Multi-method Approach in Fulfilling Clean Water Resources for Inhabitants in A Rural Area: Preliminary Results

Aditya Pratama, Abdullah Husna, Ryan Dwi Wahyu Ardi, Yogi Adi Prasetya


Clean water scarcity is among the crucial issues for inhabitants at Cikakaban Village, Tasikmalaya City. The complexity of the geological and hydrogeological conditions around Cikakaban Village makes groundwater exploration quite difficult. Regionally, Cikakaban Village has low aquifer productivity and is located at the contact of two formations which are passed by a fault. Therefore, a multi-method approach should be used in water sources exploration to obtain comprehensive results. In this paper, we presented the preliminary results which consist of the detailed geological and hydrogeological conditions of Cikakaban Village and its surroundings based on direct field observations. These observations aim to know the lithology that composes the research area and its characteristics, the potential of aquifers and water resources around the research area, as well as an overview of the distribution of groundwater depth and its flow direction. Geological survey includes observation of outcrops, both lithological description and geological structure evidence. Meanwhile, hydrogeological survey includes observation wells (location plotting, measuring ground water level elevation and depth, and checking water quality), as well as observation of the other potential water resources around Cikakaban Village. It can be inferred that rocks underlying the study area have fine grain sizes, dominated by claystone and tuff. However, the presence of geological structure causes these rocks to potentially become productive aquifers. Other potential water sources around the research area are springs and intermittent rivers.


Cikakaban Village; clean water resource; geology; hydrogeology; multi-method approach

Full Text:



Adebayo, O.S., Abraham, A.A., 2018. Aquifer, Classification and Characterization, in: Javaid, M.S., Khan, S.A. (Eds.), Aquifers - Matrix and Fluids. InTech.

Agosta, F., Alessandroni, M., Antonellini, M., Tondi, E., Giorgioni, M., 2010. From fractures to flow: A field-based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics 490, 197–213.

Agosta, F., Ruano, P., Rustichelli, A., Tondi, E., Galindo-Zaldívar, J., Sanz de Galdeano, C., 2012. Inner structure and deformation mechanisms of normal faults in conglomerates and carbonate grainstones (Granada Basin, Betic Cordillera, Spain): Inferences on fault permeability. Journal of Structural Geology 45, 4–20.

Bauer, H., Schröckenfuchs, T.C., Decker, K., 2016. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria). Hydrogeol J 24, 1147–1170.

Budhitrisna, T., 1986. Peta Geologi Lembar Tasikmalaya, Jawa Barat.

Chowdary, V.M., Ramakrishnan, D., Srivastava, Y.K., Chandran, V., Jeyaram, A., 2009. Integrated Water Resource Development Plan for Sustainable Management of Mayurakshi Watershed, India using Remote Sensing and GIS. Water Resources Management 23, 1581–1602.

Costigan, K.H., Jaeger, K.L., Goss, C.W., Fritz, K.M., Goebel, P.C., 2016. Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover. Ecohydrology 9, 1141–1153.

Datry, T., Larned, S.T., Tockner, K., 2014. Intermittent Rivers: A Challenge for Freshwater Ecology. BioScience 64, 229–235.

Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J., Withjack, M.O., 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology 32, 1557–1575.

Iskandar, A.H., 2021. SDGs Desa. SDGs Desa. URL

Kemendes, 2020. SDGs Desa Nomor 6: Desa Layak Air Bersih dan Sanitasi. SDGs Desa Nomor 6: Desa Layak Air Bersih dan Sanitasi. URL

Lachassagne, P., Wyns, R., Dewandel, B., 2011. The fracture permeability of Hard Rock Aquifers is due neither to tectonics, nor to unloading, but to weathering processes: Weathering and permeability of Hard Rock Aquifers. Terra Nova 23, 145–161.

Lange, G., Yaramanci, U., Meyer, R., 2007. Surface Nuclear Magnetic Resonance, in: Environmental Geology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 403–430.

Morris, B.L., Lawrence, A.R.L., Chilton, P.J.C., Adams, B., Calow R.C., Klinck, B.A. 2003. Groundwater and its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management. Early Warning and Assessment Report Series, RS. 03-3. United Nations Environment Programme, Nairobi, Kenya

Nugraha, I., 2016. Warga Satu Kampung di Kota Tasikmalaya Tak Punya WC Sendiri. Warga Satu Kampung di Kota Tasikmalaya Tak Punya WC Sendiri. URL

Riyadi, A., Wibowo, K., 2007. Karakteristik Air Tanah di Kecamatan Tamansari Kota Tasikmalaya. J. Tek. Ling 8, 197–206.

Rudiyanto, A., 2020. Ringkasan Eksekutif Pelaksanaan Pencapaian Tujuan Pembangunan Berkelanjutan/Sustainable Development Goals (TPB/SDGs) Tahun 2019. Kedeputian Bidang Kemaritiman dan Sumber Daya Alam, Kementerian Perencanaan Pembangunan Nasional/Badan Perencanaan Pembangunan Nasional.

Tadesse, N., 2017. Lithological and structural controls on the development of aquifer in basement rock dominated Tsalit- Ira River Basin, Tigray, Northern Ethiopia. mejs 9, 106.



  • There are currently no refbacks.


Creative Commons License

Jurnal Pertambangan dan Lingkungan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.