An Inclusive Distance Irregularity Strength of n-ary Tree

Kristiana Wijaya*, Safira Nur Aulia1, Ikhsanul Halikin1, Kusbudiono1
1Graph and Algebra Research Group, Department of Mathematics, Universitas Jember, Indonesia
kristiana.fmipa@unej.ac.id

ABSTRACT

An inclusive distance vertex irregular labeling of a simple graph G is a function of the vertex set of G to positive integer set such that the sum of its vertex label and the labels of all vertices adjacent to the vertex are distinct. The minimum of maximum label of the vertices is said to be inclusive distance irregularity strength of G, denoted by $\text{dis}^*(G)$. This research aims to prove the inclusive distance irregularity strength on the complete n-ary tree up to level two, with the formula $\text{dis}^*(T_n,2) = \lceil \frac{n^2+1}{2} \rceil$. The research methods used in the study is theoretical analysis. In this research, the claim is proved.

A. INTRODUCTION

Graph labeling is one of the most popular research areas of graph theory. Graph labeling was first introduced in the mid1960s (Rosa, 1967). In more than 60 years nearly 200 graph labeling techniques have been studied in over 3200 papers (Gallian, 2022). In general, there are two kind of labeling, namely regular and irregular labelings. A regular labeling of graphs means that the labeling satisfying injective function, such as graceful (Wang et al., 2015), harmonious (Lasim et al., 2022), elegant (Elumalai & Sethuraman, 2010), felicitous (Manickam et al., 2012), and so on. In this paper, we focus on irregular labeling. All graphs discussed here are simple, undirected, and finite. For a general terminology of graph-theoretic, we follow (Chartrand & Zhang, 2012) and (Ringel & Hartsfield, 1990).

The distance vertex irregular labeling was introduced by (Slamin, 2017). This labeling was inspired by (Miller et al., 2003) who introduced a distance magic labeling and (Chartrand et al., 1988) who introduced an irregular assignment. Detail survey of distance magic labeling can be studied in (Arumugam et al., 2011). Furthermore, (Bong et al., 2017) generalized the concept of labeling introduced by (Slamin, 2017) to inclusive and non-inclusive vertex irregular d-distance vertex labeling, for any distance d up to the diameter. (Bong et al., 2017) defined the
inclusive vertex irregular \(d\)-distance vertex labeling. For \(d = 1\), (Bača et al., 2018) called this labeling as an inclusive distance vertex irregular labeling.

An inclusive distance vertex irregular labeling of a graph \(G\) is a function \(f: V(G) \rightarrow \{1, 2, \ldots, k\}\) such that each vertex of \(G\) has distinct weight. The weight of a vertex \(u \in V(G)\) under the labeling \(f\) is defined as \(\text{wt}(u) = f(u) + \sum_{uv \in E(G)} f(v)\). Not all graphs can be applied this labeling, namely graph which contains at least two vertices with the same closed neighborhood. For example, a complete graph with three vertices, since all vertices will have the same closed neighborhood. It is not difficult to apply this labeling for a graph. That is why, the problem of this area is find the minimum \(k\) for the vertex label such that a graph \(G\) admits this labeling is called the inclusive distance vertex irregularity strength of \(G\) and is denoted by \(\widehat{\text{dis}}(G)\). If such \(k\) does not exist we say that \(\widehat{\text{dis}}(G) = \infty\).

The exact value of the inclusive distance vertex irregularity strength of many graphs have been widely studied in the literature (see Bača et al., 2018; Utami et al., 2018; Bong et al., 2020; Halikin et al., 2020; Utami et al., 2020; Susanto et al., 2021; Majid et al., 2023; and Windartini et al., 2014). Furthermore, Cichacz et al. (2021) gave the upper bound of the inclusive distance vertex irregularity strength for a simple graph \(G\) on \(n\) vertices in which no two vertices have the same closed neighborhood that \(\widehat{\text{dis}}(G) \leq n^2\). Next, Susanto et al. (2022) studied inclusive distance vertex irregularity strength for the join product of graphs. Santoso et al. (2022) using genetic algorithm for the inclusive labeling of a graph. Bong et al. (2020) gave a lower bound for the inclusive distance vertex irregularity strength for a graph \(G\) of order \(n\), the maximum degree \(\Delta\), and the minimum degree \(\delta\),

\[
\widehat{\text{dis}}(G) \geq \left\lceil \frac{|V(G)| + \delta(G)}{\Delta(G) + 1} \right\rceil.
\]

Susanto et al. (2021) developed a new lower bound for the inclusive distance vertex irregularity strength of graphs that generalizes the lower bound by (Bong et al., 2020), that a graph \(G\) with the maximum degree \(\Delta\), the minimum degree \(\delta\),

\[
\widehat{\text{dis}}(G) \geq \max_{\delta \leq r \leq \Delta} \left\lceil \delta + \frac{\sum_{j=\delta}^{r} n_j}{r + 1} \right\rceil,
\]

(1)

where \(n_r\) is the number of vertices of degree \(r\) in \(G\) for every \(\delta \leq r \leq \Delta\). In this paper, we give the exact value of inclusive distance vertex irregularity strengths of a complete \(n\)-ary tree to level two. Denoted by \(T_{n,2}\), a complete \(n\)-ary tree is a rooted tree such that each vertex of degree greater than one has exactly \(n\) children and all degree-one vertices are of equal distance (height) to the root (Li et al., 2010). Therefore, \(T_{n,2}\) has \(n(n + 1)\) vertices and \(n^2\) leaves.

B. METHODS

Let \(T_{n,2}\) be a complete \(n\)-ary tree. To find the minimum \(k\) for the vertex label such that a graph \(G\) admits the inclusive distance vertex irregular labeling, are as follows: (i) Give the notation of all vertex of \(T_{n,2}\). Let \(V(T_{n,2}) = \{c_0, c_i, v^i_j | i, j \in [1, n]\}\) be the vertex set of \(T_{n,2}\), where \(c_0\) is the root vertex of \(T_{n,2}\) of degree \(n\), the vertex \(c_i\) has degree \(n + 1\), and the vertex \(v^i_j\) has
degree 1. Let again $E(T_{n,2}) = \{v^i_i c_i, c_i c_0 | i \in [1,n]\}$ be the edge set of $T_{n,2}$. The illustration of the notation of vertices of $T_{n,2}$ is given in Figure 1; (ii) Define function $f: V(T_{n,2}) \to \{1, 2, \ldots, k\}$, by the considering the Inequality (1) for the value of k, and that two distinct vertices can have the same label; (iii) Count the weight of each vertex of $V(T_{n,2})$, using the formula $wt(u) = f(u) + \sum_{uv \in E(G)} f(v)$ for each $u \in V(T_{n,2})$; (iv) Show that each vertex of $V(T_{n,2})$ has distinct weight, namely $wt(u) \neq wt(v)$ for each $u, v \in V(T_{n,2})$.

![Figure 1. The vertex notation of $T_{n,2}$](image)

C. RESULT AND DISCUSSION

In this section, we discuss the exact value of inclusive distance irregularity strength of a graph n-ary tree to level 2. There are two lemmas about the upper bound of $d\hat{\text{is}}(T_{n,2})$. Indeed the lower bound of $d\hat{\text{is}}(T_{n,2})$ following the Theorem 1.

Lemma 1 Let $n \geq 3$ be an odd integer and and $T_{n,2}$ be an n-ary tree to level 2. The upper bound of inclusive distance irregularity strength of $T_{n,2}$ is

$$d\hat{\text{is}}(T_{n,2}) \leq \left\lceil \frac{n^2 + 1}{2} \right\rceil.$$

Proof. For prove this by labeling a graph $T_{n,2}$ using inclusive vertex irregular. For $n = 3$, an inclusive distance vertex irregular labeling of $T_{3,2}$ can be seen in Figure 2, where the weight of the vertex shown by a red number.

![Figure 2. An inclusive distance vertex irregular labeling of graph $T_{3,2}$](image)
For \(n \geq 5 \), define an inclusive distance vertex irregular labeling of \(T_{n,2} \) as follows. For odd \(n \), we have \(\left\lceil \frac{n^2 + 1}{2} \right\rceil = \frac{n^2 + 1}{2} \). Define \(f: V(T_{n,2}) \rightarrow \{1, 2, \ldots, \frac{n^2 + 1}{2}\} \) as follows.

\[
f(c_i) = \begin{cases}
\frac{n^2 + 1}{2} & \text{for } i = 0, n, \\
1 & \text{for } i = 1, \\
\left(\frac{n+1}{2}\right)i & \text{for } i = 2, 3, \ldots, n-1.
\end{cases}
\]

(2)

For \(j = 1, 2, \ldots, n \),

\[
f(v_i^j) = \begin{cases}
j & \text{for } i = 1, 2, \\
\frac{n-1}{2}i - n + j + 1 & \text{for } i = 3, 4, \ldots, n-1, \\
\frac{n^2 + 1}{2} - n + j & \text{for } i = n.
\end{cases}
\]

(3)

The illustration of vertex labeling can be seen in Figure 3.

By (2) and (3) we obtain the vertex weight as follows.

\[
w_t(c_i) = \begin{cases}
\frac{n^3 + 4n^2 - 3n + 6}{4} & \text{for } i = 0, \\
\frac{2n^2 + n + 3}{2} & \text{for } i = 1, \\
\frac{(n^2 + 1)i + 3n + 1}{2} & \text{for } i = 2, 3, \ldots, n-1, \\
\frac{n^3 + n^2 + 2n + 2}{2} & \text{for } i = n.
\end{cases}
\]

\[
w_t(v_i^j) = \begin{cases}
j + 1 & \text{for } i = 1 \text{ and } j = 1, 2, \ldots, n, \\
\frac{n}{i} - n + j + 1 & \text{for } i = 2, 3, \ldots, n \text{ and } j = 1, 2, \ldots, n.
\end{cases}
\]
We next show that all vertices weight are distinct. For \(i = 2, 3, ..., n - 1 \), we have
\[
\frac{2n^2 + 3n + 3}{2} \leq \text{wt}(c_i) \leq \frac{n^3 - n^2 + 4n}{2}.
\]
We can check easily that \(\text{wt}(c_1) < \text{wt}(c_i) < \text{wt}(c_n) \) and also
\(\text{wt}(c_1) < \text{wt}(c_0) < \text{wt}(c_n) \). Now, we assume that \(\text{wt}(c_0) = \text{wt}(c_i) \), for \(i = 2, 3, ..., n - 1 \). Then
\[
\frac{n^3 + 4n^2 - 3n + 6}{4} = \frac{(n^2 + 1)i + 3n + 1}{2}
\]
\[
\frac{n^3 + 4n^2 - 3n + 6}{4} - \frac{3n + 1}{2} \leq \frac{(n^2 + 1)i}{2}
\]
\[
\frac{n^3 + 4n^2 - 9n + 4}{4} = \frac{(n^2 + 1)i}{2}
\]
\[
i = \frac{n^3 + 4n^2 - 9n + 4}{2n^2 + 2}.
\]
So, \(i \) is not integer, a contradiction. We consider now, the weight of the vertex \(v_i^j \). We can see that
\(2 \leq \text{wt}(v_i^j) \leq n + 1 < n + 2 \leq \text{wt}(v_j^i) \leq n^2 + 1 < \frac{2n^2 + n + 3}{2} = \text{wt}(c_1) \) for each \(j = 1, 2, ..., n \). Therefore, all vertices of \(T_{n,2} \) have different weight.

In the Figure 4, we can see an inclusive distance vertex irregular labeling of graph \(T_{5,2} \).

Figure 4. An inclusive distance vertex irregular labeling of graph \(T_{5,2} \)

Lemma 2 Let \(n \geq 2 \) be an even integer and and \(T_{n,2} \) be a complete \(n \)-ary tree to level 2. The upper bound of inclusive distance irregularity strength of \(T_{n,2} \) is

\[
\overline{\text{dis}}(T_{n,2}) \leq \left\lceil \frac{n^2 + 1}{2} \right\rceil.
\]

Proof. Let \(n \) be an even integer. For \(n = 2 \), an inclusive vertex irregular labeling of \(T_{2,2} \) can be seen in Figure 5, where the weight of the vertex is shown by a red number.
Now, for even $n \geq 4$ we have $\left\lceil \frac{n^2 + 1}{2} \right\rceil = \frac{n^2}{2} + 1$, define $f: V(T_{n,2}) \to \{1, 2, ..., \frac{n^2}{2} + 1\}$ by the following:

$$f(c_i) = \begin{cases}
\frac{n^2}{2} + 1 & \text{for } i = 0, n, \\
1 & \text{for } i = 1, \\
\frac{n^2}{2} + 1 & \text{for } i = 2, 3, ..., n - 1.
\end{cases}$$ (4)

For $j = 1, 2, ..., n$

$$f(v_i^j) = \begin{cases}
j & \text{for } i = 1, 2, \\
\frac{n^2}{2} - i + j & \text{for } i = 3, 4, ..., n - 1, \\
\frac{n^2}{2} - j & \text{for } i = n.
\end{cases}$$ (5)

As an illustration of the formulation of vertex labeling in (4) and (5), consider the Figure 6.
According to the vertex labeling in (4) and (5), we can count the vertex weight, as follow.

\[wt(c_i) = \begin{cases}
\frac{n^3 + 3n^2 + 2n + 4}{4} & \text{for } i = 0, \\
\frac{2n^2 + n + 4}{2} & \text{for } i = 1, \\
\frac{(n^2 + n)i + n + 4}{2} & \text{for } i = 2, 3, \ldots, n - 1, \\
\frac{n^3 + n^2 + n + 4}{2} & \text{for } i = n,
\end{cases} \]

\[wt(v^i_j) = \begin{cases}
 j + 1 & \text{for } i = 1 \text{ and } j = 1, 2, \ldots, n, \\
 ni - n + j + 1 & \text{for } i = 2, 3, \ldots, n \text{ and } j = 1, 2, \ldots, n.
\end{cases} \]

For \(i = 2, 3, \ldots, n - 1 \) we obtain \(\frac{2n^2 + 3n + 4}{2} \leq wt(c_i) \leq \frac{n^3 + 4}{2} \). Since \(wt(c_1) = \frac{2n^2 + n + 4}{2} < \frac{2n^2 + 3n + 4}{2} \) and \(\frac{n^3 + 4}{2} < \left(\frac{n^3 + 4}{2} \right) + \frac{n^2 + n}{2} = wt(c_n) \), then \(wt(c_1) < wt(c_i) < wt(c_n) \). We can check easily that \(wt(c_1) < wt(c_0) < wt(c_n) \). Next, we assume that \(wt(c_0) = wt(c_i) \) for \(i = 2, 3, \ldots, n - 1 \), then we obtain

\[
\frac{n^3 + n^2 + 2n + 4}{4} = \frac{(n^2 + n)i + n + 4}{2} \\
\frac{n^3 + n^2 + 2n + 4}{4} - \frac{(n + 4)}{2} = \frac{(n^2 + n)i}{2} \\
\frac{2(n^3 + n^2 - 4)}{4} = (n^2 + n)i \\
i = \frac{n^3 + n^2 - 4}{2n^2 + 2n}.
\]

So, \(i \) is not integer, a contradiction. Therefore \(wt(c_0) \neq wt(c_i) \). Next, we have \(2 \leq wt(v^i_j) \leq n^2 + 1 < wt(c_1) \), since \(wt(c_1) = \frac{2n^2 + n + 4}{2} = (n^2 + 1) + \frac{n + 2}{2} \). Therefore \(wt(v^i_j) < wt(c_1) < wt(c_i) < wt(c_n) \) and off course \(wt(v^i_j) < wt(c_0) \). So it is completely proof.

For example, an inclusive distance vertex irregular labeling of \(T_{4,2} \) is given in Figure 7.
By Lemmas 1 and 2, we have the exact value of distance vertex irregularity strength of the complete \(n \)-ary tree to level 2, \(T_{n,2} \) by the following theorem.

Theorem 3 Let \(n \geq 2 \) be an integer and \(T_{n,2} \) be an \(n \)-ary tree to level 2. The inclusive distance irregularity strength of \(T_{n,2} \) is

\[
\overline{dis}(T_{n,2}) = \left\lfloor \frac{n^2 + 1}{2} \right\rfloor.
\]

Proof. According to Inequality (1) we have

\[
\overline{dis}(T_{n,2}) \geq \max_{\delta \leq r \leq \Delta} \left\{ \frac{\delta + \sum_{j=1}^{r} n_j}{r+1} \right\} = \max_{1 \leq r \leq n+1} \left\{ \frac{1+\sum_{j=1}^{r} n_j}{r+1} \right\} = \max_{1 \leq i \leq n+1} \left\{ \left\lfloor \frac{n^2+1}{2} \right\rfloor, \left\lfloor \frac{n^2+2}{n+1} \right\rfloor, \left\lfloor \frac{n^2+n+2}{n+2} \right\rfloor \right\}
\]

since

\[
\frac{n^2+1}{2} = \frac{n^3 + n^2 + n + 1}{n+1} \geq \frac{n^3 + n^2 + n + 1}{n+1} = \left\lfloor \frac{n^2+2}{n+1} \right\rfloor \quad \text{and}
\]

\[
\frac{n^2+1}{2} = \frac{n^3 + n^2 + n + 1}{n+2} \geq \frac{n^3 + n^2 + n + 1 - \left(\frac{n^3}{2} - \frac{n+1}{2} \right)}{n+2} = \left\lfloor \frac{n^2+n+2}{n+2} \right\rfloor.
\]

Next, the upper bound of the inclusive distance irregularity strength of \(T_{n,2} \) has been proved by Lemmas 1 and 2. Therefore, we obtain \(\overline{dis}(T_{n,2}) = \left\lfloor \frac{n^2+1}{2} \right\rfloor \). ■

The exact value of an inclusive distance irregularity strength of \(T_{n,2} \) given in Theorem 3 attains the greatest lower bound provided by (Bong et al., 2020).

D. CONCLUSION AND SUGGESTIONS

In this research, the exact value of an inclusive distance vertex irregularity strengths of a complete \(n \)-ary tree up to level two \(T_{n,2} \) is obtained, namely the ceiling of the leaves number of \(T_{n,2} \) plus one divided by two. The conclusion answers the problems of an inclusive distance irregularity strength on a few rooted tree classes. A challenging problem remains: getting the inclusive distance vertex irregularity strength of the complete \(n \)-ary tree at a level greater than two and of the not complete \(n \)-ary tree at a level greater than one.

ACKNOWLEDGEMENT

The authors thank the Graph and Algebra Research Groups, Department of Mathematics, FMIPA Universitas Jember for the support. The authors also thank the anonymous referee for the corrections and suggestions.
REFERENCES

