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A. INTRODUCTION

The length biased Weibull distribution has been proposed by Pandya et al (Pandya, 2013).
They obtained the Bayes estimators of the parameters under linex loss function. The
probability density function of length biased Weibull distribution is given by

/12

i

The joint density function or likelihood function of (1) is given by

s3] o

The log likelihood function is given by

log f (x;0)=2nlog A—nlog (F(%DJrn(lJr%Jlog 0+log (ﬁxfj—@ixﬁ : (3)

1
f(x;0)= 6?(1 i]xﬂe’gxi ; x> 0. (1)
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Differentiating (3) with respect to 6 and equating to zero, we get the maximum likelihood
estimator of 6 which is given as

é:n[zn:xfj_ . 4)

B. METHODS
The Bayesian inference procedures have been developed generally under squared error
loss function

2
L(@,é’j =(«9—¢9j . (5)
The Bayes estimator under the above loss function, say, és is the posterior mean, i.e,

0s =E(0). 6)

Zellner (Zellner, 1986), Basu and Ebrahimi (Basu & Ebrahimi, 1991) have recognized that the
inappropriateness of using symmetric loss function. Norstrom (Norstrém, 1996) introduced
precautionary loss function is given as

) (&—aj
L(@,e]zf. )

0
The Bayes estimator under this loss function is denoted by ép and is obtained as
" %
0 = E(¢?)]". (8)

Calabria and Pulcini (Calabria & Pulcini, 1996) points out that a useful asymmetric loss
function is the entropy loss

L(5)e[8°~p log, (5)-1]

where 5=g,and whose minimum occurs at 2?:6’. Also, the loss function L(&) has been

used in Dey et al. (Dey, Ghosh, & Srinivasan, 1986) and Dey and Liu (Dey & Pei-San Liao Liu,
1992), in the original form having p =1. Thus L (&) can written be as

L(5)=b[5-log, (5)-1]; b>0. (9)

The Bayes estimator under entropy loss function is denoted by éE and is obtained by solving
the following equation

A 1 -1
Oe =|E| = : 10
j { (eﬂ a4
Wasan (Melin, 1994) proposed the K-loss function which is given as
2
N
00

Under K-loss function the Bayes estimator of 6 is denoted by &« and is obtained as
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e {EE(E/‘Q)T (12)

Al-Bayyati (Al-Bayyati, 2002) introduced a new loss function which is given as

L(é,@j:@{é—ej . (13)

Under Al-Bayyati’s loss function the Bayes estimator of 0 is denoted by t/‘\)m and is obtained as
R E (90+l)
On = . (14)
E(6°)

Several models have been investigated in last few years and a number of symmetric and
asymmetric loss functions have been shown to be functional; we refer readers to (Nassir &
Ibrahim, 2020), (Ramos, Louzada, Ramos, & Dey, 2019), (Reshi, Ahmad, & Ahmad, 2019), (Dar,
Ahmed, & Reshi, 2018), (Ajami & Jahanshahi, 2017), (Oluwafemi, 2017), (Mudasir Sofj,
Ahamad, S.P., Ahamad, A., 2016), (Ahmad, Ahmad, & Ahmed, 2016), (Tahir, 2015), (Reshi, ].A.,
Ahmad, A. and Mir, K.A., 2014), (Alzaatreh, Famoye, & Lee, 2013).

Let us consider two prior distributions of 0 to obtain the Bayes estimators.

(i) Quasi-prior: For the situation where we have no prior information about the parameter 6,
we may use the quasi density as given by

gl(e)=9id;¢9>0,d20, (15)

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior.
(ii) Gamma prior: Generally, the gamma density is used as prior distribution of the parameter
0 given by

9,(0)= L gegm :0>0. (16)

I'(a)

C. RESULT AND DISCUSSION
1. Posterior Density Under g, (¢)

The posterior density of 6 under g, (&), on using (2), is given by

27 (r GD o) (1‘1[ xﬁ]e_ggxﬁ o
[ (FGD o3 (H xﬁjeegxf 674do

0 i=1

f(6/x)=

n -0 '

[0 e H o
0
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n
n n+z—d +1
X >
: ! n+£—d —HZXV
2] A

= e (17)

F(n+n—d +1j
A
Theorem 1. On using (17), we have
F(n+2—d +c+1j
E(6°)= [Zx j . (18)

F(n+n—d +1j =
A

Proof. By definition,
E(¢°)=[6°f (6/x)do

n+f—d+1
(ZX j ]?e[mzdw] e79§Xﬁd9
F(n+2—d +1j 0

n+——d+1
(ZX J F(n+n—d+c+1J
A

ne D dctl
r'n+—-d+1 n A
[r541) (30)

i=1

F(n+n—d +c+1j
A

(e a) )

From equation (18), for c=1, we have
n -1
E(9)=£n+%—d +1j(2xﬁj : (19)
i=1
From equation (18), for ¢ =2, we have

ooz oo o]

From equation (18), for c=-1, we have
n

1
E(Ej — 3. (21)
(n+ d)'
A
From equation (18), for c=c+1, we have

F(n+n—d+c+2j ; ~(c+1)
E(6°)= A (ZXi”J : (22)

F(n+n—d +1j =
A
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2. Bayes Estimators Under ¢, ()

From equation (6), on using (19), the Bayes estimator of 8 under squared error loss
function is given by

n -1
Os :[n+%—d +1J(fo} : (23)
i=1
From equation (8), on using (20), the Bayes estimator of 8 under precautionary loss
function is obtained as

A n n 2(Q A
Hp:{(n+z—d +2)[n+z—d +1ﬂ (;Xij : (24)

From equation (10), on using (21), the Bayes estimator of 8 under entropy loss function is
given by

éE_(m——d)(Zx j . (25)

From equation (12), on using (19) and (21), the Bayes estimator of 8 under K-loss function
is given by

oo 8

From equation (14), on using (18) and (22), the Bayes estimator of 6 under Al-Bayyati’s
loss function comes out to be

§A|:(n+%—d+c+1j[zn:xfj_ : (27)

i=1

3. Posterior Density Under 0, (6?)
Under g, (6?) the posterior density of 6, using equation (2), is obtained as

2n 1" ”(1%] oA _Héxﬁ BY a1 po
) e
T ,2n 1)) o 1*% Hn A ‘@iﬂ BY a1 po

f(6/x)=
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n
n+—+a
A

[ﬂ_'-lelj LI —(ﬂ+ixfjg
= = o+ e\l
F(n+n+aj
A
Theorem 2. On using (28), we have
F(n+2+a+cj N —
E(6°)= (mzxﬁj .
i=1

F(n+n+a)
A

Proof. By definition,
E(60°)=[6"f(6/x)do

(ﬂ+i><f} o
F(n+n+aj !’.
A

n n+%+a
([HZij F(n+n+a+cj
i1 A
n n+Dg+c
I''n+— s A
[n+5ee] [mzxfj
i=1
F(n+2+a+cj . —

- x| .
s
I''n+—+«

A
From equation (29), for c=1, we have

E(H)z(n+%+a)(,8+gxfjl.

From equation (29), for ¢ =2, we have

2
n+ D vare1 7[1”2 %
A e i

E(ez):Kn+%+a+1j(n+%+aﬂ(ﬂ+gxfj2.

From equation (29), for c=-1, we have

E@:( " j[ﬁzj

n+— +a-1
A

From equation (29), for c=c+1, we have
F(n+n+a+c+1) . ~(c+1)
[,B+foj .
i=1

F(n+n+aj
A

E(6°)=

(28)

(29)

(30)

(31)

(32)

(33)
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4. Bayes Estimators Under g, (6)

From equation (6), on using (30), the Bayes estimator of 6 under squared error loss
function is given by

gs:(n+%+a][ﬂ+ifo_ . (34)

From equation (8), on using (31), the Bayes estimator of 8 under precautionary loss
function is obtained as

ép:Hn+%+a+l}(n+%+aﬂz(,B+Zl:xfj_ . (35)

From equation (10), on using (32), the Bayes estimator of 8 under entropy loss function is
given by

g5=£n+%+a+1j(,8+zn:xfj. (36)

i=1
From equation (12), on using (30) and (32), the Bayes estimator of 8 under K-loss function
is given by

o[t (2]

From equation (14), on using (29) and (33), the Bayes estimator of 6 under Al-Bayyati’s
loss function comes out to be

§A|=(n+%+a+cj[,8+zn:xfj_. (38)

i=1

D. CONCLUSION AND SUGGESTIONS

In this paper, we have obtained a number of estimators of parameter of length biased
Weibull distribution. In equation (4) we have obtained the maximum likelihood estimator of
the parameter. In equation (23), (24), (25), (26) and (27) we have obtained the Bayes
estimators under different loss functions using quasi prior. In equation (34), (35), (36), (37)
and (38) we have obtained the Bayes estimators under different loss functions using gamma
prior. In the above equation, it is clear that the Bayes estimators depend upon the parameters
of the prior distribution. We therefore recommend that the estimator’s choice lies according
to the value of the prior distribution which in turn depends on the situation at hand.
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