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 Foot and Mouth Disease (FMD) is an acute infectious disease that attacks livestock, 
thus threatening the availability of food and the husbandry industry. This paper 
discusses the formulation of a mathematical model for the spread of FMD in 
livestock with a saturated incidence rate. The research method used is quantitative 
mathematical modeling with simulation, with stages including problem 
identification, determining assumptions, model formulation, analysis and model 
simulation. The discussion results obtained two equilibrium points, namely the 
non-endemic equilibrium point and the endemic equilibrium point, and then 
analyzed for stability. Numerical simulation is presented using Runge-Kutta 
approximation with MATLAB. Furthermore, after a sensitivity analysis, the 
parameters that greatly influenced the spread of FMD were direct or indirect 
contact (which led to the entry of the FMD virus) and the supporting capacity of 
livestock. Then the most influential parameter in reducing the spread of FMD is the 
application of culling on exposed animals and infected animals. The FMD modeling 
is a form of mathematical application to simulate the spread of disease on livestock. 
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A. INTRODUC TION  

Foot and Mouth Disease (FMD) is an acute infectious disease that attacks livestock, so it 

becomes a serious threat to the husbandry industry and food stability (Bahiru & Assefa, 2022) 

(G et al., 2021). FMD is caused by type A virus from the family Picornaviridae, genus Apthovirus 

(Belsham, 2020). Even though the fatality is low, this disease causes a decrease in body weight 

and milk production of livestock, thereby lowering the selling price. Cattle, sheep, goats, deer 

and pigs are very susceptible to FMD, with clinical symptoms seen after an incubation period 

of 2 to 14 days, even longer, especially for sheep and goats (Lazarus et al., 2021).  

FMD transmission occurs when there is direct or indirect contact with infected animals 

(Mohr et al., 2018) (Schnell et al., 2019). Livestock are susceptible to infection through aerosols, 

inhalation, ingestion, and through natural or artificial mating (Arzt et al., 2018). Clinical 

symptoms in livestock infected with FMD include pyrexia, anorexia, excessive mucus discharge 

from the mouth and foaming, sores such as canker sores in the oral cavity and tongue, sores on 

the feet and loose nails, limping, shaking, and drastic drop in milk production (Dubie & Amare, 

2020). FMD has seven different variants and more than 60 viral subtypes (Mushayabasa et al., 
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2011).  In general, there is no universal vaccine against this disease, vaccines for FMD must be 

compatible with the types and subtypes present in the affected area. Some of the symptoms of 

FMD can be seen in Figure 1. 

 

 
  Figure 1. The Symptoms of FMD in Livestock 

 
Animals that infected by FMD cannot be treated. The efforts that can be done are increasing 

the immunity and body resistance of animals through supportive therapy by providing vitamin 

and feed supplements.  Then for symptoms, appropriate therapy can be carried out, such as: 

giving fever reducers, pain relievers, and antibiotics to prevent infection (Cabezas et al., 2018). 

The efforts to eradicate FMD are focused on preventive control. To increase the immunity 

of animals that are susceptible to contracting FMD, it is necessary to intensify the mass 

vaccination program Ringa & Bauch (2014) and carry out mitigation program in areas that have 

not been infected these efforts can be in the form of surveillance and the formation of early 

awareness and implementing disease resilience (Elnekave et al., 2016). This needs to be done 

in order to obtain a disease spread map as a basis for determining control measures, in addition 

to communicating, providing information and educating the farming community. In this article, 

in addition to using vaccination, researchers also involve the culling of infected animals as an 

effort to control the spread of FMD. 

Mathematical models have been widely used to describe the problem of infectious diseases 

spread (Fahcruddin, 2019). Research on the spread of FMD has been carried out by several 

researchers such as (Mushayabasa et al., 2011), (Belayneh et al., 2020), (Gashirai et al., 2020), 

(Chanchaidechachai et al., 2021), and (Sseguya et al., 2021). (Mushayabasa et al., 2011) have 

studied the spread of FMD by paying attention the bilinear incidence rate. Then, (Belayneh et 

al., 2020) conducted studies on the spread of FMD using the SIR model in Ethiopia. (Gashirai et 

al., 2020) studied the spread of FMD by focused to vaccine failures and environmental 

transmission. Furthermore, (Chanchaidechachai et al., 2021) conducted a study on the spread 

of FMD using a spatial model in Thailand. Next, (Sseguya et al., 2022) conducted research on 

the spread of FMD in two locations that were close to each other. The four studies used the 

incidence rate form in formulating mathematical models. The mathematical model of the 

spread of FMD on livestock in this article refers to the model used by (Mushayabasa et al., 2011). 

The model has been modified, by changing the form of the incidence rate which was originally 

a bilinear incidence rate (𝛽𝐼𝑆) to a saturated incidence rate 
𝛽𝐼𝑆

1+𝑎𝑐𝐼
. Farther, the growth of 

livestock is also developed in the FMD distribution model using a logistic model 𝑟ℎ𝑆 (1 −
𝑆

𝑘1
).  

The main contribution in this article is that by applying the saturated incidence rate and logistic 
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growth to the FMD model in livestock, the mathematical model used is more applicable, 

especially in limited and specific areas.  

 
B. METHODS 

The type of research used is quantitative, with the following stages: 

1. Problem identification is carried out to understand the problem to be formulated so that 

it can be notated into mathematical symbols. 

2. Determine assumptions. The number of factors that influence the observed events needs 

to be simplified by assuming a simple relationship between variables. The assumptions 

here are divided into several categories, namely: 

a. Variable classification. Things that affect the behaviour of observations in step 1 are 

identified as variables, both in the form of independent variables and dependent 

variables. 

b. Determine the interrelation between the selected variables to be studied. The steps 

taken are to create a sub-model according to the assumptions made in the main model, 

then study separately on one or more independent variables. 

 

3. The formulation of the model can be done either through functional relationships by 

creating compartment diagrams, mathematical equations, or with the help of a software 

or by analytical means. 

4. Analysing the model. After the model is obtained then it is solved mathematically, in this 

case, the model is a system of differential equations and the analysis includes the 

equilibrium point, stability analysis, and sensitivity analysis. 

5. Simulate model. Simulations are carried out to see whether the interpretation of the 

model made is rational or not, using MATLAB or MAPLE software. If the interpretation 

results meet the requirements and are rational, then the results can be accepted, only 

then can the implementation of the obtained model be carried out. The steps involved 

are presented in Figure 2. 

 
Figure 2.  The Stages of Mathematical Modelling for the Spread of on Livestocks.  
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The FMD epidemic model was constructed by consider the saturated infection. 𝑁(𝑡) 

expressed the total population of animals, which is classified into five classes: susceptible 

animal 𝑆(𝑡), vaccinated animals 𝑉(𝑡), exposed animals 𝐸(𝑡), and infected animals 𝐼(𝑡), where: 

 
𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) 

 
The assumptions used in the formation of mathematical models for spread of disease are 

birth rate of livestock fulfills the logistic function. Furthermore, the vaccinated livestock 

become susceptible again after the vaccine immunity is lost. Then, susceptible livestock become 

latent if there is direct or indirect contact with livestock infected with Apthovirus; according to 

the saturated incidence rate. Livestock that recover from infection become susceptible. Then, 

the following assumptions are taken in deriving the model (1): 

1. Assumption 1. The population of susceptible animals increases due to growth that fulfills 

the logistic function 𝑟ℎ𝑆(𝑡) (1 −
𝑆(𝑡)

𝑘1
),   and reduced immunity in rapidly vaccinated 

animals ∅ > 0.   

2. Assumption 2. Vulnerable livestock will become latent if there is direct or indirect 

contact with infected animals with a saturated incidence rate 
𝛽𝐼𝑆

1+𝑎𝑐𝐼
 with maximum 

contact rate 𝛽 > 0  and intervention level 𝑎𝑐 > 0 . Then, latent animals will become 

infected and able to transmit the virus to susceptible animals at a rapid rate 𝛾 > 0. 

3. Assumption 3. The efforts to control the spread of FMD are carried out by vaccinating 

susceptible animals at a rate 𝑢1 > 0, then extermination of infected animals and latent 

animals at a rate 𝑢2 > 0. 

4. Assumption 4. Natural mortality of animals at a rate 𝜇 > 0, while the mortality due to 

FMD in infected animals at a rate 𝑑 > 0. Then, birth rate of animal more than natural 

mortality rate 𝑟ℎ > 𝜇. 

 
The following is an illustration of the FMD transmission scheme, as shown in Figure 3. 

 

 
Figure 3.  FMD Model Flow Diagram 
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The description of the parameters used in the mathematical modelling of FMD on livestock 

is presented in Table 1 below.  

 
Table 1. Parameter Description 

Notations Description Units  
𝑟ℎ Birth rate of animal 1/time unit 
𝑘1 Animal support capacity Individual 
∅ Waning rate  1/ individual 
𝛽 Transmissibility 1/ (individual x time unit) 
𝑎𝑐 Saturation level 1/ individual 
𝛾 Incubation period 1/ individual 
𝑢1 Rate of susceptible animal are vaccinated 1/ individual 
𝑢2 Rate of latent and infected animal are culled 1/ individual 
𝜇 Natural mortality rate 1/ individual 
𝑑 Disease related mortality 1/ individual 

 
Therefore, a mathematical model of FMD transmission can be constructed based on the 

interaction diagram in Figure 1: 

 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝑟ℎ𝑆(𝑡) (1 −

𝑆(𝑡)

𝑘1
) + ∅𝑉 −

𝛽𝐼(𝑡)𝑆(𝑡)

1 + 𝑎𝑐𝐼(𝑡)
− (𝑢1 + 𝜇)𝑆(𝑡)

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑢1𝑆(𝑡) − (∅ + 𝜇)𝑉(𝑡)

𝑑𝐸(𝑡)

𝑑𝑡
=
𝛽𝐼(𝑡)𝑆(𝑡)

1 + 𝑎𝑐𝐼(𝑡)
− (𝛾 + 𝑢2 + 𝜇)𝐸(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛾𝐸(𝑡) − (𝑑 + 𝑢2 + 𝜇)𝐼(𝑡) }

 
 
 
 

 
 
 
 

                          (1) 

 
with initial condition is 𝑆(0) > 0, 𝑉(0) > 0, 𝐸(0) > 0, 𝐼(0) > 0. 

 
C. RESULT AND DISCUSSION 
1. Non-Endemic Equilibrium Point 

By setting the derivatives of each equation in system (1) to zero, i.e., 
𝑑𝑆(𝑡)

𝑑𝑡
= 0,

𝑑𝑉(𝑡)

𝑑𝑡
= 0, 

𝑑𝐸(𝑡)

𝑑𝑡
= 0 , 

𝑑𝐼(𝑡)

𝑑𝑡
= 0 , next substitute  𝐼(𝑡) = 0, 𝐸(𝑡) = 0, so that the non-endemic equilibrium 

point (𝑃0)  is obtained as: 

  

 𝑃0 = (𝑆0, 𝑉0, 𝐸0, 𝐼0) = (𝑘1 +
𝑢1𝑘1

(∅+𝜇)𝑟ℎ
−
(𝑢1+𝜇)𝑘1

𝑟ℎ
,

𝑢1

(∅+𝜇)
(𝑘1 +

𝑢1𝑘1

(∅+𝜇)𝑟ℎ
−
(𝑢1+𝜇)𝑘1

𝑟ℎ
),0,0). 

 
2. Basic Reproduction Number  

The basic reproduction number (ℛ0) is the average number of newly generated infected 

livestock by a single infected livestock. Using the next generation matrix [12], the non-negative 

matrix F, and the non-singular matrix V, from system (1), we obtained: 

ℱ = [
𝛽𝐼𝑆

1 + 𝑎𝑐𝐼
0

]   and 𝒱 = [
(𝛾 + 𝑢2 + 𝜇)𝐸

(𝑑 + 𝑢2 + 𝜇)𝐼 − 𝛾𝐸
]. 

Next,  
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𝐹 = [0 𝛽 (𝑘1 +
𝑢1𝑘1

(∅ + 𝜇)𝑟ℎ
−
(𝑢1 + 𝜇)𝑘1

𝑟ℎ
))

0 0

]        and          V = [
𝜇 + 𝑢2 + 𝛾 0

−𝛾 𝑑 + 𝑢2 + 𝜇
]. 

 
Furthermore, the eigenvalues of 𝐹V−1 are: 

𝜆1 =
𝛽𝛾

(𝜇 + 𝑢2 + 𝛾)(𝑑 + 𝑢2 + 𝜇)
(𝑘1 +

𝑢1𝑘1
(∅ + 𝜇)𝑟ℎ

−
(𝑢1 + 𝜇)𝑘1

𝑟ℎ
)) , 𝜆2 = 0. 

 
The spectral radius of matrix 𝐹V−1 is  𝜌(𝐹V−1) = ℛ0, where: 
 

ℛ0 =
𝛽𝛾

(𝜇 + 𝑢2 + 𝛾)(𝑑 + 𝑢2 + 𝜇)
(𝑘1 +

𝑢1𝑘1
(∅ + 𝜇)𝑟ℎ

−
(𝑢1 + 𝜇)𝑘1

𝑟ℎ
)).                   (2) 

 
3. Endemic Equilibrium Point 

All derivatives of all equations in (1) are consistently set to zero, in order to determine the 

endemic point. Excluding for the fourth equation, by calculating all these equations, we can get: 

𝑃∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗), 
with 

𝑆∗ =
(𝛽 + 𝑢2 + 𝛾)

2

𝛾𝛽
(1 + 𝑎𝑐𝐼

∗) 

𝑉∗ =
𝑢1(𝜇 + 𝑢2 + 𝛾)

2

(∅ + 𝜇)𝛾𝛽
(1 + 𝑎𝑐𝐼

∗) 

𝐸∗ =
(𝑑 + 𝑢2 + 𝜇)

𝛾
(𝐼∗) 

By substituting 𝑆∗ , 𝑉∗ , 𝐸∗  to the four equations of (1) and set 
𝑑𝑆(𝑡)

𝑑𝑡
= 0 , we get 𝐼∗,  it is 

positive root of equation below: 

𝐴1(𝐼
∗)2 + 𝐴2𝐼

∗ + 𝐴3 = 0, 
where: 

𝐴1 =
𝑎𝑐
2𝑟ℎ(𝛽 + 𝑢2 + 𝛾)

2

𝑘1𝛾𝛽
, 

𝐴2 = 𝛽 +
𝑎𝑐
2𝑟ℎ(𝛽 + 𝑢2 + 𝛾)

2

𝑘1𝛾𝛽
− 𝑎𝑐 (

∅𝑢1
∅+ 𝜇

− (𝑢1 + 𝜇 − 𝑟ℎ −
𝑟ℎ(𝛽 + 𝑢2 + 𝛾)

2

𝑘1𝛾𝛽
)), 

 

𝐴3 =
𝑟ℎ(𝛽 + 𝑢2 + 𝛾)

2

𝑘1𝛾𝛽
+ (𝑢1 + 𝜇 − 𝑟ℎ) − (

∅𝑢1
∅ + 𝜇

). 

 
4. Local Stability of Equilibrium Point 

We determine the Jacobian matrix and analyze its eigenvalues for all points, to investigate 

the local stability around each equilibrium point. The Jacobian matrix for system (1) is 

𝐽 =

[
 
 
 
 
 
 𝑟ℎ −

2𝑟ℎ𝑆

𝑘1
−

𝛽𝐼

1 + 𝑎𝑐𝐼
− (𝑢1 + 𝜇) 𝜃 0 −

𝛽𝑆

(1 + 𝑎𝑐𝐼)2

𝑢 −(𝜃 + 𝜇) 0 0
𝛽𝐼

1 + 𝑎𝑐𝐼
0 −(𝛾 + 𝑢1 + 𝜇)

𝛽𝑆

(1 + 𝑎𝑐𝐼)2

0 0 𝛾 −(𝑑 + 𝑢2 + 𝜇)]
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Theorem 1. A non-endemic point 𝑃0  of the system (1) is locally asymptotically stable for  
𝑘1𝑚

2
< ℛ0 < 1, and it is unstable for ℛ0 > 1 with 

𝑚 =
𝛽𝛾

(𝜇 + 𝑢2 + 𝛾)(𝑑 + 𝑢2 + 𝜇)
. 

 

Proof.  

 The following is the Jacobian System (1) matrix that is evaluated on 𝑃0 

 

𝐽(𝑃0) =

[
 
 
 
 
 
 𝑟ℎ −

2𝑟ℎℛ0
𝑚𝑘1

− (𝑢1 + 𝜇) 𝜃 0 −
𝛽ℛ0
𝑚

𝑢 −(𝜃 + 𝜇) 0 0

0 0 −(𝛾 + 𝑢1 + 𝜇)
𝛽ℛ0
𝑚

0 0 𝛾 −(𝑑 + 𝑢2 + 𝜇)]
 
 
 
 
 
 

 

 

So that the characteristic polynomial of 𝐽(𝑃0) is obtained as follows 

𝑃(𝜆) = (𝜆2 + 𝑎1𝜆 + 𝑎0)(𝜆
2 + 𝑏1𝜆 + 𝑏0) 

dengan 

𝑚 =
𝛽𝛾

(𝜇 + 𝑢2 + 𝛾)(𝑑 + 𝑢2 + 𝜇)
> 0 

𝑎1 = 𝜇 + 𝜃 + 𝑢1 +
2

𝑚
(ℛ0 −

𝑚

2
)  

𝑎0 = 𝜇2 + 𝜃𝜇 + 𝑢1𝜇 +
2𝑟ℎ𝜇

𝑚
(ℛ0 −

𝑚

2
) +

2𝜃𝑟ℎ
𝑚

(ℛ0 −
𝑘1𝑚

2
) 

𝑏1 = 𝑑 + 2𝑢2 + 2𝜇 + 𝛾 > 0 

𝑏0 = (𝜇 + 𝑢2 + 𝛾)(𝑑 + 𝑢2 + 𝜇)(1 − ℛ0) 

 

Based on the Routh-Hurtwitz criteria, all real parts of the root 𝑃(𝜆)  will be negative if  

𝑎1, 𝑎0, 𝑏1, 𝑏0 > 0 are satisfied. It is clear that 𝑚 > 0 and 𝑏1 > 0  because all parameters are 

positive. Coefficient 𝑎1 > 0 if ℛ0 >
𝑚

2
 and 𝑎0  is positive if ℛ0 >

𝑘1𝑚

2
 with 

𝑘1𝑚

2
>

𝑚

2
 because 

𝑘1 > 0. While the coefficient 𝑏0 > 0 if ℛ0 < 1. So, if  
𝑘1𝑚

2
< ℛ0 < 1  then all eigenvalues  

𝐽(𝑃0)  are negative, so it is evident that the disease-free equilibrium point 𝑃0  is locally 

asymptotically stable. Otherwise, if  ℛ0 > 1  then 𝑏0 < 0  as a result there is an eigenvalue  

𝐽(𝑃0)  which is positive, so that the non-endemic equilibrium point 𝑃0 is unstable. 

 
5. Sensitivity Analysis of the Reproductive Number  

Sensitivity analysis is used to determine the most influential parameter in a model (Hurint 

et al., 2017). In this case, the sensitivity index will be determined for each parameter involved 

in the basic reproduction number (ℛ0) from the FMD model with saturated incidence rate. The 

value of ℛ0 that will be used in the sensitivity analysis of FMD model with saturated incidence 

rate as follows: 

ℛ0 =
𝛽𝛾

(𝜇 + 𝑢2 + 𝛾)(𝑑 + 𝑢2 + 𝜇)
(𝑘1 +

𝑢1𝑘1
(∅ + 𝜇)𝑟ℎ

−
(𝑢1 + 𝜇)𝑘1

𝑟ℎ
)). 
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The parameter sensitivity index is formulated as follows: 

 

𝑖𝑑𝑚 = 
𝜕ℛ0
𝜕𝑝

.
𝑝

ℛ0
 

where: 
𝑖𝑑𝑚 = parameter sensitivity index 𝑝 
𝑝  = analyzed parameters. 

 
There are 8 parameters whose sensitivity index will be calculated, namely, 

β, γ, u2, d, k1, u1, ∅, rh. The results of the sensitivity index of the FMD model parameter with the 

saturated incidence rate can be seen in the following equation: 

 
𝜕ℛ0

𝜕𝛽
.
𝛽

ℛ0
= 1

𝜕ℛ0

𝜕 𝛾
.
 𝛾

ℛ0
=

𝜇 + 𝑢2

(𝜇 + 𝑢2 + 𝛾)
𝜕ℛ0

𝜕𝑢2
.
𝑢2

ℛ0
= −

(𝑑 + 2𝑢2 + 2𝜇 + 𝛾)𝑢2

(𝑑 + 𝑢2 + 𝜇)(𝜇 + 𝑢2 + 𝛾)
𝜕ℛ0

𝜕𝑑
.
𝑑

ℛ0
= −

𝑑

(𝑑 + 𝑢2 + 𝜇)
𝜕ℛ0

𝜕𝑘1
.
𝑘1

ℛ0
= 1

𝜕ℛ0

𝜕𝑢1
.
𝑢1

ℛ0
=

𝑢1(𝜇 + ∅ − 1)

𝜇2 + ∅𝜇 + 𝑢1𝜇 + 𝑢1∅ − 𝑢1 − 𝑟ℎ𝜇 − 𝑟ℎ∅

𝜕ℛ0

𝜕∅
.
∅

ℛ0
= −

𝑢1∅

(1 +
𝑢1

(∅ + 𝜇)𝑟ℎ
−
(𝑢1 + 𝜇)
𝑟ℎ

)) 𝑟
ℎ

(∅ + 𝜇)2

𝜕ℛ0

𝜕𝑟ℎ
.
𝑟ℎ

ℛ0
= −

𝜇2 + ∅𝜇 + 𝑢1𝜇 + 𝑢1∅ − 𝑢1

𝜇2 + ∅𝜇 + 𝑢1𝜇 + 𝑢1∅ − 𝑢1 − 𝑟ℎ𝜇 − 𝑟ℎ∅ }
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

                                      (3) 

 
From the Equation 3, it can be seen that the results of the sensitivity analysis to the 

parameters,  𝛽, 𝛾, 𝑘1  are always positive, so that they are directly proportional to ℛ0, while the 

sensitivity analysis to the parameters 𝑢1,  𝑢2, 𝑑, ∅,   and 𝑟ℎ   can be negative, so that it is 

inversely proportional to the ℛ0. Furthermore, the most influential parameters in the spread of 

FMD on livestock with saturated incidence rate are 𝛽 and 𝑘1. Then, the parameter that greatly 

influences the decrease in the spread of FMD on livestock is 𝑢2. 

 

6. Numerical Simulation 

This section presents a simulation of the FMD model on livestock using saturated incidence 

rate. The simulations carried out are classified into two conditions, namely conditions without 

spread of FMD and conditions when FMD spread occurs. The simulations were carried out using 

MATLAB software by entering initial values for each population. The condition without FMD 

occurs when there are no FMD spreading animals, in other words there is no FMD spread on 

livestock (ℛ0 < 1). The simulation was carried out for 7 days. The parameter values used in the 

simulation are presented in the Table 2. 



42  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 1, January 2023, pp. 34-46  

 

 

 
Tabel 2. The Parameters values used in the simulation FMD model 

Notations Value Value 
Case 𝓡𝟎 < 𝟏 Source Case 𝓡𝟎 > 𝟏 Source 

𝑟ℎ 200 day-1 (Mushayabasa et al., 2011) 230 day-1 Assumed 
𝑘1 250 (Widya & Alfiniyah, 2020) 120 Assumed 
∅ 0.001 day-1 (Widya & Alfiniyah, 2020) 0.001 day-1 (Widya & Alfiniyah, 2020) 
𝛽 0.004 (Mushayabasa et al., 2011) 3.33 Assumed 
𝑎𝑐 0,004 (Widya & Alfiniyah, 2020) 0,00001914 (Mushayabasa et al., 2011) 
𝛾 0.26 day-1 (Widya & Alfiniyah, 2020) 3.26 day-1 Assumed 
𝜇 20 day-1 Assumed 20 day-1 Assumed 
𝑑 0.001 day-1 (Mushayabasa et al., 2011) 0.001 day-1 (Mushayabasa et al., 2011) 
𝑢1 0.5 (Mushayabasa et al., 2011) 0.16 Assumed 
𝑢2 0.2 (Mushayabasa et al., 2011) 0.2 Assumed 

 
Based on the parameter values in Table 2, it is obtained that ℛ0 = 0.0037 < 1 and 𝑃0 =

(225, 6, 0, 0). The following is a numerical simulation result when there is no FMD spread, as 

shown in Figure 4. 

 
Figure 4.  The dynamics of all population for  ℛ0 < 1.  

The non-endemic point Po is asymptotically stable. 

 
From Figure 4 it can be seen that all populations produce graphs that tend to converge to 

the non-endemic equilibrium point of FMD model. Furthermore, the population of susceptible 

and vaccinated animals tends to increase because there is no spread of FMD on animals. Then, 

the population of exposed animals and infected animals in conditions free from the spread of 

FMD will tend to decrease until finally exhausted. The spread of FMD occurs when there are 

animals that are infected and then infect FMD to other animals (ℛ0 > 1) . Based on the 

parameter values in Table 2, it is obtained that ℛ0 = 2.508 > 1 and 𝑃∗ = (44, 0, 235, 38). The 

following is the result of a numerical simulation on the spread of FMD with a saturated 

incidence rate, as shown in Figure 5. 
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Figure 5.  The dynamics of all population for  ℛ0 > 1.  

The non-endemic point P* is asymptotically stable. 

 
Figure 5 it can be seen that all populations produce graphs that tend to converge to the 

endemic equilibrium point of FMD model. Furthermore, the population of exposed animals and 

infected animals tends to increase before finally being in a constant condition. The results of 

the analysis sensitivity simulation when FMD spread occurs are presented in Table 3. 

 
Table 3. The result of parameter index calculation for FMD spread condition 

Parameter 𝜷  𝜸 𝒖𝟐 𝒅 𝒌𝟏 𝒖𝟏 ∅ 𝒓𝒉 
Sensitivity Index 1 0.861 -0.0184 -0.000049 1 -0.00072 -0.0000000019 0.96 

 
Base on Table 3, several conclusions were obtained: 

a. The sensitivity index of parameter 𝛽  is 1, it means if the rate of direct contact with 

infected animals increases by 10%, then the value of ℛ0 will increase by 10%. 

b. The sensitivity index of parameter 𝛾 is 0.861, it means if the incubation rate on animals 

increases by 10%, then the value of ℛ0 will increase by 8.6%. 

c. The sensitivity index of parameter 𝑢2 is -0.0184, it means if the culling rate on animals 

increases by 10%, then the value of ℛ0 will decrease by 0.18%. 

d. The sensitivity index of parameter 𝑑 is -0.000049, it means if the mortality rate due to 

FMD on animals increases by 10%, then the value of ℛ0 will decrease by 0.00049%. 

e. The sensitivity index of parameter 𝑘1 is 1, it means if the total supporting capacity of the 

animal population increases by 10%, then the value of ℛ0 will increase by 10%. 

f. The sensitivity index of parameter 𝑢1  is -0.00072, it means if the vaccination rate of 

animals increases by 10%, then the value of ℛ0  will decrease by 0.0072%. 

g. The sensitivity index of parameter ∅ is -0.0000000019, it means if the waning rate of 

animals increases by 10%, then the value of ℛ0  will decrease by 0.000000019%. 

h. The sensitivity index of parameter 𝑟ℎ  is 0.96, it means if the birth rate of animals 

increases by 10%, then the value of ℛ0 will increase by 9.6%. 

 
Based on the explanation above, there are 8 parameters that affect the value of ℛ0 . 

Furthermore, the most influential parameters in the spread of FMD on animals with a saturated 

incidence rate are 𝛽  and 𝑘1  with sensitivity index of 1. Then the parameter that is very 
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influential in reducing the spread of FMD on animals is 𝑢2  with a sensitivity index of -0.0184. 

The impact of vaccination and animals culling on the spread of FMD is presented in Figure 6. 

 
Figure 6.  The dynamics of all population for ℛ0 > 1.  

The non-endemic point P* is asymptotically stable 
 

Figure 6 shows the estimated population of animals infected with FMD for Ro > 1 with 

different control applications. For cases u1 = 0.16 and u2 = 0.2, the infected animal population 

converges to 38, then for cases u1 = 0.30 and u2 = 0.35, the infected animal population is 37. 

Furthermore, for u1 = 0.5 and u2 = 0.6, it is obtained that infected by 36. Thus, from the 

simulation, it can be concluded that efforts to reduce FMD infected animals can be carried out 

maximally if large numbers of livestock are vaccinated and large numbers of infected animals 

are exterminated. 

 

D. CONCLUSION AND SUGGESTIONS 

In this paper discussed the model for foot-and-mouth disease (FMD) considering the 

saturated incidence rate. By determining the number base re-production (ℛ0), the existence 

and the stability of equilibrium point of FMD model can be analyzed. Furthermore, the number 

of exposed animals and the number of infected animals in conditions without the spread of FMD, 

will tend to decrease until they are finally exhausted. It is different when there is a spread of 

FMD, the number of exposed animals and the number of infected animals tends to increase 

before finally being in a constant condition. Furthermore, the impact of vaccination and culling 

on livestock can reduce the number of animals infected by FMD. The PMK model in this article 

uses a system of differential equations. However, the cost analysis in implementing vaccination 

and culling on livestock has not been discussed in this article. So that further research is needed 

for the application of optimal control involving the cost function. In addition, it is necessary to 

review the development of PMK distribution models such as more complex discrete models. 
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