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Abstract: Efficient logistics system planning is key to facing increasingly tight business competition. 
The problem of product distribution from multi-suppliers to ports is often faced with supply 
uncertainty and limited transportation and storage capacity, thus requiring an adaptive and 
optimal decision-making approach in responding to supply dynamics. This study proposes a 
scenario-based stochastic mixed-integer linear programming (SMILP) model to support decision-
making in a multi-supplier distribution system to ports through a single hub under supply 
uncertainty. This model takes the case of a product delivery system with consolidation in the sago-
starch supply chain, where shipping companies and suppliers are faced with supply fluctuations, 
limited warehouse capacity, and challenges in selecting the appropriate type of ship. This model 
considers supply uncertainty, limited warehouse capacity at suppliers, and the selection of large 
ship types as transportation modes. The optimization objective is to minimize the total logistics 
cost, which includes shipping, storage, and ship activation costs, while ensuring the fulfillment of 
minimum demand at the port each period. The implementation results show that this model is 
effective in adapting to supply variations, utilizing transportation and storage capacity efficiently, 
and consistently selecting a combination of shipping and inventory strategies that minimize costs in 
the face of uncertainty. 
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——————————   ◆   —————————— 

 

A. INTRODUCTION 

Efficient logistics system planning is key to facing increasingly tight business competition 

(Guastaroba et al., 2016). The problem of product distribution from multi-suppliers to ports is 

often faced with supply uncertainty and limited transportation and storage capacity, thus 

requiring an adaptive and optimal decision-making approach in responding to supply 

dynamics. Shipment consolidation is one effective approach to improving distribution 

efficiency, where multiple shipments from various sources are combined in one mode of 

transportation to maximize capacity and reduce costs (Guastaroba et al., 2016). This model 

allows for reduced logistics costs, although it must face longer distances and travel times due 

to transportation through intermediary facilities (Beuthe & Kreutzberger, 2008). 

The decision-making problems faced by freight forwarder managers are typically more 

complex than those faced by businesses that manage their own transportation (Guastaroba et 

al., 2016). The importance of shipping with consolidation has been discussed by researchers, 

including the following. Hanbazazah et al., (2020) discuss the consolidation strategy of 
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indivisible shipments in a third-party logistics (3PL) system. They developed mathematical 

and heuristic models to plan shipment consolidation at the terminal, with the aim of 

reducing costs and still meeting delivery deadlines. Qiu & Huang, (2013) introduced the 

concept of SHIP as a shared logistics service provider in industrial areas. Their study  

showed that consolidation of shipments through SHIP can significantly reduce logistics costs, 

especially as the size of the supply chain, vehicle capacity, and fixed costs of transportation 

and storage increase. Alnaggar, (2017) discussed a two-stage stochastic programming model 

for distribution planning with consolidation under demand uncertainty. The model 

determines the optimal delivery strategy from suppliers to customers via a consolidation 

center, with the objective of minimizing costs. (Anwar, 2018) developed an optimization 

model for shipping and transportation allocation in the sago starch supply chain. His 

research aims to improve distribution efficiency by considering various transportation 

alternatives and shipping consolidation strategies.  

The efficiency and resilience of product distribution are very important in facing market 

dynamics and uncertainty, so several studies use scenario-based stochastic programming to 

overcome uncertainty in logistics and supply chain systems. Azadeh et al., (2014) focused on 

developing a stochastic programming model to optimize the performance of a biofuel supply 

chain, while Maggioni et al., (2017) compared the effectiveness of stochastic programming 

and robust optimization in responding to demand uncertainty and distribution costs. 

Gobachew and Haasis, (2023) applied scenario-based stochastic programming to design an 

efficient pharmaceutical distribution system in Ethiopia under demand uncertainty. On the 

other hand, Rijpkema et al., (2016) extended the stochastic approach by considering the 

variability of meat product quality in quality-based supply planning in the slaughterhouse 

industry. Meanwhile, Mendoza-Ortega et al., (2021) emphasized the use of stochastic 

programming in determining the location of facilities in the agro-food supply chain network 

to deal with market demand fluctuations.  

This study develops a scenario-based stochastic mixed-integer linear programming 

(SMILP) model to support decision making in product distribution with consolidation, 

focusing on the distribution system in the sago-starch supply chain. The sago-starch supply 

chain is faced with the challenge of supply uncertainty caused by various factors such as 

weather, infrastructure limitations, production dynamics, and geographical barriers (Anwar 

& Djatna, 2017; Anwar et al., 2022). This uncertainty requires adaptive and efficient 

distribution planning to minimize logistics costs, while ensuring the fulfillment of demand at 

the port in each period. 

 

B. METHOD 

The method used in this study is the development of a scenario-based SMILP model to 

optimize product delivery with consolidation from multiple suppliers to the destination port. 

This model is designed to deal with supply uncertainty, where each scenario represents a 

possible outcome of uncertain parameters, such as supply fluctuations and demand 

variability. In this model, supply uncertainty is transformed into a deterministic problem by 

adopting a series of scenarios that reflect various possible conditions. Each scenario is 
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processed through stochastic programming techniques, which allows the model to produce 

solutions that are adaptive to the existing uncertainties. This stochastic problem is then 

converted into a deterministic mixed integer linear programming (MILP) model, which 

allows for more structured and realistic planning in a complex logistics context. This model 

takes the case of a product delivery system in the sago-starch supply chain, with several 

simplifications that include assumptions related to supply uncertainty, warehouse capacity, 

and the selection of ship types as transportation modes. In addition, the use of hypothetical 

data is applied to test the validity of the model and evaluate its effectiveness under various 

conditions. The development of this model aims to support tactical and operational decision 

making for freight forwarders and suppliers in managing product shipments efficiently 

under conditions of supply uncertainty, while minimizing associated logistics costs. This 

research is actually to improve and upgrade (Anwar, 2018) by including aspects of supply 

uncertainty and multi-period decisions in one model. For a deeper understanding of 

scenario-based stochastic programming techniques, one can refer to literature such as Birge 

& Louveaux, (2011) and Ruszczyński and Shapiro, (2009). 

 

C. RESULTS AND DISCUSSION 

1. Shipment with Consolidation System (Case: Sago-starch Supply Chain) 

In this paper, an example of the application of delivery system optimization with 

product consolidation is given in the case of the sago starch supply chain in the Meranti 

Islands Regency, Riau, Indonesia. In this case, this paper focuses on the delivery system of 

dry sago starch from sago mills (suppliers) in Meranti to agents (retailers) to the port of 

Cirebon, West Java. The delivery of sago from several mills is managed by a cooperative 

(freight forwarder) (Pratama et al., 2018; Riza et al., 2017). An illustration of the sago starch 

delivery system in the supply chain system can be seen in Figure 1. 

 

 
Figure 1.  Shipment with consolidation problem  
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In the described sago-starch supply chain system, there are four actors involved, namely 

suppliers, a freight forwarder, a third party logistics (3PL), and retailers. This paper is 

focused to problems faced by the freight forwarder in managing product shipments from 

suppliers to destination ports with a shipping with consolidation on a large vessel (as hub). 

 

2. Problem Definition 

Based on the information presented in the previous point, the problem faced by freight 

forwarders is how to manage the shipping management of sago-stach from suppliers to the 

destination port, including selecting the type of ship that minimizes total logistics costs? In 

this case, the total logistic cost includes costs borne by forwarders and suppliers. These costs  

include transportation cost from suppliers to intermediary hubs, product storage costs at 

suppliers, large vessel rental and operating costs for shipping sago starch from hubs to 

destination ports (Khotijah et al., 2020; Riza et al., 2017). In addition, there are constraints that 

must not be violated including supply capacity limits, shipping vessel capacity, and product 

demand levels at destination ports by retailers (customers). For the purpose of facilitating 

modeling, some assumptions are given in Table 1. 

 
Table 1. Assumptions 

Aspect Assumption 

Supply The level of supply of sago-starch from all suppliers is uncertain but can be 
identified with two possible levels of supply, namely normal and limited, 
which can be known the probability value. The unit of product quantity is 
unit (which for practical applications can be converted into other units). 

Product Sago-starch products are durable so they do not take perishable products into 
consideration. 

Demand The level of demand for sago-starch products from customers at the 
destination port is deterministic. 

Costs The cost of storing products in the supplier's warehouse, the shipping cost per 
unit of product to the hub is considered the same for all suppliers. 

Period One time period is equal to one week. Shipping by large ships is done once in 
one period. 

Carrier Each supplier transports products from its location to the hub by a small type 
of vessel (either owned or chartered) at a uniform cost. Freight forwarders can 
only charter one ship from the two types (loading capacities) available for 
each period. 

 

Once the problem is defined and the assumptions are stated, the next stage is the 

development of a mathematical model which is explained in the next point.  

 

3. Model Formulation 

After the formulation and implementation process of the optimization model that has 

been explained in the Methodology section, the model solving process is carried out using 

the Gurobi solver. The model is implemented in the form of Stochastic Mixed-Integer Linear 

Programming (SMILP) by considering the uncertainty of supply from each supplier in 

several scenarios, the arrangement of the distribution flow of goods, and the selection of the 
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type of large ship to be used in each shipping period. The optimization process aims to 

minimize the total logistics cost which includes shipping costs, inventory storage, and ship 

activation costs, under the constraints of warehouse capacity, ship capacity, and minimum 

demand at the port. 

Indices: 

 Supplier index,  

 Time period index,  

 Scenario index,  

 

Parameters: 

 The probability of scenario  

 Shipping cost from hub to destination port (Monetary Unit or MU/Unit) 

 Delivery cost from supplier to consolidation hub (MU /Unit) 

 Holding cost of products at supplier’s warehouse per period (IDR/Unit) 

 Demand per period (Unit). 

 The amount of supply available for supplier  in period  under scenario  

(Units). 

 Maximum warehouse capacity of supplier  (Units) 

 Operational cost of large vessel for type A and B respectively (MU) 

 Maximum capacity of large vessel for type A and B respectively (Units) 

 

Decision variables: 

 Quantity of product that shipped by supplier  to consolidation hub for in  

period  under scenario  (Units) 

 Quantity of products that shipped from consolidation hub in period  under 

scenario  (Units) 

 Quantity of product inventory at supplier  in period  under scenario  

(Units) 

 A binary variable, the use of large vessel type A or B respectively in period  

 

The objective function is to minimize the total logistics cost (TC) associated with the 

delivery plan.  TC consists of the operational cost for transporting products from suppliers to 

the hub, product storage costs, operational cost for transporting products from hub to 

destination ports, and fixed costs for using large vessels. The objective function of the 

delivery plan is as follows: 

 

   

               (1)     

 

 

 

 

The delivery plan should fulfill the following constraints: 
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Quantity of product shipped to the hub is limited by supply capacity 

 

        (2) 

 

Inventory balance at supplier 

 

                     (3) 

 

Quantity of products shipped from the hub is at least equal to the minimum value 

between the demand level and supply availability 

 

       (4) 

 

Product flow balance 

 

           (5) 

 

Restriction on using one large vessel per period 

 

          (6)    

 

The number of products shipped from the hub is limited by the capacity of the ship 

 

      (7) 

 

Inventory levels are limited by warehouse capacity 

 

             (8) 

 

Variable value requirements 

 

           (9) 

 

Next, the optimization model will be tested numerically as explained in the next point. 

 

 

 

 

 

 

4. Numerical Testing 
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Based on the optimization model that has been built in the previous step, the next step is 

to test the model numerically using hypothetical data as shown in Table 2. 

 

Table 2. Parameter settings 

Parameter Value Description 

 5 Number of supplier 

 2 Number of period 

 2 Number of scenario 

 0.5, 0.5 Probability of scenario 1 (normal), scenario 2 (slightly lower] 

 1 Delivery cost from supplier to hub (MU/Unit) 

 2 Inventory cost at supplier (MU/Unit) 

 3 Shipping cost from hub to destination port (MU/Unit) 

 500 Demand quantity at destination port (Units) 

 200, 150, 180, 
220, 160 

Max. cap. of supplier 1 to 5 

,  500, 600 Max. cap. of large vessel type A and type B (Units) 

  20, 23 Oper. cost of large vessel type A and B (MU/trip) 

 

 

(100, 110) 
(90, 100) 

Supply quantity of supplier 1 in period 1 in scenario 1 and 2 
Supply quantity of supplier 1 in period 2 in scenario 1 and 2 

 

 

(120, 140) 
(130, 120) 

Supply quantity of supplier 2 in period 1 in scenario 1 and 2 
Supply quantity of supplier 2 in period 2 in scenario 1 and 2 

 

 

(80, 100)  
(95, 105) 

Supply quantity of supplier 3 in period 1 in scenario 1 and 2 
Supply quantity of supplier 3 in period 2 in scenario 1 and 2 

 

 

(150, 170)  
(140, 130) 

Supply quantity of supplier 4 in period 1 in scenario 1 and 2 
Supply quantity of supplier 4 in period 2 in scenario 1 and 2 

 

 

(90, 100)  
(100, 120) 

Supply quantity of supplier 5 in period 1 in scenario 1 and 2 
Supply quantity of supplier 5 in period 2 in scenario 1 and 2 

 

The scenario-based stochastic MILP model was solved using Gurobi Optimizer 12.0.1 

through the gurobipy package in Python language. The optimal solutions for the variable 

values are given in Table 3 and Table 4. 

 

Table 3. Values of total logistic cost with variable ,  and  

Variable Value Description 

 4490 Moneraty Unit (MU) 

 1, 1, 1, 1  Large vessel type A is selected for all periods and 
scenarios. 

 0, 0, 0, 0 Large vessel type B is not selected for all periods 
and scenarios. 

 100, 500, 500, 
500 

Total shipment to destination port in period  
and scenario  (Units) 

 

 

 

 

 

Table 4. Values of variable  and  
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Variable Value Variable Value 

; * 

;  

60; 40* 
110; 0 

;  

;  

95; 0 
30; 75 

;  

;  

35; 95 
100; 0 

;  

;  

150; 0 
50; 120 

;  

;  

120; 0 
140; 0 

;  

;  

140; 0 
130; 120 

;  

;  

130; 0 
120; 0 

;  

;  

90; 0 
100; 0 

;  

;  

80; 0 
100; 0 

;  

;  

100; 0 
  120; 0 

* Supplier 1 ships 60 units in period 1 under scenario 1 and inventory 40 units. 

 

The optimization model formulated in this study has successfully solved the multi-

supplier distribution problem with supply uncertainty scenarios, large ship type selection, 

and inventory management in supplier warehouses within two planning periods. The model 

formulation utilizes the stochastic mixed-integer linear programming (SMILP) approach that 

integrates the probability of supply scenarios to minimize total costs, consisting of supplier 

shipping costs to the hub, hub shipping costs to the port, inventory storage costs, and fixed 

costs of large ship activation in each period.  

From the results of the model solution, the optimal total cost value is 4,490 MU, with all 

shipments to the port in each period and scenario set at 500 units. This value is in accordance 

with the provisions of the minimum demand constraint (D) set in the model. This pattern 

indicates that as long as the total supply in a period is sufficient, the model will prioritize 

fulfilling demand up to the minimum limit to avoid additional storage costs and 

overstocking at the supplier.  All periods in the optimal solution show the selection of large 

vessel Type A, although the model provides an option to select Type B. The selection of Type 

A consistently occurs because the capacity of Type A (500 units) is sufficient to meet the 

minimum demand value (500 units) in all scenarios, while its fixed cost is lower than Type B. 

This confirms that in the given cost structure, the model will avoid activating vessels with 

higher fixed costs as long as the minimum shipping capacity is achieved. In addition, the 

evaluation of shipping allocation decisions between suppliers shows the existence of 

distribution priorities based on the efficiency of supply utilization and warehouse capacity 

constraints. Supplier 2, for example, always allocates all supplies to be shipped in each 

period, resulting in an ending inventory of zero. In contrast, Supplier 4 shows a higher 

residual storage pattern in certain scenarios, especially when actual supply exceeds demand, 

but storage costs are still more economical than excess shipping that would violate the 

capacity limit of large vessels. 

This combination of shipping and storage decisions reflects the model's ability to 

balance between the two main cost components, namely shipping costs and storage costs, in 

a solution space that is tight by ship capacity and warehouse limits. In addition, the 

optimization results also show that the model utilizes the flexibility of inter-period stock 

decision making to delay shipments from certain suppliers, if it reduces the total system cost. 

Overall, the optimization results show that the developed model is able to produce efficient 
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and consistent shipping and inventory management decisions in meeting minimum demand, 

while optimizing the utilization of ship and warehouse capacity. Ship type selection and 

shipment allocation decisions also show appropriate sensitivity to supply variations in each 

scenario. Thus, this model can serve as a reliable decision support tool in distribution 

systems with supply uncertainty. 

 

D. CONCLUSIONS AND SUGGESTIONS 

This study proposes a scenario-based stochastic mixed-integer linear programming 

(SMILP) model to support decision making in a multi-supplier distribution system to ports 

through hubs, considering supply uncertainty, limited warehouse capacity, and ship type 

selection. The optimization results show that this model is able to produce efficient and 

adaptive shipping decisions in the face of supply variations, while meeting the minimum 

port demand limit and minimizing total logistics costs. Although the developed model has 

succeeded in formulating realistic supply uncertainty and operational constraint scenarios, 

there are several limitations in this study. This model has not considered demand 

uncertainty at the port, delivery time (lead time), or multi-hub aspects that are often 

encountered in real distribution systems. In addition, this model still assumes a perfect level 

of information availability regarding supply at the beginning of each period. As a direction 

for further development, this model can be expanded by considering stochastic demand 

variations, integration of ship schedules and delivery lead times, and development of 

resource allocation strategies in more complex multi-hub systems. The addition of these 

dimensions is expected to improve the model's ability to represent a more dynamic and 

realistic logistics system. 
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