( ∑ (𝑑 − 𝑖 − 𝑥)𝑝(𝑑)

𝑑>𝑖+𝑥

) 

𝐸 = IDR 430.000 + IDR 3.000[(25 − 0 − 20)(0,25) + (30 − 0 − 20)(0,25) 

𝐸 = +(35 − 0 − 20)(0,17) + (40 − 0 − 20)(0) + (45 − 0 − 20)(0,12)] 

𝐸 = IDR 457.900. 

c. Total Cost 

For 𝑖 = 0 kg, 𝑥 = 20 kg, 

𝐶𝑖(𝑥) = 𝑎 + 𝑏𝑖 + 𝐸 

𝐶0(20) = 𝑎 + 𝑏𝑖 + 𝐸 

𝐶0(20) = IDR 430.000 + IDR 3.000 (0) + IDR 457.900 

𝐶0(20) = IDR 887.900. 
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So, the total cost required for initial inventory (𝑖) 0 kg at the ordering-level alternative (𝑥) 

20 kg is IDR 887.900. In the same way, the results of the calculation of the transition 

probability, shortage cost, and total cost for each initial inventory with ordering-level 

alternative (𝑥) of 20 kg, 25 kg, 30 kg, 35 kg, 40 kg, and 45 kg can be summarized in Table 6, 

Table 7, and Table 8. 

 

Table 6. Transition Probability of Initial Inventory State for Each Policy that can be taken (𝑝𝑖,𝑗(𝑥)) 

Initial Inventory 
State 

Policy 
Initial Inventory State 

0 5 10 15 20 25 
0 20 1 0 0 0 0 0 

25 0,79 0,21 0 0 0 0 
30 0,54 0,25 0,21 0 0 0 
35 0,29 0,25 0,25 0,21 0 0 
40 0,12 0,17 0,25 0,25 0,21 0 
45 0,12 0 0,17 0,25 0,25 0,21 

5 20 0,79 0,21 0 0 0 0 
25 0,54 0,25 0,21 0 0 0 
30 0,29 0,25 0,25 0,21 0 0 
35 0,12 0,17 0,25 0,25 0,21 0 
40 0,12 0 0,17 0,25 0,25 0,21 

10 20 0,54 0,25 0,21 0 0 0 
25 0,29 0,25 0,25 0,21 0 0 
30 0,12 0,17 0,25 0,25 0,21 0 
35 0,12 0 0,17 0,25 0,25 0,21 

15 20 0,29 0,25 0,25 0,21 0 0 
25 0,12 0,17 0,25 0,25 0,21 0 
30 0,12 0 0,17 0,25 0,25 0,21 

20 20 0,12 0,17 0,25 0,25 0,21 0 
 25 0,12 0 0,17 0,25 0,25 0,21 

25 20 0,12 0,17 0,25 0,25 0,21 0 

 

Table 6 illustrates the transition probability from an initial state stock to an initial state 

stock based on the policies selected. A value of zero indicates that the transition is not 

possible. This is because the value of ordering raw materials is a positive variable. It is not 

possible that the transitional state will have a smaller value than the initial supply state, as 

shown in Table 7. 

 

Table 7. Shortage Cost of Initial Inventory for Each Policy that can be taken 

Initial Inventory 
(Kg) 

Shortage Cost due to the Policies Taken (IDR) 
20 25 30 35 40 45 

0 457.900 446.050 437.950 433.600 431.800 430.000 
5 446.050 437.950 433.600 431.800 430.000  

10 437.950 433.600 431.800 430.000   
15 433.600 431.800 430.000    
20 431.800 430.000     
25 430.000      
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Table 7 illustrates the amount of Shortage Cost for each decision taken if the initial 

condition of the inventory is known. The decisions taken for each initial inventory have been 

given in Table 5. It can be seen that the Shortage Cost value is getting smaller for larger 

alternative orders, as shown in Table 8. 

 

Table 8. Total Cost of Initial Inventory for Each Policy that can be taken 

Initial Inventory 
(Kg) 

Total Cost due to the Policies Taken (IDR) 
20 25 30 35 40 45 

0 887.900 876.050 867.950 863.600 861.800 860.000 
5 891.050 882.950 878.600 876.800 875.000  

10 897.950 893.600 891.800 890.000   
15 908.600 906.800 905.000    
20 921.800 920.000     
25 935.000      

 

Table 8 illustrates the total cost value for each policy taken if the current inventory state 

is known. The value of this total cost looks bigger if the initial inventory state is higher. This 

can happen because of the costs needed to handle inventory items that are still stored to be 

used in the future and also there is a fixed ordering cost that presented in Table 2. 

 

4. Policy Iteration Method with Discount Factor 

The following are some steps to complete the optimal solution using the policy iteration 

method with discount factor. 

a. Determine the Initial Policy 

Determining the initial policy (𝑥𝑖
(𝑘)

) marked with the initial policy (𝑘 = 0) and take 

any ordering-level alternative (𝑥)  i.e. 𝑥 = 𝑥𝑖
(𝑘)

 for each initial inventory (𝑖)  and 

construct a probability matrix and its cost matrix. 

For initial inventory of 0 kg, 5 kg, 10 kg, 15 kg, 20 kg, and 25 kg, and ordering-level 

alternative of 20 kg, 25 kg, 30 kg, 35 kg, 40 kg and 45 kg, then we choose any initial 

policy 𝑥 = 𝑥𝑖
(𝑘)

 as follows: 

𝑥0
(0)

= 45, 𝑥5
(0)

= 40, 𝑥10
(0)

= 35, 𝑥15
(0)

= 30, 𝑥20
(0)

= 25, 𝑥25
(0)

= 20. 

The meaning of 𝑥 = 𝑥𝑖
(𝑘)

 is that if the initial inventory is at level 𝑖 kg, with an initial 

policy of 𝑘, then the optimal of ordering-level alternative is 𝑥 kg. For this initial policy, 

the probability matrix is as follows: 

 𝑃 = 𝑝𝑖,𝑗(𝑥) =

[
 
 
 
 
 
0,12 0 0,17 0,25 0,25 0,21
0,12 0 0,17 0,25 0,25 0,21
0,12 0 0,17 0,25 0,25 0,21
0,12 0 0,17 0,25 0,25 0,21
0,12 0 0,17 0,25 0,25 0,21
0,12 0 0,17 0,25 0,25 0,21]

 
 
 
 
 

. 

The minimum total cost matrix is as follows: 
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 𝐶 =

[
 
 
 
 
 
𝐶0(45)
𝐶5(40)
𝐶10(35)
𝐶15(30)
𝐶20(25)

𝐶25(20)]
 
 
 
 
 

=  

[
 
 
 
 
 
IDR 860.000
IDR 875.000
IDR 890.000
IDR 905.000
IDR 920.000
IDR 935.000]

 
 
 
 
 

. 

  

b. Evaluate the Routine Policy 

Evaluate the routine policy, which is to determine 𝑓𝑖
(𝑘)

 for each initial inventory (𝑖) 

which is the solution to a linear equation using equation (3). We obtained 6 linear 

equations as follows: 

𝑓0
(0)

 = 860.000 + (0,1176)𝑓0
(0)

+ (0)𝑓5
(0)

+ (0,1666)𝑓10
(0)

+ (0,245)𝑓15
(0)

+ (0,245)𝑓20
(0)

+ (0,2058)𝑓25
(0)

, 

𝑓5
(0)

 = 875.000 + (0,1176)𝑓0
(0)

+ (0)𝑓5
(0)

+ (0,1666)𝑓10
(0)

+ (0,245)𝑓15
(0)

+ (0,245)𝑓20
(0)

+ (0,2058)𝑓25
(0)

, 

𝑓10
(0)

 = 890.000 + (0,1176)𝑓0
(0)

+ (0)𝑓5
(0)

+ (0,1666)𝑓10
(0)

+ (0,245)𝑓15
(0)

+ (0,245)𝑓20
(0)

+ (0,2058)𝑓25
(0)

, 

𝑓15
(0)

 = 905.000 + (0,1176)𝑓0
(0)

+ (0)𝑓5
(0)

+ (0,1666)𝑓10
(0)

+ (0,245)𝑓15
(0)

+ (0,245)𝑓20
(0)

+ (0,2058)𝑓25
(0)

, 

𝑓20
(0)

 = 920.000 + (0,1176)𝑓0
(0)

+ (0)𝑓5
(0)

+ (0,1666)𝑓10
(0)

+ (0,245)𝑓15
(0)

+ (0,245)𝑓20
(0)

+ (0,2058)𝑓25
(0)

, 

𝑓25
(0)

 = 935.000 + (0,1176)𝑓0
(0)

+ (0)𝑓5
(0)

+ (0,1666)𝑓10
(0)

+ (0,245)𝑓15
(0)

+ (0,245)𝑓20
(0)

+ (0,2058)𝑓25
(0)

. 

From the 6 equations above, the solution for 𝑓0
(0)

, 𝑓5
(0)

, 𝑓10
(0)

, 𝑓15
(0)

, 𝑓20
(0)

, 𝑓25
(0)

 obtained by 

using the LINDO application. The final solutions have been summarized as follows: 

𝑓0
(0)

= IDR 45.308.000, 

𝑓5
(0)

= IDR 45.323.000, 

𝑓10
(0)

= IDR 45.338.000, 

𝑓15
(0)

= IDR 45.353.000, 

𝑓20
(0)

= IDR 45.368.000, 

𝑓25
(0)

= IDR 45.383.000. 

 

c. Improvements to the Routine Policy 

Improvements to the routine policy (𝑥𝑖
(𝑘+1)

) is determining a new policy (𝑘 + 1). In 

the first step, it is stated that the initial policy is 𝑘 = 0, then for the new policy 𝑘 + 1 =

1. Then find an ordering-level alternative (𝑥) that is 𝑥 = (𝑥𝑖
(𝑘+1)

) for each initial 

inventory (𝑖) using equation (4). 

After getting the value of 𝑓0
(0)

, 𝑓5
(0)

, 𝑓10
(0)

, 𝑓15
(0)

, 𝑓20
(0)

, 𝑓25
(0)

 from the second step then 

substitute it into equation (4). The results of the calculations can be summarized as 

follows. 

For 𝑓5
(0)

= IDR 45.323.000,  which is 𝑖 = 5  kg, when 𝑥 = 40  kg we get (𝐶5(𝑥) +

𝛼 ∑ 𝑝5𝑗𝑗 (𝑥)𝑓𝑗
(𝑘)

 ) = IDR 45.323.000, 

For 𝑓10
(0)

= IDR 45.338.000,  which is 𝑖 = 10  kg, when 𝑥 = 35  kg we get (𝐶10(𝑥) +

𝛼 ∑ 𝑝10𝑗𝑗 (𝑥)𝑓𝑗
(𝑘)

 ) = IDR 45.338.000, 
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For 𝑓15
(0)

= IDR 45.353.000,  which is 𝑖 = 15  kg, when 𝑥 = 30  kg we get (𝐶15(𝑥) +

𝛼 ∑ 𝑝15𝑗𝑗 (𝑥)𝑓𝑗
(𝑘)

 ) = IDR 45.353.000, 

For 𝑓20
(0)

= IDR 45.368.000,  which is 𝑖 = 20  kg, when 𝑥 = 25  kg we get (𝐶20(𝑥) +

𝛼 ∑ 𝑝20𝑗𝑗 (𝑥)𝑓𝑗
(𝑘)

 ) = IDR 45.368.000, 

For 𝑓25
(0)

= IDR 45.383.000,  which isi 𝑖 = 25  kg, when 𝑥 = 20  kg we get (𝐶25(𝑥) +

𝛼 ∑ 𝑝25𝑗𝑗 (𝑥)𝑓𝑗
(𝑘)

 ) = IDR 45.383.000, 

then we obtained a new policy with an ordering-level alternative (𝑥) = 𝑥𝑖
(1)

: 

𝑥0
(1)

= 45, 𝑥5
(1)

= 40, 𝑥10
(1)

= 35, 𝑥15
(1)

= 30, 𝑥20
(1)

= 25, 𝑥25
(1)

= 20. 

Because the new policy (𝑘 = 1) is the same as the initial policy (𝑘 = 0), the iteration is 

stopped. The decision results of each initial inventory (𝑖) with each ordering-level 

alternative (𝑥) are the optimal results with optimal costs as follows: 

𝐶0(45) = IDR 860.000,

𝐶5(40) = IDR 875.000,

𝐶10(35) = IDR 890.000,

𝐶15(30) = IDR 905.000,

𝐶20(25) = IDR 920.000,

𝐶25(20) = IDR 935.000.

 

This means: 

1) If the initial inventory (𝑖) is at the level of 0 kg, then the optimal ordering-level 

alternative (𝑥) is 45 kg with a minimum cost of IDR 860.000. 

2) If the initial inventory (𝑖) is at the level of 5 kg, then the optimal ordering-level 

alternative (𝑥) is 40 kg with a minimum cost of IDR 875.000. 

3) If the initial inventory (𝑖) is at the level of 10 kg, then the optimal ordering-level 

alternative (𝑥) is 35 kg with a minimum cost of IDR 890.000. 

4) If the initial inventory (𝑖) is at the level of 15 kg, then the optimal ordering-level 

alternative (𝑥) is 30 kg with a minimum cost of IDR 905.000. 

5) If the initial inventory (𝑖) is at the level of 20 kg, then the optimal ordering-level 

alternative (𝑥) is 25 kg with a minimum cost of IDR 920.000. 

6) If the initial inventory (𝑖) is at the level of 25 kg, then the optimal ordering-level 

alternative (𝑥) is 20 kg with a minimum cost of IDR 935.000. 

 

The calculation results show that for each initial inventory state (𝑖), the alternative order 

level that must be selected in order to produce a minimum cost is 45 − 𝑖 kg. However, the 

resulting minimum cost for a smaller starting inventory is greater than the greater initial 

inventory one. This can happen because of the storage costs and shortage costs as a result of a 

shortage of inventory. This result has a behavior similar to what has been done in previous 

studies by (Noorida, 2003). 
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D. CONCLUSION AND SUGGESTIONS 

This research has reached the optimal solution using the Markov decision process with 

the policy iteration method. This policy iteration method can achieve an optimal solution in a 

small number of iterations. In this study, the calculation results obtained from the policy 

iteration method prove that no iteration occurs, it means that for the data in this research 

case the optimal solution has been reached using the Markov decision process with the policy 

iteration method.  Suggestions that can be conducted in further research are to consider other 

operational factors such as the length of work on a product and the honorarium expenses to 

produce. 
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