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 Let 𝐺 =  (𝑉, 𝐸) be a nontrivial, finite, and connected graph. A function c from 𝐸 to 
{1, 2, . . . , 𝑘}, 𝑘 ∈  ℕ , can be considered as a rainbow 𝑘 -coloring if every two 
vertices 𝑥 and 𝑦 in 𝐺 has an 𝑥 −  𝑦 path. Therefore, no two path's edges receive the 
same color; this condition is called a “rainbow path”. The smallest positive integer 
𝑘 , designated by 𝑟𝑐(𝐺) , is the 𝐺  rainbow connection number. Thus, 𝐺  has a 
rainbow 𝑘-coloring. Meanwhile, the 𝑐 function is considered as a strong rainbow 𝑘-
coloring within the condition for every two vertices 𝑥  and 𝑦  in 𝐺  have an 𝑥 −
 𝑦  rainbow path whose length is the distance between 𝑥  and 𝑦 . The 
smallest positive integer 𝑘 , such as 𝐺 , has a strong rainbow 𝑘 -coloring; such a 
condition is called a strong rainbow connection number of 𝐺, denoted by 𝑠𝑟𝑐(𝐺). In 
this research, the rainbow connection number and strong rainbow connection 
number are determined from the graph resulting from the join operation between 
the ladder graph and the trivial graph, denoted by 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) and 𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1) 
respectively. So, 𝑟𝑐 (𝐿𝑛 ∨ 𝐾1) =  𝑠𝑟𝑐 (𝐿𝑛 ∨ 𝐾1) = 2, for 3 ≤ 𝑛 ≤ 4  and 𝑟𝑐 (𝐿𝑛 ∨

𝐾1) = 3,  while 𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1) = ⌈
𝑛

2
⌉ , for 𝑛 ≥ 5. 

 

Keywords: 
Rainbow coloring; 
Rainbow path;  
Ladder graph;  
Join;  
Rainbow connection 
number;  
 

 

 
 

 
https://doi.org/10.31764/jtam.v7i1.11704  

 
This is an open access article under the CC–BY-SA license 
 

 
——————————      —————————— 

 
 

A. INTRODUCTION  

In the context of graphs, the idea of “rainbow connection” was initially proposed by 

Chartrand et al. (2008). Let 𝐺 =  (𝑉, 𝐸)  be a graph with vertex set 𝑉  and edge set 𝐸 . A 

coloring 𝑐: 𝐸 → {1, 2, … , 𝑘}, 𝑘 ∈ ℕ, thus, the adjacent edges can share an identical color. Let 𝑥 

and 𝑦 be in 𝑉. An 𝑥 −  𝑦 path in 𝐺  is determined as a rainbow path if each path edge has a 

different color. Meanwhile, 𝐺 is determined as a rainbow connected if every two vertices 𝑥 and 

𝑦 has a rainbow path. Rainbow coloring is the term used to describe an edge color on 𝐺 that 

connects to the 𝐺  rainbow. If the 𝑐  function employs 𝑘  colors, it constitutes the rainbow 

𝑘 −coloring. The smallest positive integer 𝑘, designated by 𝑟𝑐(G), iis ithe irainbow iconnection 

inumber iof iG. Thus, 𝐺  ihas ia irainbow 𝑘 -coloring. Meanwhile, the 𝑥 −  𝑦  rainbow path is 

considered as the 𝑥 − y rainbow geodesic if the length of the path constitutes the distance 

ibetween 𝑥 and 𝑦. 𝐺 becomes a strong rainbow connected if every two vertices 𝑥 and 𝑦 have an 

𝑥 –  𝑦 rainbow geodesic. Strong rainbow coloring is iedge icoloring ion i𝐺 ithat gives 𝐺 a strong 

rainbow connection. If the 𝑐  function uses 𝑘  colors, it is said to have a strong rainbow 

𝑘 −coloring. The lowest positive integer 𝑘  iis ithe istrong irainbow iconnection inumber iof 𝐺 , 
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indicated by 𝑠𝑟𝑐( 𝐺). As a result, 𝐺 has a strong rainbow 𝑘-coloring, and 𝑟𝑐(𝐺)  ≤  i"𝑠𝑟𝑐(𝐺) ifor 

iany iconnected igraph i𝐺.  

On condition that 𝐺 is a rainbow connection, the least diam(𝐺) colors are necessary; the 

diam(𝐺) refers to the 𝐺’s diameter. On the other hand, rainbow coloring is defined by 𝐺 if each 

of its edges is colored differently. Hence, the formula is as follows. 

 diam (𝐺)  ≤  𝑟𝑐(𝐺)  ≤  𝑠𝑟𝑐(𝐺)  ≤  𝑚.  (1) 

Several previous studies have investigated both the rainbow connection number and 

strong rainbow connections number. Chartrand et al. (2008) have determined some 𝑟𝑐(𝐺) and 

𝑠𝑟𝑐(𝐺) of connected 𝐺 graphs, as follows.  

Proposition 1.  Let 𝐺 be a nontrivial connected graphs of size 𝑚. Then 

1. 𝑠𝑟𝑐(𝐺) = 1 if and only if 𝐺 is a complete graph 

2. 𝑟𝑐(𝐺) = 2 if only if 𝑠𝑟𝑐(𝐺) = 2 

3. 𝑟𝑐(𝐺) = 𝑚 if only if 𝐺 is a tree. 

 

The strong rainbow connection number of stellar graphs, which is ia icorona iproduct iof ia 

itrivial igraph iand ian i𝑚 -icopies iladder igraph, was discovered by Shulhany and Salman back in 

2016 (Shulhany & Salman, 2016). On the other hand, Fitrianda et al. (2018) have determined a 

generalized triangular ladder graph's rainbow connection number iand istrong irainbow 

iconnection inumber. Meanwhile, (L. Chen et al., 2018) present some results of the six rainbow 

connection parameters. Other previous studies have found other results of (strong) rainbow 

connection of graph (H. Li et al., 2011; Schiermeyer, 2011). 

The concept of rainbow connectivity can apply to data security. Confidential information 

should be protected from being transferred from one party to another. The security system 

must be able to prohibit not just unauthorized users from accessing the system, but also users 

who are already signed in from performing actions that they are not permitted to perform 

(Morris & Thompson, 1979). A security cracking method known as a rainbow table employs a 

precalculated table of inverted password hashes to decipher database passwords. The user is 

verified whether the values match. The rainbow table database is utilized to decrypt the 

password hash and get authentication (Zhang, Tan & Yu, 2013). To minimize data leakage from 

such confidential information, each agent should have a different password when transferring 

information. As a result, a lot of passwords are needed. Fortunately, the rainbow connection 

concept requires a minimum number of passwords so that two agents can exchange 

information with different passwords.  

Apart from this motivation, the concept of rainbow connection is interesting to study. Many 

researchers have developed the concept of rainbow connectivity by applying it to various types 

of graphs. One of them is by performing operations on several graphs and specifying 𝑟𝑐(𝐺) and 

𝑠𝑟𝑐 (𝐺 ) on those graphs. Li and Sun (2012) have obtained several results of the rainbow 

connection number of graph products, comprising lexicographic products, join, cartesian 

products, etc. Meanwhile, Resty and Salman (2015) have idetermined ithe irainbow iconnection 

inumber iof ithe corona product iof ithe n-crossed prism igraph with ithe itrivial igraph. Septyanto 

and Sugeng (2017) give lower and upper limits for irainbow iconnectison inumbers iand istrong 

irainbow iconnection inumbers iby joining two graphs based on individual graph parameters: the 
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number of vertices of degree 0, maximum degree, independent dominance number, clique 

number, and independent number.  

Li and Ma (2017) have done related study that  icalculated ithe irainbow iconnection inumber 

iof operating graphs by using several ways such as a) includes a union of graphs, b) adds and 

removes edges, and c) adds vertices. Strong and accurate values of rainbow connection 

numbers, as well as their upper bounds of comb product, path, triangular book, circular, or fan 

graphs are discussed by Dafik et al. (2018). In addition, several previous studies focus on 

examining rainbow connection numbers from operating graphs (Basavaraju et al., 2014; X. 

Chen et al., 2019; Fitriani & Salman, 2016; Gembong & Agustin, 2017; Gologranc et al., 2014; 

Liu, 2014; Maulani et al., 2019; Doan, Ha, and Schiermeyer, 2022). 

To two agents to share information while using different passwords, the rainbow 

connection idea allows for the requirement of a minimum number of passwords. The concept 

of the rainbow link is intriguing to examine even without this reason.  Research on rainbow 

connection numbers from the join operation of ladder and trivial graphs has never been done. 

(Kartika, 2020) assert that the ladder graph, denoted by 𝐿𝑛, is obtained from two duplicates of 

the path 𝑃𝑛, becoming 𝑃𝑛1and 𝑃𝑛2 . The vertex of 𝑣𝑖 on 𝑃𝑛1  is connected to the vertex of 𝑤𝑖 on  𝑃𝑛2 

by an edge, with 𝑖 = 1, 2,… , 𝑛. The trivial graph refers to a graph with only one vertex, denoted 

𝐾1  (Diestel, 2005). Meanwhile, let 𝐺1  and 𝐺2  connected graphs. The process of joining two 

disconnected graphs 𝐺1 and 𝐺2, denoted by 𝐺1 ⋁𝐺2, is the graph with vertex set 𝑉(𝐺1) ∪ 𝑉(𝐺2), 

and edge set of 𝑉(𝐺1) ∪ 𝑉(𝐺2) ∪ {𝑢𝑣|𝑢 ∈ 𝑉(𝐺1), 𝑣 ∈ 𝑉(𝐺2)} (Li & Sun, 2012). This research 

determined the (strong) rainbow connection number from the graphs resulting from the joint 

operation of ladder graphs and trivial graphs. 

 

B. METHODS 

This research is a literature study. The purpose of this study is to determine the rainbow 

connection number and strong rainbow connection number from graphs resulting from the join 

operations of ladder and trivial graphs. The steps in this research are as follows: 

1. Defining the problem to be discussed 

2. Doing a literature study on rainbow connected numbers and strong rainbow connected 

numbers 

3. Describing a graph resulting from the join operation of a ladder graph and a trivial graph, 

denoted by 𝐿𝑛 ∨ 𝐾1. The vertex set and edge set of 𝐿𝑛 ∨ 𝐾1 are defined as follows. 

Definition 1. Let 𝑛 ≥ 3 be an integer. The graph resulting from the join operation of a 

ladder graph and a trivial graph is a graph with 

 𝑉 = {𝑢} ∪ {𝑣𝑖|𝑖 ∈ {1, 2,… , 𝑛}} ∪ {𝑤𝑖|𝑖 ∈ {1, 2,… , 𝑛}} 

𝐸 = {𝑢𝑣𝑖| 𝑖 ∈ {1, 2,… , 𝑛}} ∪ {𝑢𝑤𝑖| 𝑖 ∈ {1, 2, … , 𝑛}} ∪ {𝑣𝑖𝑤𝑖|𝑖 ∈ {1, 2, … , 𝑛}} ∪ 

{𝑣𝑖𝑣𝑖+1| 𝑖 ∈ {1, 2,… , 𝑛 − 1}} ∪ {𝑤𝑖𝑤𝑖+1| 𝑖 ∈ {1, 2, … , 𝑛 − 1}}                      

 

As an illustration, the graph 𝐿𝑛 ∨ 𝐾1 as shown in Figure 1. 
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Figure 1. Graph 𝐿𝑛 ∨ 𝐾1 

 

Based on the picture above, it can be seen that diam(𝐿𝑛 ∨ 𝐾1) = 2. 

4. Finding a rainbow coloring pattern for 𝐿𝑛 ∨ 𝐾1 and determining the accurate values of 

𝑟𝑐(𝐿𝑛 ∨ 𝐾1) and 𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1). 

5. Proving the rainbow connection number and the strong rainbow connection number of 

𝐿𝑛 ∨ 𝐾1. If 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) = 𝑘, 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) ≥ 𝑘 and 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) ≤ 𝑘 should be done. To prove 

lower bound of 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) ≥ 𝑘 , it is necessary to show a reason for the absence of 

rainbow coloring with 𝑘 − 1 color or less. Proving upper bound of 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) ≤ 𝑘 by 

constructing a rainbow coloring in 𝐿𝑛 ∨ 𝐾1 using 𝑘 colors. The same thing is also done for 

the 𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1). 

6. Formulating conclusions based on the results of the theorem analysis that has been 

proven. 

 

C. RESULTS AND DISCUSSION 

In this section, iwe calculate ithe irainbow iconnection inumber iand ithe i strong rainbow 

iconnection inumber iof the following: the joined ladder graph and trivial graph; according to 

Theorem 1 and Theorem 2, respectively. 

1. The Rainbow Connection Number of 𝑳𝒏 ∨ 𝑲𝟏 

Theorem 1. Let 𝑛 be a positive integer with an 𝑛 ≥ 3. iThe irainbow iconnection inumber iof 

𝐿𝑛 ∨ 𝐾1 is as follows. 

𝑟𝑐(𝐿𝑛 ∨ 𝐾1) = {
2,     for 3 ≤ 𝑛 ≤ 4;

3,    for 𝑛 ≥ 5.          
 

 

Proof.  

First, we prove a lower bound of 𝑟𝑐(𝐿𝑛 ∨ 𝐾1).  

For 3 ≤ 𝑛 ≤ 4 is determined using the inequality (1), and we obtain 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) ≥ 2.  

For 𝑛 ≥ 5, suppose that 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) ≤ 2. 

Furthermore, ithere iis ia irainbow i2-coloring i𝑐∗ ifor (𝐿𝑛 ∨ 𝐾1). With no loss of igenerality, we 

assume that 𝑐∗(𝑢𝑣1) = 1 𝑎nd consider 𝑣1  and 𝑣5 . Meanwhile, 𝑑(𝑣1𝑣5) = 2 and the only path 

from 𝑣1 to 𝑣5 with length 2 is 𝑣1,𝑢, 𝑣5 iit ifollows  ithat 𝑐∗(𝑢𝑣5) = 2. Then, we consider 𝑣1 and 𝑤3. 

𝑑(𝑣1𝑤3) = 2  and the only path from 𝑣1  to 𝑤3  with length 2  is  𝑣1,𝑢,𝑤3,  it follows  that 
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𝑐∗(𝑢, 𝑤3) = 2. Then we consider 𝑤3 and 𝑣5.  Meanwhile, 𝑐∗(𝑢𝑣5) = 2, 𝑐∗(𝑢𝑤3) = 2, and the only 

path from 𝑤3 to 𝑣5 with length 2 is 𝑤3,𝑢, 𝑣5  prove that  𝑤3 − 𝑣5 rainbow path was not found. 

We get a contradiction with 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) ≥ 3. Next, we prove an upper bound of 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) by 

dividing the proof into two cases based on the value of 𝑛. 

Case 1. 3 ≤ 𝑛 ≤ 4 

The 2-coloring, 𝑐 ∶ 𝐸(𝑃𝑑𝑛) → [1, 2] is defined using the following formula. 

𝑐(𝑒) = {
1, if 𝑒 ∈ {𝑢𝑣𝑖 , 𝑢𝑤𝑖} for 𝑖 ∈ {1, 2} and 𝑒 ∈ {𝑣𝑖𝑣𝑖+1, 𝑤𝑖𝑤𝑖+1} for 𝑖 ∈ [1, 3];

2, if 𝑒 ∈ {𝑢𝑣𝑖 , 𝑢𝑤𝑖} for 𝑖 ∈ {3, 4} and 𝑒 ∈ {𝑣𝑖𝑤𝑖} for 𝑖 ∈ [1, 4].
 

Case 2. 𝑛 ≥ 5 

The 3-coloring, 𝑐 ∶ 𝐸(𝑃𝑑𝑛) → [1, 3] is defined using the following formula. 

𝑐(𝑒) = {

1, if 𝑒 ∈ {𝑢𝑣𝑖 , 𝑢𝑤𝑖} for odd 𝑖 ∈ [1, 𝑛] and 𝑒 ∈ {𝑣𝑖𝑤𝑖} for 𝑖 ∈ [1, n]; 

2, if 𝑒 = 𝑢𝑣𝑖 where 𝑖 ∈ [1, 𝑛] is even and 𝑒 = 𝑤𝑖𝑤𝑖+1 for 𝑖 ∈ [1, n − 1]

3, if 𝑒 = 𝑢𝑤𝑖 where 𝑖 ∈ [1, 𝑛] is even and 𝑒 = 𝑣𝑖𝑣𝑖+1 for 𝑖 ∈ [1, n − 1].

; 

 

The formulas show that every two adjacent vertices 𝑥 and 𝑦 in 𝑉(𝐿𝑛 ∨ 𝐾1) have an 𝑥 − 𝑦 

rainbow path. Meanwhile, every 𝑥  and 𝑦  in 𝑉(𝐿𝑛 ∨ 𝐾1) with 𝑑(𝑥, 𝑦) = 2 for 3 ≤ 𝑛 ≤ 4 has an 

𝑥 − 𝑦 rainbow path (see Table 1). Every 𝑥 and 𝑦 in 𝑉(𝐿𝑛 ∨ 𝐾1) with 𝑑(𝑥, 𝑦) = 2 for 𝑛 ≥ 5 has 

an 𝑥 − 𝑦  rainbow path (see Table 2). The proves of a lower bound and an upper bound of 

𝑟𝑐(𝐿𝑛 ∨ 𝐾1) complete the proof, as shown in Table 1 and Table 2.     ∎ 

 

Table 1. An 𝑥 − 𝑦 rainbow path on 𝐿𝑛 ∨ 𝐾1 for 3 ≤ 𝑛 ≤ 4 

ii𝒙 ii𝒚 Condition (𝒊 and 𝒋 in [𝟏, 𝒏]) 𝒙 − 𝒚 rainbow path 

𝑣𝑖  𝑣𝑗  - 𝑣𝑖 , 𝑢, 𝑣𝑗  

𝑤𝑖 𝑤𝑗 - 𝑤𝑖 , 𝑢, 𝑤𝑗 

𝑣𝑖  𝑤𝑗 
𝑗 − 𝑖 = 1 
𝑖 − 𝑗 = 1 
|𝑗 − 𝑖| ≠ 1 

𝑣𝑖 , 𝑤𝑖, 𝑤𝑗 

𝑣𝑖 , 𝑤𝑗+1, 𝑤𝑗 

𝑣𝑖 , 𝑢, 𝑤𝑗 

 
Table 2. An 𝑥 − 𝑦 rainbow path on 𝐿𝑛 ∨ 𝐾1 for 𝑛 ≥ 5 

𝒙 𝒚 Condition (𝒊 and 𝒋 in [𝟏, 𝒏]) 𝒙 − 𝒚  rainbow path 

𝑣𝑖  𝑣𝑗  
𝑖 and 𝑗 have equal standing with 𝑖 < 𝑗. 
𝑖 and 𝑗 have varying parities. 

𝑣𝑖 , 𝑢, 𝑣𝑗−1, 𝑣𝑗  

𝑣𝑖 , 𝑢, 𝑣𝑗  

𝑤𝑖 𝑤𝑗 
𝑖 and 𝑗 have equal standing with 𝑖 < 𝑗. 
𝑖 and 𝑗 have varying parities. 

𝑤𝑖 , 𝑢, 𝑤𝑗−1, 𝑤𝑗 

𝑣𝑖 , 𝑢, 𝑣𝑗  

𝑣𝑖  𝑤𝑗 
𝑖 and 𝑗 have equal standing with 𝑖 < 𝑗. 
𝑖 and 𝑗 have varying parities. 

𝑣𝑖 , 𝑢, 𝑤𝑗−1, 𝑤𝑗 

𝑣𝑖 , 𝑢, 𝑣𝑗  

 

The rainbow of 2-coloring of 𝐿4 ∨ 𝐾1  and the rainbow of 3-coloring of 𝐿6 ∨ 𝐾1  are 

illustrated in Figure 2. 
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                                      (a)                                                                                             (b) 

Figure 2. (a) a rainbow of 2-coloring of 𝐿4 ∨ 𝐾1; (b) a rainbow of 3-coloring of 𝐿6 ∨ 𝐾1 

 

Figure 2(a) shows the 2-coloring rainbow on graph 𝐿4 ∨ 𝐾1. For example, vertex 𝑣1 and 𝑤4 

are selected. Based on Table 1, the rainbow path that connect them is 𝑣1, 𝑢, 𝑤4. Additionally, 

suppose 𝑣4 and 𝑤3 are selected. In the same way, the rainbow path that connects these points 

is 𝑣4, 𝑤4, 𝑤3. Meanwhile, Figure 2(b) shows the rainbow 3-coloring on graph 𝐿6 ∨ 𝐾1. It has been 

explained in the proof of Theorem 1 that for 𝑛 ≥ 5 it takes 3 colors to color the vertices on graph 

𝐿6 ∨ 𝐾1  so that every two vertices have a rainbow path. For example, vertex 𝑣1 and 𝑤5  are 

selected. Based on Table 2, the rainbow path is 𝑣1, 𝑢, 𝑤4, 𝑤5. 

 

2. The Strong Rainbow Connection of 𝑳𝒏 ∨ 𝑲𝟏 

Theorem 2. Let 𝑛  be a positive integer with an 𝑛 ≥ 3 . iThe istrong irainbow iconnection 

inumber iof 𝐿𝑛 ∨ 𝐾1 is calculated using ithe ifollowing iformula. 

𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1) = ⌈
𝑛

2
⌉ , for 𝑛 ≥ 3 

Proof. 

By using Proposition 1. b) and Theorem 1, we obtain 𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1) = 2 for 3 ≤ 𝑛 ≤ 4.  

Let 𝑘 = ⌈
𝑛

2
⌉. For 𝑛 ≥ 5, we discover that 𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1) ≥ 𝑘. If 𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1) is ≤ 𝑘 − 1, a strong 

rainbow 𝑘 − 1 -coloring 𝑐∗  exists. 𝐿𝑛 ∨ 𝐾1  consists of a ladder graph 𝐿𝑛 ≔

𝑣1, 𝑣2, … , 𝑣𝑛, 𝑤1, 𝑤2, … , 𝑤𝑛  and 𝑢 are adjacent to 𝑣𝑖 and 𝑤𝑖 for every 𝑖 = 1, 2,… , 𝑛. An integer 𝑘 

also exists with 2𝑘 − 1 ≤ 𝑛 ≤ 2𝑘. Since 𝑑(𝑢) = 2𝑛 > 2(𝑘 − 2), 𝐴 ⊆ 𝑉(𝐿𝑛) exists so that |𝐴| =

3 and all edges in {𝑢𝑡: 𝑡 ∈ 𝐴} have the same color. There are at least two vertices 𝑡′, 𝑡′′ ∈ 𝐴 with 

𝑑𝐿𝑛(𝑡
′, 𝑡′′) ≥ 3  and 𝑑𝐿𝑛∨ 𝐾1(𝑡

′, 𝑡′′) = 2 . Since 𝑡′, 𝑢, 𝑡′′  is the only geodesic in 𝐿𝑛 ∨  𝐾1 , 𝑡′ − 𝑡′′ 

rainbow geodesic in 𝐿𝑛 ∨  𝐾1, does not exist; this is a contradiction. Thus, 𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1) ≥ 𝑘. 

Afterward, we show 𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1) ≤ 𝑘. 

The 𝑎 𝑘-coloring, 𝑐 ; 𝐸(𝐿𝑛 ∨ 𝐾1) → {1,2 , … , 𝑘} is defined using the following formula. 

 

𝑐(𝑒) =

{
 
 

 
        1, if 𝑒 ∈ {𝑣𝑖𝑣𝑖+1, 𝑤𝑖𝑤𝑖+1} and odd 𝑖 ∈ [1, 𝑛 − 1];

       2, if 𝑒 ∈ {𝑣𝑖𝑣𝑖+1, 𝑤𝑖𝑤𝑖+1} and even 𝑖 ∈ [1, 𝑛 − 1];

       3, if 𝑒 = 𝑣𝑖𝑤𝑖 and 𝑖 ∈ [1, 𝑛];

𝑗 + 1, if 𝑒 ∈ {𝑢𝑣𝑖 , 𝑢𝑤𝑖} and 𝑖 ∈ {2𝑗 + 1, 2𝑗 + 2} for 0 ≤ 𝑗 ≤ 𝑘 − 1.
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Every 𝑥 and 𝑦 in 𝑉(𝐿𝑛 ∨ 𝐾1) for 𝑛 ≥ 5 has an 𝑥 − 𝑦 rainbow geodesic, as shown in Table 3. The 

results of the calculation complete the proof.        ∎ 

 

Table 3. An 𝑥 − 𝑦 rainbow geodesic on 𝐿𝑛 ∨ 𝐾1 for 𝑛 ≥ 5 

𝒙 𝒚 Conditions (𝒊 and 𝒋 in [𝟏, 𝒏]) 
𝒙 − 𝒚 rainbow 

geodesic 

𝑣𝑖  𝑣𝑗  - 𝑣𝑖 , 𝑢, 𝑣𝑗  

𝑤𝑖 𝑤𝑗 - 𝑤𝑖, 𝑢, 𝑤𝑗  

𝑣𝑖  𝑤𝑗 

𝑗 − 𝑖 = 1 

𝑖 − 𝑗 = 1 

|𝑗 − 𝑖| ≠ 1 

𝑢𝑖, 𝑤𝑖 , 𝑤𝑗  

𝑣𝑖 , 𝑤𝑗+1, 𝑤𝑗  

𝑣𝑖 , 𝑢, 𝑤𝑗 

 

A strong rainbow of 4-coloring of 𝐿8 ∨ 𝐾1is illustrated in Figure 3. 

 
Figure 3. a strong rainbow of 4-coloring of 𝐿8 ∨ 𝐾1 

 

Figure 3 shows the strong rainbow 4-coloring on graph 𝐿8 ∨ 𝐾1 . Unlike the rainbow 

coloring, the rainbow path on the strong rainbow coloring that connects two vertices on the 

graph must be the same size as the distance between the two vertices. Therefore, in a graph 

𝐿𝑛 ∨ 𝐾1 the more the number of vertices, the more colors it takes to become a strong rainbow 

coloring. Suppose that points 𝑣𝑖 and 𝑤𝑗 are chosen with |𝑖 − 𝑗| ≥ 2, then the rainbow path must 

pass through point 𝑢. This is because the only paths of length 2 are 𝑣𝑖 , 𝑢, 𝑤𝑗; or what is known 

as rainbow geodesic. 

As explained earlier, this rainbow coloring can be applied to security issues. If it is 

associated with the join operation of a ladder graph with a trivial graph in this study, it can be 

likened to the point 𝑢  being the center of information. Meanwhile, points 𝑣𝑖  and 𝑤𝑗  are 

information agents. To be able to exchange information between one agent and another, you 

must first pass through the information center. Of course, the concept of strong rainbow 

coloring provides benefits so that the transfer of information is safer. 
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D. CONCLUSION AND SUGGESTIONS 

This study has determined the exact value of (strong) rainbow connection number of joined 

ladder graph and trivial graph using the following formulas: 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) = 𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1) =

2, for 3 ≤ 𝑛 ≤ 4  and 𝑟𝑐(𝐿𝑛 ∨ 𝐾1) = 3, for 𝑛 ≥ 5.  This study has discovered 𝑠𝑟𝑐(𝐿𝑛 ∨ 𝐾1) =

⌈
𝑛

2
⌉ , for 𝑛 ≥ 5. Data security can benefit from the rainbow connectivity concept. Transferring 

confidential information from one party to another should be prevented. Each agent should use 

a distinct password when sharing information to reduce data leaking. With the rainbow 

connection concept, two agents can share information while using separate passwords because 

it enables the requirement of a minimum number of passwords. 
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