The Evolution of Backpropagation Neural Network Algorithms in the Development of Intelligent Flood Detection Systems
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Aldardasawi, A. M., & Eren, B. (2021). Floods and their impact on the environment. Academic Perspective Procedia, 4(2), 42–49. https://www.acperpro.com/document/ISHAD2021ID24
Bejani, M. M., & Ghatee, M. (2021). A systematic review on overfitting control in shallow and deep neural networks. Artificial Intelligence Review, 54(8), 6391–6438. https://link.springer.com/article/10.1007/s10462-021-09975-1
Beshir, A. A., & Song, J. (2021). Urbanization and its impact on flood hazard: the case of Addis Ababa, Ethiopia. Natural Hazards, 109(1), 1167–1190. https://link.springer.com/article/10.1007/s11069-021-04873-9
Bian, K., & Priyadarshi, R. (2024). Machine learning optimization techniques: a survey, classification, challenges, and future research issues. Archives of Computational Methods in Engineering, 31(7), 4209–4233. https://link.springer.com/article/10.1007/s11831-024-10110-w
Biazar, S. M., Golmohammadi, G., Nedhunuri, R. R., Shaghaghi, S., & Mohammadi, K. (2025). Artificial intelligence in hydrology: advancements in soil, water resource management, and sustainable development. Sustainability, 17(5), 2250. https://doi.org/https://doi.org/10.3390/su17052250
Chen, D. (2024). Application of improved genetic algorithms in path planning. Journal of Internet Technology, 25(7), 1091–1099. https://jit.ndhu.edu.tw/article/view/3133
Fajrillah, A. A. N., Hartanto, R., & Nugroho, L. E. (2024). Factors Affecting Long-Term Effectiveness of Community-Based Early Warning Systems (EWSs) in Rural Areas: A Systematic Review. In 2024 8th International Conference on Information Technology (InCIT), (pp. 231-236). IEEE. https://ieeexplore.ieee.org/abstract/document/10810638
Fang, W., Chen, Y., & Xue, Q. (2021). Survey on research of RNN-based spatio-temporal sequence prediction algorithms. Journal on Big Data, 3(3), 97. https://doi.org/DOI:10.32604/jbd.2021.016993
García, J., Leiva-Araos, A., Diaz-Saavedra, E., Moraga, P., Pinto, H., & Yepes, V. (2023). Relevance of machine learning techniques in water infrastructure integrity and quality: A review powered by natural language processing. Applied Sciences, 13(22), 12497. https://doi.org/https://doi.org/10.3390/app132212497
Haji, S. H., & Abdulazeez, A. M. (2021). Comparison of optimization techniques based on gradient descent algorithm: A review. PalArch’s Journal of Archaeology of Egypt/Egyptology, 18(4), 2715–2743. https://www.researchgate.net/profile/Adnan-Abdulazeez/publication/349573260
Hasnaoui, Y., Tachi, S. E., Bouguerra, H., & Yaseen, Z. M. (2025). Transfer learning-based deep learning models for flood and erosion detection in coastal area of Algeria. Earth Science Informatics, 18(2), 380. https://link.springer.com/article/10.1007/s12145-025-01866-1
Karnam, V. S. (2025). Leveraging Intelligent Predictive Analytics Using AI in Cloud-Based Safety and Security Operations for Transforming Disaster and Emergency Management Response. Journal of Computer Science and Technology Studies, 7(7), 660–667. https://al-kindipublishers.org/index.php/jcsts/article/view/10349
Kumar, V., Azamathulla, H. M., Sharma, K. V., Mehta, D. J., & Maharaj, K. T. (2023). The state of the art in deep learning applications, challenges, and future prospects: A comprehensive review of flood forecasting and management. Sustainability, 15(13), 10543. https://www.mdpi.com/2071-1050/15/13/10543
Li, X., Xiang, S., Zhu, P., & Wu, M. (2015). Establishing a dynamic self-adaptation learning algorithm of the BP neural network and its applications. International Journal of Bifurcation and Chaos, 25(14), 1540030. https://www.worldscientific.com/doi/abs/10.1142/S0218127415400301
Liao, Z., & Li, M. (2024). Comparing rainfall prediction at various time scales and rainfall interpolation at the regional scale using artificial neural networks. Theoretical and Applied Climatology, 155(12), 9929–9940. https://link.springer.com/article/10.1007/s00704-024-05205-0
Miller, T., Durlik, I., Kostecka, E., Kozlovska, P., Łobodzińska, A., Sokołowska, S., & Nowy, A. (2025). Integrating artificial intelligence agents with the internet of things for enhanced environmental monitoring: applications in water quality and climate data. Electronics, 14(4), 696. https://doi.org/https://doi.org/10.3390/electronics14040696
Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536. https://doi.org/https://doi.org/10.3390/w10111536
Samantaray, S., & Sahoo, A. (2020). Prediction of runoff using BPNN, FFBPNN, CFBPNN algorithm in arid watershed: a case study. International Journal of Knowledge-Based and Intelligent Engineering Systems, 24(3), 243–251. https://journals.sagepub.com/doi/abs/10.3233/KES-200046
Samantaray, S., & Sahoo, A. (2024). Prediction of flow discharge in Mahanadi River Basin, India, based on novel hybrid SVM approaches. Environment, Development and Sustainability, 26(7), 18699–18723. https://link.springer.com/article/10.1007/s10668-023-03412-9
Santos, C. F. G. D., & Papa, J. P. (2022). Avoiding overfitting: A survey on regularization methods for convolutional neural networks. ACM Computing Surveys (Csur), 54((10s)), 1–25. https://dl.acm.org/doi/full/10.1145/3510413
Saravi, S., Kalawsky, R., Joannou, D., Rivas Casado, M., Fu, G., & Meng, F. (2019). Use of artificial intelligence to improve resilience and preparedness against adverse flood events. Water, 11(5), 973. https://doi.org/https://doi.org/10.3390/w11050973
Sun, A. Y., & Scanlon, B. R. (2019). How can Big Data and machine learning benefit environment and water management: a survey of methods, applications, and future directions. Environmental Research Letters, 14(7), 073001. https://iopscience.iop.org/article/10.1088/1748-9326/ab1b7d/meta
Surjono, S., Zanuar, P., & Rizqi, A. (2022). Cross-border strategies to respond the impact of climate change in the upstream Brantas Watershed, Indonesia. Environment, Development and Sustainability, 24(12), 14393–14420. https://link.springer.com/article/10.1007/s10668-021-02000-z
Tanim, A. H., McRae, C. B., Tavakol-Davani, H., & Goharian, E. (2022). Flood detection in urban areas using satellite imagery and machine learning. Water, 14(7), 1140. https://doi.org/https://doi.org/10.3390/w14071140
Thankappan, J., Mary, K., Raj, D., Yoon, D. J., & Park, S. H. (2023). Adaptive Momentum-Backpropagation Algorithm for Flood Prediction and Management in the Internet of Things. Computers, Materials & Continua, 77(1), 1053–1079. https://doi.org/https://doi.org/10.32604/cmc.2023.038437
Tosan, M., Gharib, M. R., Attar, N. F., & Maroosi, A. (2025). Enhancing Evapotranspiration Estimation: A Bibliometric and Systematic Review of Hybrid Neural Networks in Water Resource Management. Computer Modeling in Engineering & Sciences (CMES), 142(2), 1–46. https://doi.org/Doi:10.32604/cmes.2025.058595
Wang, F., & Feng, X. (2025). Flood change detection model based on an improved U-net network and multi-head attention mechanism. Scientific Reports, 15(1), 3295. https://www.nature.com/articles/s41598-025-87851-6
Wu, J., Long, J., & Liu, M. (2015). Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing, 148, 136–142. https://www.sciencedirect.com/science/article/abs/pii/S0925231214009266
Yan, Y. (2024). Decision-making model construction of emergency material allocation for critical incidents based on BP neural network algorithm: An Overview. Archives of Computational Methods in Engineering, 31(6), 3497–3513. https://link.springer.com/article/10.1007/s11831-024-10086-7
Yu, J., Li, Y., Huang, X., & Ye, X. (2025). Data quality and uncertainty issues in flood prediction: a systematic review. International Journal of Digital Earth, 18(1), 2495738. https://www.tandfonline.com/doi/full/10.1080/17538947.2025.2495738
Zhang, J., & Qu, S. (2021). Optimization of backpropagation neural network under the adaptive genetic algorithm. Complexity, 2021(1), 1718234. https://doi.org/https://doi.org/10.1155/2021/1718234
Zhang, Y. G., Tang, J., Liao, R. P., Zhang, M. F., Zhang, Y., Wang, X. M., & Su, Z. Y. (2021). Application of an enhanced BP neural network model with water cycle algorithm on landslide prediction. Stochastic Environmental Research and Risk Assessment, 35(6), 1273–1291. https://link.springer.com/article/10.1007/s00477-020-01920-y
Refbacks
- There are currently no refbacks.
Committee:
- Dr. Syaharuddin : +62 878-6400-3847
- Dr. Intan Dwi Hastuti : +62 812-1611-9880