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Abstract. This paper will substantially deliver and discuss causative factors, prediction method, related 

issues and case studies of environmental impacts of blasting. Major impacts of blasting that frequently 

and widely analysis by researchers are flyrock, blast vibration, and dust. Environmental effects of blasting 

can be caused by controllable factors such as blast design as well as uncontrollable factors such as 

geological condition of rock mass. The empirical models to predict the environmental effect are site 

specifics, the researchers construct their empirical models based on the available research data in the 

field, future empirical model can also be build based on new specific site data. Artificial intelligence 

approach has been applied by researched as alternative way to predict environmental impacts of open pit 

mining blasting. More than one approach to asses environmental impacts of blasting give more alternative 

ways to prevent the impacts. 
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1. Introduction 

Environmental impacts, apart from technical and economic factors, are an important issue in 

mining blasting. Blasting is an effective method for mining to separate rock fragment from rock 

mass so that it can be prepared for the next stage in mining activities. Blasting on the other hand 

has the potential to have environmental impacts on humans, structures, living things and the 

surrounding environment as well. Major impacts of blasting that frequently and widely analysis by 

researchers are flyrock, blast vibration, and dust. Assessment and prevention of environmental 

impacts are standards that mining companies must pay attention to. Engineers are required to be 

able to assess and prevent the impacts of blasting, which may be performed technically by 

adjusting the blasting design in the field. 

Environmental impacts of mine blasting can cause hazards for booth objects in mining areas and 

in areas close to mining activities. Erten et al. (2009) reported that as many quarries in Turkey have 

effectively been surrounded by residential structures as a consequence of Turkey’s increasing 

population, there has been an increase in the number of complaints concerning possible excessive 

intensities of ground vibration induced by blasting. The most common complaints include 

annoyance to people, possible structural damage and disruption to some businesses. It has become 

imperative that the intensity of blast-induced ground vibrations be optimized in such a way that the 

structures in the vicinity of these quarries will not be damaged as a result of blasting operations. It 

has been found that a basic concern for the safety of property was the main response. The study 

suggested that the human response criteria when considering blasting within 400 m of habitations 

must be considered (Raina et al., 2004). Kecojevic & Radomsky (2004) reported that a total of 45 

fatal and 367 non-fatal accidents in coal, metal and non-metal surface mines had occurred between 

1978 and 1998. The lack of blast area security and flyrock accounted for 281 (68.2%) accidents.  

http://journal.ummat.ac.id/index.php/JMET
mailto:jmet@ummat.ac.id
mailto:syamsulhidayat@ummat.ac.id


2 Journal of Mining and Environmental Technology     

 Vol. 1, No. 1, September 2021, pp. 1-11 

  

Study and adjustment of vibration are not only give benefit for mining activities but also can be 

beneficial for other areas such as for example in dam development. Nateghi (2011) reported the 

study that took place during construction of Gotvand dam, located in Zagros Mountains in the 

south-west of Iran. The 178 m height and 730 m length embankment dam, which regulates the 

water of the Karun River, also serves power generation, flood control and irrigation needs. Time 

duration after concrete has been prepared is a consideration in how much the PPV limit is allowed. 

Aksoy et al. (2019) applied estimation of potential dust emission from blast design to find suitable 

emission respect to the allowable permissible limit for quarry mining. Suitable assessment and 

prevention of blasting impacts in addition to the safety of object in mining area are also to ensure 

the surrounding environment safety from mining activities. Environmental care is also a 

fundamental part of the company's environmental responsibility. Considering environmental 

impacts of blasting is an integral part of the blast design in the field. This paper will substantially 

deliver and discuss causative factors, prediction method and related significant issues of 

environmental impacts of blasting.  

2. Method  

This paper in general is the elaboration of the issues related to the environmental impacts of 

open pit mining blasting according to the previous studies. The descriptions are based on 

significant issues in related themes. Furthermore, examples of predictive cases for the 

environmental impacts of blasting are presented. Discussions and conclusions are drawn to state 

important elements consisting of key information and significance facts that support existing issues 

in order to fulfill the desired substance points. 

3. Environmental Impacts of Blasting 

The environmental impacts of blasting are the effects caused by blasting activities that can be 

felt by humans, give damages to structure buildings and surrounding ecosystem. The impacts can 

be small, medium and heavy. The environmental impacts of blasting such as flyrock, vibration, air 

overpressure and dust will be described below. Each part will be described regarding to the 

causative factors and prediction models.  

3.1 Flyrock 

3.1.1 Causative Factors  

Many factors have been identified as the cause of flyrock. Inadequate burden and spacing can 

cause flyrock. A burden dimension less than 25 times the charge diameter gives high specific 

charge, hence the excess energy results in long flyrock distances. Spacing appreciably less than the 

burden tend to cause premature splitting between blastholes and early loosening of stemming. Both 

these effects encourage rapid release of gases to the atmosphere and flyrock is considerable. 

Overload holes; a high specific charge throws flyrock to a longer distance than a low specific 

charge. This means that overloading of holes may result in excessive flyrock. Geological condition 

like zones of weakness and voids are often cause flyrock. Any explosive loaded in this zone will 

have the line of least resistance and ‘blow out’, causing flyrock. If stemming column is inadequate, 

the explosion gases are not forced to heave up the partly fractured ground but are simply allowed to 

‘rifle’ out of the top of the blasthole at very high velocity causing considerable flyrock and air 

blast. Faulty delay timing and initiation sequence, if the delay is not sufficient, movement from the 

back rows (in multi rows blast) will be upward rather than forward, giving rise to flyrock 

(Bhandari, 1997).   

Controlled and uncontrolled factors that cause flyrock in the field have been more explored. 150 

data fields and important factors affecting flyrock distance such as burden, spacing, stemming, 

blasthole diameter, powder factor, mean charge per blasthole in copper mine were recorded. Only 

fragments have the approximate diameter of 10 cm were considered. By using Monte Carlo and 

sensitivity analysis it was found that the most effective parameters were powder factor, stemming 

and burden (Ghasemi et al., 2012). One of the main reasons for improper predictions is the lack of 

data on flyrock in comparison to blast vibrations owing to statutory restrictions, avoidance of 
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reporting and consequent constraints on experimentation. While fragmentation and throw of rock 

accompanied by subsequent vibration and air overpressure are essential constituents of the blasting, 

flyrock is not. This probably is one of the main errors in predictive domains. In addition, rock mass 

properties play a major role in heaving of rock fragments during blasting (Raina et al., 2014). 

Kecojevic & Radomsky (2004) reported that a total of 45 fatal and 367 non-fatal accidents in coal, 

metal and non-metal surface mines had occurred between 1978 and 1998 where the primary causes 

were the lack of blast area security, flyrock, premature blast, and misfires. The lack of blast area 

security and flyrock accounted for 281 (68.2%) accidents. Investigations of flyrock accidents have 

revealed one or more of the following contributing factors: discontinuity in the geology and rock 

structure, improper blasthole layout and loading, insufficient burden, very high explosive 

concentration, and inadequate stemming.  

3.1.2 Prediction of Flyrock  

Estimating distance of flyrock throw on bench blasting has been proposed for example by 

Lundborg et al. (1975). A simple empirical formula was recommended taking into account 

diameter of blasthole. The equation was site specific not necessarily applicable in all places but at 

least the relationship between the diameter of the blast hole and the distance of rock throws can 

provide an initial reference of what flyrock conditions will be. In other places the empirical 

relationship of the two under consideration variables can be proposed based on existing data at 

concerned location. The relationship between flyrock range in m (Lm) and blasthole diameter in 

inches (d) purposed by Lundborg et al. (1997) in Bhandari (1997) is presented in Eqn. 1.  

 

Lm = 260 d2/3  (1) 

 

In addition to the empirical method, artificial intelligence (AI) approaches have also been 

involved in flyrock prediction. It can provide alternative way to perform predictions. Availability 

of data and personal AI experts is also the conditions that can support the application of this 

method. Results of application of Particle Swarm Optimization (PSO) which involved 76 blasting 

events in three quarry sites, Malaysia, show more reliable than Multiple Linear Regression. Based 

on sensitivity analysis results, it was also found that the RD was the most effective parameter on 

the flyrock in the studied cases (Hasanipanah et al., 2017). 

3.2 Vibration 

3.2.1 Causative Factors 

Several factors that affect ground vibration will be described in this section. The burden is one 

of the important factors which affect ground vibration. Excessive burden increase the ground 

motion because the explosives energy which is insufficient to break the burden rock will be 

converted into vibration. Amount of explosive; charge weight per delay is most important factor 

which controls the intensity of ground vibration. The larger the quantity of charge detonated per 

delay, the higher the vibrations. There is an optimum length beyond which further increments in 

stemming column serve no useful purpose. Smaller stemming columns of less than 20 times the 

diameter of hole may result in more ground vibrations. Ground vibration levels are reduced by the 

use of delay detonators because each delay generates its own pulses. The propagation of the ground 

vibration is strongly influenced by the lithology of the rock mass. Since the rock masses are in 

homogenous, ground motion waves travel through strata of different acoustical impedance. 

Scattering of the ground motion waves, at discontinuities, lowers the peak vibration levels. 

Distance and conditions of structures also affect the ground vibration, as the distance from shot 

increase, the particle velocity and frequency of ground vibrations decrease due to absorption, 

dispersion and dissipation of elastic waves. The natural frequency of the structures varies with the 

foundation, condition and age of structure and construction of the structure (Bhandari, 1997). A 

total of 1089 published blast data of various researchers in different rock sites have been collected 

and used to propose generalized empirical model for PPV by considering the effects of rock 

parameters like unit weight, rock quality designation (RQD), geological strength index (GSI), and 

uniaxial compressive strength (UCS). The proposed PPV model has a good correlation coefficient 
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and hence it can be directly used in prediction of blast-induced vibrations in rocks (Kumar et al., 

2016).  

3.2.2 Prediction of Ground Vibration 

Prediction of ground vibration has been performed by many researchers. They recommend 

equation based on existing field conditions. Equation 2 was proposed by Duvall and Petkof; (1959) 

in Ghasemi et al. (2013), an equation that has been widely used by many researchers applied in 

various different locations. It can be seen in Eqn. 2 that the PPV value can be predicted by 

involving the amount of (maximum) explosive used per delay (W) and the distance from the 

location of the explosion to the location of the vibration measuring device (D). K and β are site 

specific constants. The equation is a regression equation of PPV and Scaled Distance (D/W0.5) so 

that the K and β values will change at every different location according to the rock mass 

conditions.  

Discontinuity spacing will affect the blast vibration in the field. Hakan & Konuk (2008) 

examined the impacts of the discontinuity frequency parameter derived through geological 

measurements carried out on the blasting benches or nearby in a quarry mine (Supren, Eskisehir) in 

Turkey. The model was formed by adding a discontinuity frequency (λ) parameter other than the 

distance between the observation point and location of detonation (D) and the maximum charge per 

delay (W), α represents the discontinuity frequency coefficient, see the Eqn. 3. PPV attenuates 

more rapidly with in the steeply dipping multiple bed rock masses down and up dip compared to a 

long the strike. The attenuation rate of PPV within the rock mass at the low wall and high wall are 

very much influenced by their incident angles relate to dip direction. Number of coal layers 

influences the attenuation rate of PPV such that the higher the number of coal layers, the higher the 

attenuation of PPV. A new relationship was developed to improve prediction of PPV in steeply 

dipping multiple coal bed of open pit mine by accounting the direction of propagation and number 

of coal seams. Purposed model shown by Eqn. 4, where R is distance between the observation 

point and blast location, W is maximum charge per delay, Cos θi is Cosine of the incident angle, 

the incident angle is defined here as slope between the direction of the vibration propagation and 

the dip direction of the bedding plane, log Nc is logarithmic of the number of coal layers, n and k 

are constants (Simangundong & Wahyudi, 2015). 

 

𝑃𝑃𝑉 = 𝐾 [
𝐷

√𝑊
]

−𝛽
 (2) 

 

𝑃𝑃𝑉 = 𝐾 [
𝐷

√𝑊
]

−𝛽
λ𝛼 (3) 

 

𝑃𝑃𝑉 = 𝑘 [(1 + cos 𝜃𝑖 + log 𝑁𝑐)
𝑅

√𝑊
]

−𝑛
  (4) 

 

AI approaches have also been tried to solve vibration prediction. Iphar et al. (2008) investigate 

the applicability of adaptive neuro fuzzy inference system (ANFIS) to predict PPV in an open pit 

magnesite mining. The distance from the blasting site to the monitoring stations and the charge 

weight per delay were selected as the input parameters of the constructed model, the output 

parameter being the PPV. This study does not involve other parameters such as blast geometry, 

slope geometry, rock mass conditions. The comparison has indicated that the proposed ANFIS-

based model exhibited better prediction performance than the classical regression-based model. 

3.3 Air Overpressure 

3.3.1 Causative Factors  

Several factors that affect air overpressure will be described in this section. The burden is one of 

the important factors which affect air overpressure. If the burden is less than optimum the gaseous 

energy is dissipated into atmosphere without doing useful work thereby causing flyrok and air 

blast. This early release of gases generates air waves of large amplitude. It has been reported that 

strong air blast overpressure can be produced by the adjacent movement of a face during blasting if 
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spacing between holes is less than the distance travelled by a sound wave during the delay time 

between adjacent blasthole destinations. The explosives which produce more gaseous energy than 

shock energy such as ANFO, are more likely to produce ejection of gases and thereby producing 

higher amplitude air blast overpressure. The air blast levels created due to blasting are a function of 

the amount of efficiency of stemming. Whenever top priming is carried out the probability of air 

blast generation will increase. The bottom priming on other hand, however, produces less 

overpressure levels because of more confinement. Whenever the burden rock consist of highly 

fractured or jointed strata, there exists a possibility of escape of gases through them and which on 

reaching the atmosphere produce high air overpressure levels (Bhandari, 1997). Wiss & Linehen 

(1978) in Bhandari (1997) conducted experimental showed that air blasts were at least 6 dB higher 

when the observation point was perpendicular to the firing pattern rather than parallel to blast face, 

due to blasthole reinforcement. If a blast is detonated in a motionless atmosphere in which the air 

temperature is constant then the air overpressure intensity will solely depend on the distance of the 

source and will reduce by 6 dB as the distance from source doubles (Bhandari, 1997). Kuzu et al. 

(2009) confirmed that the result of air overpressure directly relates to the confinement properties of 

explosives. The best confinement quality exists in the shots of competent zones according to the 

low level of occurred gas, escaping from explosives detonation through the discontinuities on the 

face or stemming blowout. These results indicate the role of discontinuities of rock structures in the 

formation of air blast which could be directly related to the gas releases from the face and the 

stemming areas.  

3.3.2 Prediction of Air Overpressure 

The generalized predictor equation for the prediction of AOp is given in Eqn. 5, Siskind et al. 

(1980) in Mohamad et al. (2016). According to the equation, AOp is air over-pressure, H and β are 

the site factors. 

  

𝐴𝑂𝑝 = 𝐻 [
𝐷

√𝑊
3 ]

−𝛽
 (5) 

 

H and β are site specific constants. The equation is a regression equation of PPV and Scaled 

Distance (D/W1/3) so that the H and β values will change at every different location according to 

the rock mass conditions. 

Artificial intelligence (AI) methods for predicting specific blast-induced air over-pressure 

(AOp) are also alternative approaches. 113 blasting events have been recorded at the Deo Nai 

open-pit coal mine (Vietnam). Seven parameters including maximum charge weight per delay, 

measurement point distance from blast resource, Burden, Spacing, Stemming, Powder factor and 

Air humadity were used to predict blast-induced AOp. Seven AI methods was applied include 

random forest, support vector regression, Gaussian process, Bayesian additive regression trees, 

boosted regression trees, k-nearest neighbors, and artificial neural network (ANN). The results 

indicate that AI techniques provide better performance than the empirical method. Of the seven AI 

models, ANN was the most dominant model based on RMSE, R2, and MAE (Bui et al., 2019). 

Another ANN based approach to predict air over-pressure (AOp) also was applied by Mohammad 

et al. (2016) by using more less amount of data and variable. 76 blasting operations were 

investigated and relevant blasting parameters were measured in Hulu Langat granite quarry site, 

Malaysia. Maximum charge per delay and the distance from the blast-face were considered as 

model inputs or predictors. Empirical, artificial neural network (ANN) and a hybrid model of 

genetic algorithm (GA)–ANN were developed in the study. It was found that the GA–ANN 

technique can provide higher performance capacity in predicting AOp compared to other predictive 

methods. 

3.4 Mining Blasting Dust 

3.4.1 Causative Factors  

Dust particle from mining blasting floating in the air is closely related to the fine material that 

resulted from mining blasting process. A hypothesis about fines (dust) generation in the blasting 

process was initially formulated in which the crushing near the blasthole plays an important role. 
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Crushing of the rock near the vicinity of the blasthole arises due to the enormous pressure caused 

by the detonation of the explosive. Several rock and blasting parameters affect dust generation. The 

type of rock is of course the most important parameter. In highly porous rocks during blasting, 

greater dissipation of energy results in considerable crushing and production of fines. Increase in 

number of joints may increase amount of dust produced. Filler material in the joints is released and 

may come out as fines and dust. Therefore, clay filled joints or packets would provide more dust as 

a result of blast. Low-density rock produces more fines (and also dust) than high-density rocks. As 

the strength of rock decreases the rock is more liable to crushing and hence there is an increase in 

fines and dust. Blasting parameters, which influence the generation of fines and dust are: type and 

amount of explosives, burden and spacing parameters if not optimum, delay timing and sub-grade 

drilling. If the various blasting parameters affecting the dust generation can be understood then 

more effective steps can be taken to reduce the generation of dust (Bhandari, 2004).  

3.4.2 Prediction of Blasting Dust 

The United States Environmental Protection Agency (USEPA) proposed equations for the 

estimation total suspended particle (TSP) and PM10 during open pit blasting at a mine, Amegbey et 

al. (2016), see Eqn. 6 and 7. Eqn. 8 is used to estimate TSP from uncontrolled-dust blasting which 

proposed in Turkey standard, Aksoy et al. (2019). Berry & Pistocchi (2013) recommends the box 

model equation to calculate the Mass Balance Concentration of dust, see Eqn. 9. 

𝑇𝑆𝑃 =  0.00022 𝑥 𝐴1.5 𝑘𝑔/𝑏𝑙𝑎𝑠𝑡  (6) 

𝑃𝑀10 =  0.52 𝑥 0.00022 𝑥 𝐴1.5 𝑘𝑔/𝑏𝑙𝑎𝑠𝑡  (7) 

𝑇𝑆𝑃 =  0.08 𝑘𝑔/𝑡𝑜𝑛  (8) 

𝑃𝑘  =   𝑚𝑘/(𝑈 𝑥 𝐵 𝑥 𝐻) (9) 

In the above equation PM10 is particulate matter with a diameter less than or equal to 10 

micrometers. TSP is Total Suspended Particles of all sizes. A is the blasted area (m3). Pk is Mass 

Balance Concentration (μg/m3), mk is Mass Input Rate (μg/s), U is Wind Speed (m/s), B as the 

distance from the dust source (m) and H is mixing height of the dust (m).  

3.5. Case Study 

3.5.1 Blast Vibration Case 

Below is an example of vibration in open pit, the measurement data is quoted from Fişne et al. 

(2011), presented in Table 1. It can be seen from table 1 that 33 data of measurement of open pit 

blasting ground vibrations.  D is distance from blasting location to the vibration measuring device, 

W is the maximum amount of explosive used per delay, scaled distance (SD) is relationship 

between D and W (D / W0.5) and PPV is Peak Particle Velocity (PPV) from each blasting event. 

Based on the data, the regression equation (power regression) which shows the relationship 

between PPV and SD of the 33 amount of vibration measurement data in Table 1 is PPV = 116.95 

x (SD)-1.206.  Prediction of PPV that will be generated from blasting with a certain amount of W and 

Distance D is presented in Table 2, prediction calculation is performed based on Eqn. 2, D is 

simulated constant. The simulation shows that using the same distance D = 500 m, how much value 

of PPV will be generated by applying different amount of W, in other word what is the maximum 

amount of W that can be applied based on allowable maximum PPV standard. Shown in Table 2, 

by consider the maximum PPV = 3 mm / s, the maximum amount of charge per delay that can be 

applied to blasting at a distance of 500 m from the protected structure/building is 400-500 kg.  
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Table 1.  Results of Blast-Induced Ground Vibration Measurements 

Event  

No. 

Distance, 

D (m) 

Charge 

Weight 

Per delay, 

W (kg) 

Scaled  

Distance/SD, 

(D/W0.5) 

(m/kg0.5) 

Peak particle 

Velocity, 

PPV (mm/s) 

1 21 145 1.74 41.70 

2 25 288 1.47 40.10 

3 30 330 1.65 51.80 

4 32 425 1.55 46.50 

5 34 163 2.66 46.50 

6 35 216 2.38 49.50 

7 35 400 1.75 51.10 

8 45 291 2.64 35.10 

9 50 215 3.41 31.70 

10 50 350 2.67 54.10 

11 50 366 2.62 54.50 

12 55 365 2.88 51.50 

13 65 209 4.50 32.30 

14 70 318 3.93 37.70 

15 75 325 4.16 36.10 

16 80 262 4.94 24.70 

17 80 233 5.24 13.80 

18 80 337 4.36 20.80 

19 90 250 5.69 15.10 

20 100 370 5.20 10.90 

21 100 315 5.63 14.80 

22 100 311 5.67 10.20 

23 100 350 5.35 13.50 

24 115 267 7.04 7.54 

25 120 161 9.46 12.50 

26 150 300 8.66 8.11 

27 155 320 8.66 8.58 

28 175 450 8.25 3.31 

29 180 300 10.39 5.10 

30 195 310 11.08 4.08 

31 210 350 11.22 12.30 

32 220 370 11.44 4.13 

33 225 347 12.08 7.92 

 

Table 2. PPV Calculations with Variations of W 

No D W PPV 

1 500 700 3.38 

2 500 600 3.08 

3 500 500 2.76 

4 500 400 2.41 

5 500 300 2.03 

6 500 200 1.59 

7 500 100 1.04 

3.5.2 Blasting Dust Case 
An example of blasting dust calculation is given in this section, extracted from Aksoy et al. 

(2019). Dust calculation is performed using Turkey dust emission factor standard for uncontrolled 

blast mining, 0.08 kg dust emission per ton of blasted rock. The amount of limestone rock               

(2.6 ton/m3 in density) to be exploded in shot which is planned as one shot per week is found to be        

9750 tons, 3750 m3.  Aksoy et al. (2019) applied 80% of the dust resulted from blasting produces 

10 micrometers or smaller in diameter, it means PM10 = 20 % TSP. The calculations can be seen in 

Table 3. Based on the calculations in Table 3, PM10 dust emission resulted from the blasting is      
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156 x 109 ug, if it is assumed that will be completely dispersed in 1 hour, then at a point with a 

distance of 2050 m from the blasting source, it is predicted that there will be a 143 ug / m3 of dust 

emission. 

Table 3. Dust Emission Tabulation and Calculation 

NO PARAMETERS RESULT 

1 Volume of blasted Rock 3750 m3 

2 Rock density 2.6 ton/m3 

3 Rock tonnage  9750 ton (3750 x 2.6)  

4 Dust emission TSP 

 

780 kg 

(0.08 kg/ton x 9750 ton) 

5 Amount of PM10 (%20), kg 156 kg 

(780 kg x 0.2) 

6 Amount of PM10 (%20), ug 156 x 109 ug  

7 PM10 1 hour dispersion, Mk 43.3 x 106 ug/hour 

(156 x 109 ug / 3600) 

8 PM10 1 day dispersion, Mk 1.8 x 106 ug/second 

(156 x 109 ) / (3600 x 24) 

9 Wind speed, U 3.7 m/s 

10 Concentration point distance from 

Blast pattern, R 

2050 m 

11 Dust height, H 40 m 

12 Mass balance concentration, ug/m3,  

Pk = Mk / (U x R x H), 1 hour 

dispersion 

143 ug/m3 

(43.3 x 106 ug/second ) ÷  

(3.7 m/sn x 2050 m x 40 m) 

13 Mass balance concentration, ug/m3,  

Pk = Mk / (U x R x H), 1 day 

dispersion 

6 ug/m3 

(1.8 x 106 ug/second) ÷  

(3.7 m/sn x 2050 m x 40 m) 

4. Discussion  

Environmental impacts of blasting can be caused by controllable factors such as blast design as 

well as uncontrollable factors such as geological condition of rock mass. Environmental impacts of 

blasting that most often have an impact in the field on the surrounding environment are flyrock, 

vibration, air overpressure and dust. Dealing with controllable factors must be performed in serious 

effort in order to minimize environmental impacts so that the environmental impacts of blasting can 

be conditioned below the allowable standard limit. Burden and delay timing, among other factors, 

are controllable factors that significantly influence flyrock, vibration, air overpressure and dust. 

Burden is a blasting geometry that practically will affect other blast geometries. Burden plays 

important rule to the others blast geometries design as well as to the environmental impacts, 

therefore burden is a significant issue in discussing blast design and projected environmental 

impacts. 

The empirical models to predict the environmental effect are site specifics, the researchers 

construct their empirical models based on the available research data in the field, future empirical 

model can also be build based on new specific site data. Empiric models can help to provide an 

overview of the impacts that will be generated and how actions should be taken to avoid bigger 

impacts. Artificial intelligence approach has been applied by researchers as alternative way to 

predict environmental impacts of open pit mining blasting. Some cases of this approach even show 

better performance than conventional empirical and another statistical method. Applicability of the 

empirical method and the AI approach are based on field conditions, data availability and 

experience. More than one approach to asses environmental impacts of blasting give more 

alternative ways to prevent the impacts. 

 

 



 Journal of Mining and Environmental Technology 9 
Vol. 1, No.1, September 2021, pp. 1-11 

  

Table 4. Influence Factors and Empirical Formula of Blasting Impcats 

No 
Environmental 

Impacs 

Causative and 

Influence Factors 
Empirical Formula 

1. Flyrock • Burden, Spacing, 

Stemming  

• Overload holes 

• Geological condition  

• Faulty delay timing and 

initiation sequence 

• Powder factor 

• Rock mass properties 

• Discontinuity 

 

Lm = 260 d2/3           Lundborg et al. (1997)  

 

 

2 Vibration • Burden, Stemming 

• Delay 

• Distance and 

conditions of structures  

• Amount of explosive 

• Charge weight per 

delay  

• Distance from blast 

source 

• Lithology 

• Spacing and 

Orientation of 

discontinuity 

𝑃𝑃𝑉 = 𝐾 [
𝐷

√𝑊
]

−𝛽

       Duvall and Petkof; (1959) 

 

 

𝑃𝑃𝑉 = 𝐾 [
𝐷

√𝑊
]

−𝛽

λ𝛼    Hakan & Konuk (2008)  

 

 

𝑃𝑃𝑉 = 𝑘 [(1 + cos 𝜃𝑖 + log 𝑁𝑐)
𝑅

√𝑊
]

−𝑛

   

Simangunsong & Wahyudi (2015). 

 

3. Air 

overpressure 
• Burden, Spacing, 

Stemming 

• Priming 

• Rock strata condition 

• Observation point 

orientation to the face 

• Atmosphere condition 

• Discontinuities  

 

𝐴𝑂𝑝 = 𝐻 [
𝐷

√𝑊
3 ]

−𝛽

      Siskind et al. (1980) 

 

4. Dust • Type of rock  

• Number of joints 

• Filler material of joint 

• Strength of rock 

• Type and amount of 

explosives,  

• Burden, Spacing, 

Delay  

TSP  = 0.00022 x A1.5 kg/blast (USEPA, 1994) 

 

PM10  = 0.52 x 0.00022 x A1.5 kg/blast   

(USEPA, 1994) 

 

TSP  = 0.08 kg/ton      (Turkey Standard, 2009) 

 

𝑃𝑘         =  
𝑚𝑘

𝑈 𝑥 𝐵 𝑥 𝐻
          (Berry & Pistocchi, 2013) 

5. Conclusion  

There are some critical conclusions that can be drawn from all existing explanations and 

discussions: 
• The environmental impacts of blasting are the effect caused by blasting activities that can be felt 

by humans, give damages to structure buildings and surrounding ecosystem. 

• Environmental impacts of blasting can be caused by controllable factors such as blast design as 

well as uncontrollable factors such as geological condition of rock mass. 

• Dealing with burden and delay timing are effective ways to control the impacts to compensate 

geological conditions and other rock mass characteristics which are uncontrollable factors. 
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• The empirical models to predict the environmental effect are site specifics, the researchers 

construct their empirical models based on the available research data in the field, future 

empirical model can also be build based on new specific site data. 

• Artificial intelligence approach has been applied by researched as alternative way to predict 

environmental impacts of open pit mining blasting. 
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