

The (Strong) Rainbow Connection Number of Join of Ladder and Trivial Graph

Dinda Kartika ${ }^{1}$, Didi Febrian ${ }^{2}$, Nurul Maulida Surbakti ${ }^{3}$
1,2,3 Department of Mathematics, Universitas Negeri Medan, Indonesia
dindakartika@unimed.ac.id ${ }^{1}$, febrian.didi@unimed.ac.id ${ }^{2}$, nurulmaulida@unimed.ac.id ${ }^{3}$

| |
| :--- | :--- |
| Article History: |
| Received $: 31-10-2022$ |
| Revised $: 16-12-2022$ |
| Accepted $: ~: 23-12-2022$ |
| Online $: 12-01-2023$ |

Keywords:

Rainbow coloring; Rainbow path; Ladder graph; Join;
Rainbow connection number;

Abstract

Let $G=(V, E)$ be a nontrivial, finite, and connected graph. A function c from E to $\{1,2, \ldots, k\}, k \in \mathbb{N}$, can be considered as a rainbow k-coloring if every two vertices x and y in G has an $x-y$ path. Therefore, no two path's edges receive the same color; this condition is called a "rainbow path". The smallest positive integer k, designated by $r c(G)$, is the G rainbow connection number. Thus, G has a rainbow k-coloring. Meanwhile, the c function is considered as a strong rainbow k coloring within the condition for every two vertices x and y in G have an x y rainbow path whose length is the distance between x and y. The smallest positive integer k, such as G, has a strong rainbow k-coloring; such a condition is called a strong rainbow connection number of G, denoted by $\operatorname{src}(G)$. In this research, the rainbow connection number and strong rainbow connection number are determined from the graph resulting from the join operation between the ladder graph and the trivial graph, denoted by $\operatorname{rc}\left(L_{n} \vee K_{1}\right)$ and $\operatorname{src}\left(L_{n} \vee K_{1}\right)$ respectively. So, $r c\left(L_{n} \vee K_{1}\right)=\operatorname{src}\left(L_{n} \vee K_{1}\right)=2$, for $3 \leq n \leq 4$ and $r c\left(L_{n} \vee\right.$ $\left.K_{1}\right)=3$, while $\operatorname{src}\left(L_{n} \vee K_{1}\right)=\left[\frac{n}{2}\right\rceil$, for $n \geq 5$.

indicated by $\operatorname{src}(G)$. As a result, G has a strong rainbow k-coloring, and $r c(G) \leq \operatorname{src}(G)$ for any connected graph G.

On condition that G is a rainbow connection, the least diam (G) colors are necessary; the $\operatorname{diam}(G)$ refers to the G 's diameter. On the other hand, rainbow coloring is defined by G if each of its edges is colored differently. Hence, the formula is as follows.

$$
\begin{equation*}
\operatorname{diam}(G) \leq r c(G) \leq \operatorname{src}(G) \leq m \tag{1}
\end{equation*}
$$

Several previous studies have investigated both the rainbow connection number and strong rainbow connections number. Chartrand et al. (2008) have determined some $r c(G)$ and $\operatorname{src}(G)$ of connected G graphs, as follows.
Proposition 1. Let G be a nontrivial connected graphs of size m. Then

1. $\operatorname{src}(G)=1$ if and only if G is a complete graph
2. $r c(G)=2$ if only if $\operatorname{src}(G)=2$
3. $r c(G)=m$ if only if G is a tree.

The strong rainbow connection number of stellar graphs, which is a corona product of a trivial graph and an m-copies ladder graph, was discovered by Shulhany and Salman back in 2016 (Shulhany \& Salman, 2016). On the other hand, Fitrianda et al. (2018) have determined a generalized triangular ladder graph's rainbow connection number and strong rainbow connection number. Meanwhile, (L. Chen et al., 2018) present some results of the six rainbow connection parameters. Other previous studies have found other results of (strong) rainbow connection of graph (H. Li et al., 2011; Schiermeyer, 2011).

The concept of rainbow connectivity can apply to data security. Confidential information should be protected from being transferred from one party to another. The security system must be able to prohibit not just unauthorized users from accessing the system, but also users who are already signed in from performing actions that they are not permitted to perform (Morris \& Thompson, 1979). A security cracking method known as a rainbow table employs a precalculated table of inverted password hashes to decipher database passwords. The user is verified whether the values match. The rainbow table database is utilized to decrypt the password hash and get authentication (Zhang, Tan \& Yu, 2013). To minimize data leakage from such confidential information, each agent should have a different password when transferring information. As a result, a lot of passwords are needed. Fortunately, the rainbow connection concept requires a minimum number of passwords so that two agents can exchange information with different passwords.

Apart from this motivation, the concept of rainbow connection is interesting to study. Many researchers have developed the concept of rainbow connectivity by applying it to various types of graphs. One of them is by performing operations on several graphs and specifying $r c(G)$ and $\operatorname{src}(G)$ on those graphs. Li and Sun (2012) have obtained several results of the rainbow connection number of graph products, comprising lexicographic products, join, cartesian products, etc. Meanwhile, Resty and Salman (2015) have determined the rainbow connection number of the corona product of the n-crossed prism graph with the trivial graph. Septyanto and Sugeng (2017) give lower and upper limits for rainbow connectison numbers and strong rainbow connection numbers by joining two graphs based on individual graph parameters: the
number of vertices of degree 0 , maximum degree, independent dominance number, clique number, and independent number.

Li and Ma (2017) have done related study that calculated the rainbow connection number of operating graphs by using several ways such as a) includes a union of graphs, b) adds and removes edges, and c) adds vertices. Strong and accurate values of rainbow connection numbers, as well as their upper bounds of comb product, path, triangular book, circular, or fan graphs are discussed by Dafik et al. (2018). In addition, several previous studies focus on examining rainbow connection numbers from operating graphs (Basavaraju et al., 2014; X. Chen et al., 2019; Fitriani \& Salman, 2016; Gembong \& Agustin, 2017; Gologranc et al., 2014; Liu, 2014; Maulani et al., 2019; Doan, Ha, and Schiermeyer, 2022).

To two agents to share information while using different passwords, the rainbow connection idea allows for the requirement of a minimum number of passwords. The concept of the rainbow link is intriguing to examine even without this reason. Research on rainbow connection numbers from the join operation of ladder and trivial graphs has never been done. (Kartika, 2020) assert that the ladder graph, denoted by L_{n}, is obtained from two duplicates of the path P_{n}, becoming $P_{n_{1}}$ and $P_{n_{2}}$. The vertex of v_{i} on $P_{n_{1}}$ is connected to the vertex of w_{i} on $P_{n_{2}}$ by an edge, with $i=1,2, \ldots, n$. The trivial graph refers to a graph with only one vertex, denoted K_{1} (Diestel, 2005). Meanwhile, let G_{1} and G_{2} connected graphs. The process of joining two disconnected graphs G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$, and edge set of $V\left(G_{1}\right) \cup V\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$ (Li \& Sun, 2012). This research determined the (strong) rainbow connection number from the graphs resulting from the joint operation of ladder graphs and trivial graphs.

B. METHODS

This research is a literature study. The purpose of this study is to determine the rainbow connection number and strong rainbow connection number from graphs resulting from the join operations of ladder and trivial graphs. The steps in this research are as follows:

1. Defining the problem to be discussed
2. Doing a literature study on rainbow connected numbers and strong rainbow connected numbers
3. Describing a graph resulting from the join operation of a ladder graph and a trivial graph, denoted by $L_{n} \vee K_{1}$. The vertex set and edge set of $L_{n} \vee K_{1}$ are defined as follows.
Definition 1. Let $n \geq 3$ be an integer. The graph resulting from the join operation of a ladder graph and a trivial graph is a graph with

$$
\begin{aligned}
& V=\{u\} \cup\left\{v_{i} \mid i \in\{1,2, \ldots, n\}\right\} \cup\left\{w_{i} \mid i \in\{1,2, \ldots, n\}\right\} \\
& E=\left\{u v_{i} \mid i \in\{1,2, \ldots, n\}\right\} \cup\left\{u w_{i} \mid i \in\{1,2, \ldots, n\}\right\} \cup\left\{v_{i} w_{i} \mid i \in\{1,2, \ldots, n\}\right\} \cup \\
& \left\{v_{i} v_{i+1} \mid i \in\{1,2, \ldots, n-1\}\right\} \cup\left\{w_{i} w_{i+1} \mid i \in\{1,2, \ldots, n-1\}\right\}
\end{aligned}
$$

As an illustration, the graph $L_{n} \vee K_{1}$ as shown in Figure 1.

Figure 1. Graph $L_{n} \vee K_{1}$

Based on the picture above, it can be seen that diam $\left(L_{n} \vee K_{1}\right)=2$.
4. Finding a rainbow coloring pattern for $L_{n} \vee K_{1}$ and determining the accurate values of $r c\left(L_{n} \vee K_{1}\right)$ and $\operatorname{src}\left(L_{n} \vee K_{1}\right)$.
5. Proving the rainbow connection number and the strong rainbow connection number of $L_{n} \vee K_{1}$. If $r c\left(L_{n} \vee K_{1}\right)=k, r c\left(L_{n} \vee K_{1}\right) \geq k$ and $r c\left(L_{n} \vee K_{1}\right) \leq k$ should be done. To prove lower bound of $\operatorname{rc}\left(L_{n} \vee K_{1}\right) \geq k$, it is necessary to show a reason for the absence of rainbow coloring with $k-1$ color or less. Proving upper bound of $\operatorname{rc}\left(L_{n} \vee K_{1}\right) \leq k$ by constructing a rainbow coloring in $L_{n} \vee K_{1}$ using k colors. The same thing is also done for the $\operatorname{src}\left(L_{n} \vee K_{1}\right)$.
6. Formulating conclusions based on the results of the theorem analysis that has been proven.

C. RESULTS AND DISCUSSION

In this section, we calculate the rainbow connection number and the strong rainbow connection number of the following: the joined ladder graph and trivial graph; according to Theorem 1 and Theorem 2, respectively.

1. The Rainbow Connection Number of $\boldsymbol{L}_{\boldsymbol{n}} \vee K_{1}$

Theorem 1. Let n be a positive integer with an $n \geq 3$. The rainbow connection number of $L_{n} \vee K_{1}$ is as follows.

$$
r c\left(L_{n} \vee K_{1}\right)= \begin{cases}2, & \text { for } 3 \leq n \leq 4 \\ 3, & \text { for } n \geq 5\end{cases}
$$

Proof.

First, we prove a lower bound of $r c\left(L_{n} \vee K_{1}\right)$.
For $3 \leq n \leq 4$ is determined using the inequality (1), and we obtain $r c\left(L_{n} \vee K_{1}\right) \geq 2$.
For $n \geq 5$, suppose that $r c\left(L_{n} \vee K_{1}\right) \leq 2$.
Furthermore, there is a rainbow 2 -coloring c^{*} for $\left(L_{n} \vee K_{1}\right)$. With no loss of generality, we assume that $c^{*}\left(u v_{1}\right)=1 a$ nd consider v_{1} and v_{5}. Meanwhile, $d\left(v_{1} v_{5}\right)=2$ and the only path from v_{1} to v_{5} with length 2 is $v_{1} u, v_{5}$ it follows that $c^{*}\left(u v_{5}\right)=2$. Then, we consider v_{1} and w_{3}. $d\left(v_{1} w_{3}\right)=2$ and the only path from v_{1} to w_{3} with length 2 is v_{1}, u, w_{3}, it follows that
$c^{*}\left(u, w_{3}\right)=2$. Then we consider w_{3} and v_{5}. Meanwhile, $c^{*}\left(u v_{5}\right)=2, c^{*}\left(u w_{3}\right)=2$, and the only path from w_{3} to v_{5} with length 2 is w_{3}, u, v_{5} prove that $w_{3}-v_{5}$ rainbow path was not found. We get a contradiction with $r c\left(L_{n} \vee K_{1}\right) \geq 3$. Next, we prove an upper bound of $r c\left(L_{n} \vee K_{1}\right)$ by dividing the proof into two cases based on the value of n.
Case 1. $3 \leq n \leq 4$
The 2-coloring, $c: E\left(P d_{n}\right) \rightarrow[1,2]$ is defined using the following formula.

$$
c(e)= \begin{cases}1, & \text { if } e \in\left\{u v_{i}, u w_{i}\right\} \text { for } i \in\{1,2\} \text { and } e \in\left\{v_{i} v_{i+1}, w_{i} w_{i+1}\right\} \text { for } i \in[1,3] ; \\ 2, & \text { if } e \in\left\{u v_{i}, u w_{i}\right\} \text { for } i \in\{3,4\} \text { and } e \in\left\{v_{i} w_{i}\right\} \text { for } i \in[1,4] .\end{cases}
$$

Case 2. $n \geq 5$
The 3-coloring, $c: E\left(P d_{n}\right) \rightarrow[1,3]$ is defined using the following formula.

$$
c(e)= \begin{cases}1, & \text { if } e \in\left\{u v_{i}, u w_{i}\right\} \text { for odd } i \in[1, n] \text { and } e \in\left\{v_{i} w_{i}\right\} \text { for } i \in[1, \mathrm{n}] \\ 2, & \text { if } e=u v_{i} \text { where } i \in[1, n] \text { is even and } e=w_{i} w_{i+1} \text { for } i \in[1, \mathrm{n}-1] ; \\ 3, & \text { if } e=u w_{i} \text { where } i \in[1, n] \text { is even and } e=v_{i} v_{i+1} \text { for } i \in[1, \mathrm{n}-1]\end{cases}
$$

The formulas show that every two adjacent vertices x and y in $V\left(L_{n} \vee K_{1}\right)$ have an $x-y$ rainbow path. Meanwhile, every x and y in $V\left(L_{n} \vee K_{1}\right)$ with $d(x, y)=2$ for $3 \leq n \leq 4$ has an $x-y$ rainbow path (see Table 1). Every x and y in $V\left(L_{n} \vee K_{1}\right)$ with $d(x, y)=2$ for $n \geq 5$ has an $x-y$ rainbow path (see Table 2). The proves of a lower bound and an upper bound of $r c\left(L_{n} \vee K_{1}\right)$ complete the proof, as shown in Table 1 and Table 2.

Table 1. An $x-y$ rainbow path on $L_{n} \vee K_{1}$ for $3 \leq n \leq 4$

\boldsymbol{x}	\boldsymbol{y}	Condition $(\boldsymbol{i}$ and \boldsymbol{j} in $[\mathbf{1}, \boldsymbol{n}])$	$\boldsymbol{x}-\boldsymbol{y}$ rainbow path
v_{i}	v_{j}	-	v_{i}, u, v_{j}
w_{i}	w_{j}	-	w_{i}, u, w_{j}
		$j-i=1$	v_{i}, w_{i}, w_{j}
v_{i}	w_{j}	$i-j=1$	v_{i}, w_{j+1}, w_{j}
		$\|j-i\| \neq 1$	v_{i}, u, w_{j}

Table 2. An $x-y$ rainbow path on $L_{n} \vee K_{1}$ for $n \geq 5$

\boldsymbol{x}	\boldsymbol{y}	Condition (\boldsymbol{i} and \boldsymbol{j} in $[\mathbf{1}, \boldsymbol{n}])$	$\boldsymbol{x}-\boldsymbol{y}$ rainbow path				
v_{i}	v_{j}	$\begin{array}{l}i \text { and } j \text { have equal standing with } i<j . \\ i \text { and } j \text { have varying parities. }\end{array}$	v_{i}, u, v_{j-1}, v_{j}				
				$]$	w_{i}, u, w_{j-1}, w_{j}		
:---:	:---:	:---:					
w_{i}	w_{j}	i and j have equal standing with $i<j$. i and j have varying parities.					
v_{i}		i and j have equal standing with $i<j$. i and j have varying parities.					

The rainbow of 2-coloring of $L_{4} \vee K_{1}$ and the rainbow of 3-coloring of $L_{6} \vee K_{1}$ are illustrated in Figure 2.

Figure 2. (a) a rainbow of 2-coloring of $L_{4} \vee K_{1}$; (b) a rainbow of 3-coloring of $L_{6} \vee K_{1}$

Figure 2(a) shows the 2-coloring rainbow on graph $L_{4} \vee K_{1}$. For example, vertex v_{1} and w_{4} are selected. Based on Table 1, the rainbow path that connect them is v_{1}, u, w_{4}. Additionally, suppose v_{4} and w_{3} are selected. In the same way, the rainbow path that connects these points is v_{4}, w_{4}, w_{3}. Meanwhile, Figure $2(\mathrm{~b})$ shows the rainbow 3 -coloring on graph $L_{6} \vee K_{1}$. It has been explained in the proof of Theorem 1 that for $n \geq 5$ it takes 3 colors to color the vertices on graph $L_{6} \vee K_{1}$ so that every two vertices have a rainbow path. For example, vertex v_{1} and w_{5} are selected. Based on Table 2, the rainbow path is v_{1}, u, w_{4}, w_{5}.

2. The Strong Rainbow Connection of $L_{n} \vee K_{1}$

Theorem 2. Let n be a positive integer with an $n \geq 3$. The strong rainbow connection number of $L_{n} \vee K_{1}$ is calculated using the following formula.

$$
\operatorname{src}\left(L_{n} \vee K_{1}\right)=\left\lceil\frac{n}{2}\right\rceil, \text { for } n \geq 3
$$

Proof.

By using Proposition 1. b) and Theorem 1, we obtain $\operatorname{src}\left(L_{n} \vee K_{1}\right)=2$ for $3 \leq n \leq 4$.
Let $k=\left[\frac{n}{2}\right]$. For $n \geq 5$, we discover that $\operatorname{src}\left(L_{n} \vee K_{1}\right) \geq k$. If $\operatorname{src}\left(L_{n} \vee K_{1}\right)$ is $\leq k-1$, a strong rainbow $k-1$-coloring c^{*} exists. $L_{n} \vee K_{1}$ consists of a ladder graph $L_{n}:=$ $v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}$ and u are adjacent to v_{i} and w_{i} for every $i=1,2, \ldots, n$. An integer k also exists with $2 k-1 \leq n \leq 2 k$. Since $d(u)=2 n>2(k-2), A \subseteq V\left(L_{n}\right)$ exists so that $|A|=$ 3 and all edges in $\{u t: t \in A\}$ have the same color. There are at least two vertices $t^{\prime}, t^{\prime \prime} \in A$ with $d_{L_{n}}\left(t^{\prime}, t^{\prime \prime}\right) \geq 3$ and $d_{L_{n} \vee K_{1}}\left(t^{\prime}, t^{\prime \prime}\right)=2$. Since $t^{\prime}, u, t^{\prime \prime}$ is the only geodesic in $L_{n} \vee K_{1}, t^{\prime}-t^{\prime \prime}$ rainbow geodesic in $L_{n} \vee K_{1}$, does not exist; this is a contradiction. Thus, $\operatorname{src}\left(L_{n} \vee K_{1}\right) \geq k$. Afterward, we show $\operatorname{src}\left(L_{n} \vee K_{1}\right) \leq k$.
The $a k$-coloring, $c ; E\left(L_{n} \vee K_{1}\right) \rightarrow\{1,2, \ldots, k\}$ is defined using the following formula.

$$
c(e)=\left\{\begin{aligned}
1, & \text { if } e \in\left\{v_{i} v_{i+1}, w_{i} w_{i+1}\right\} \text { and odd } i \in[1, n-1] ; \\
2, & \text { if } e \in\left\{v_{i} v_{i+1}, w_{i} w_{i+1}\right\} \text { and even } i \in[1, n-1] ; \\
3, & \text { if } e=v_{i} w_{i} \text { and } i \in[1, n] ; \\
j+1, & \text { if } e \in\left\{u v_{i}, u w_{i}\right\} \text { and } i \in\{2 j+1,2 j+2\} \text { for } 0 \leq j \leq k-1
\end{aligned}\right.
$$

Every x and y in $V\left(L_{n} \vee K_{1}\right)$ for $n \geq 5$ has an $x-y$ rainbow geodesic, as shown in Table 3. The results of the calculation complete the proof.

Table 3. An $x-y$ rainbow geodesic on $L_{n} \vee K_{1}$ for $n \geq 5$

\boldsymbol{x}	\boldsymbol{y}	Conditions (\boldsymbol{i} and \boldsymbol{j} in $[\mathbf{1}, \boldsymbol{n}])$	$\boldsymbol{x}-\boldsymbol{y}$ rainbow geodesic
v_{i}	v_{j}	-	v_{i}, u, v_{j}
w_{i}	w_{j}	-	w_{i}, u, w_{j}
		$j-i=1$	
v_{i}	w_{j}	$i-j=1$	
		$\|j-i\| \neq 1$	u_{i}, w_{i}, w_{j}
v_{i}, w_{j+1}, w_{j}			
v_{i}, u, w_{j}			

A strong rainbow of 4-coloring of $L_{8} \vee K_{1}$ is illustrated in Figure 3.

Figure 3. a strong rainbow of 4-coloring of $L_{8} \vee K_{1}$
Figure 3 shows the strong rainbow 4 -coloring on graph $L_{8} \vee K_{1}$. Unlike the rainbow coloring, the rainbow path on the strong rainbow coloring that connects two vertices on the graph must be the same size as the distance between the two vertices. Therefore, in a graph $L_{n} \vee K_{1}$ the more the number of vertices, the more colors it takes to become a strong rainbow coloring. Suppose that points v_{i} and w_{j} are chosen with $|i-j| \geq 2$, then the rainbow path must pass through point u. This is because the only paths of length 2 are v_{i}, u, w_{j}; or what is known as rainbow geodesic.

As explained earlier, this rainbow coloring can be applied to security issues. If it is associated with the join operation of a ladder graph with a trivial graph in this study, it can be likened to the point u being the center of information. Meanwhile, points v_{i} and w_{j} are information agents. To be able to exchange information between one agent and another, you must first pass through the information center. Of course, the concept of strong rainbow coloring provides benefits so that the transfer of information is safer.

D. CONCLUSION AND SUGGESTIONS

This study has determined the exact value of (strong) rainbow connection number of joined ladder graph and trivial graph using the following formulas: $\operatorname{rc}\left(L_{n} \vee K_{1}\right)=\operatorname{src}\left(L_{n} \vee K_{1}\right)=$ 2 , for $3 \leq n \leq 4$ and $r c\left(L_{n} \vee K_{1}\right)=3$, for $n \geq 5$. This study has discovered $\operatorname{src}\left(L_{n} \vee K_{1}\right)=$ $\left\lceil\frac{n}{2}\right\rceil$, for $n \geq 5$. Data security can benefit from the rainbow connectivity concept. Transferring confidential information from one party to another should be prevented. Each agent should use a distinct password when sharing information to reduce data leaking. With the rainbow connection concept, two agents can share information while using separate passwords because it enables the requirement of a minimum number of passwords.

REFERENCES

Basavaraju, M., Chandran, L. S., Rajendraprasad, D., \& Ramaswamy, A. (2014). Rainbow Connection Number of Graph Power and Graph Products. Graphs and Combinatorics, 30(6), 1363-1382. https://doi.org/10.1007/s00373-013-1355-3
Chartrand, G., Johns, G. L., Mckeon, K. A., \& Zhang, P. (2008). Rainbow connection in graphs. Mathematica Bohemica, 127(1), 85-98. https://doi.org/10.21136/MB.2008.133947
Chen, L., Li, X., Liu, H., \& Liu, J. (2018). On various (strong) rainbow connection numbers of graphs. Australasian Journal of Combinatorics, 70(1), 137-156. https://doi.org/10.48550/arXiv.1601.01063
Chen, X., Li, X., Wang, J., \& Fan, N. (2019). The rainbow connectivity of cartesian product graphs. Journal of Discrete Mathematical Sciences and Cryptography, 22(6), 901-914. https://doi.org/10.1080/09720529.2019.1614337
Dafik, D., Agustin, I. H., Wardanai, D. A. R., Kurniawati, E. Y., \& Alfarisi, R. (2018). On the Rainbow and Strong Rainbow Coloring of Comb Product Graphs. Acta Mechanica Slovaca, 22(3), 20-26. https://doi.org/10.21496/ams.2018.022
Diestel, R. (2005). Graph Theory. Springer.
Doan, T. D., Ha, P. H., \& Schiermeyer, I. (2022). The Conflict-Free Vertex-Connection Number and Degree Conditions of Graphs. Graphs and Combinatorics, 38(5). DOI: 10.1007/s00373-022-02567-y
Fitrianda, S., Yulianti, L., \& Narwen. (2018). Rainbow Connection Number dan Strong Rainbow Connection Number pada Graf Tangga Segitiga yang Diperumum. Jurnal Matematika UNAND, VII(1), 136-142. https://doi.org/10.25077/jmu.7.1.125-135.2018
Fitriani, D., \& Salman, A. N. M. (2016). Rainbow connection number of amalgamation of some graphs. AKCE International Journal of Graphs and Combinatorics, 13(1), 90-99. https://doi.org/10.1016/j.akcej.2016.03.004
Gembong, A. W., \& Agustin, I. H. (2017). The Rainbow (1, 2) -Connection Number of Edge Comb Product Graph and It 's Lower Bound. 2, 5-6. ISBN: 978-602-60569-5-5
Gologranc, T., Mekiš, G., \& Peterin, I. (2014). Rainbow Connection and Graph Products. Graphs and Combinatorics, 30(591-607). https://doi.org/10.1007/s00373-013-1295-y
Kartika, D. (2020). Indeks Pelangi-3 Kuat Graf Hasil Operasi Kali Sisir Titik Graf Tangga Dengan Graf Bintang ($\mathrm{L}_{\mathrm{n}} \triangleright \circ \mathrm{K}_{1, \mathrm{r}}$). Karismatika, 6(3), 1-9. https://doi.org/10.24114/jmk.v6i3.22181
Li, H., Li, X., \& Liu, S. (2011). The (strong) rainbow connection numbers of Cayley graphs on. Computers and Mathematics with Applications, 62(11), 4082-4088. https://doi.org/10.1016/j.camwa.2011.09.056
Li, H., \& Ma, Y. (2017). Rainbow connection number and graph operations. Discrete Applied Mathematics, 230, 91-99. https://doi.org/10.1016/j.dam.2017.06.004
Li, X., \& Sun, Y. (2012). Rainbow Connections of Graphs: A Survey. In Graphs and Combinatorics (Vol. 29, Issue 1). SpringerBriefs in Math.Springer. https://doi.org/10.1007/s00373-012-1243-2
Liu, Y. (2014). The Rainbow Connection of Windmill and Corona Graph. 8(128), 6367-6372. http://dx.doi.org/10.12988/ams.2014.48632
Maulani, A., Pradini, S. F. Y. O., Setyorini, D., Sugeng, K. A., Indonesia, F. U., \& Ui, K. (2019). Rainbow connection number of $\mathrm{C}_{\mathrm{m}} \odot \mathrm{P}_{\mathrm{n}}$ and $\mathrm{C}_{\mathrm{m}} \odot \mathrm{C}_{\mathrm{n}}$. 3(2), 95-108,
https://doi.org/10.19184/ijc.2019.3.2.3
Morris, R., \& Thompson, K. (1979). Password Security: A Case History. Communications of the ACM, 22(11): 594-597. https://doi.org/10.1145/359168.359172
Resty, D., \& Salman, A. N. M. (2015). The Rainbow Connection Number of an n-Crossed Prism Graph and its Corona Product with a Trivial Graph. Procedia Computer Science, 74, 143-150. https://doi.org/10.1016/j.procs.2015.12.090
Schiermeyer, I. (2011). Bounds For The Rainbow Connection. Discussiones Mathematicae, 31, 387-395. https://doi.org/10.7151/dmgt. 1553
Septyanto, F., \& Sugeng, K. A. (2017). Rainbow connections of graph joins. Australasian Journal of Combinatorics, 69(3), 375-381. ISSN: 2202-3518
Shulhany, M. A., \& Salman, A. N. M. (2016). The (strong) rainbow connection number of stellar graphs. AIP Conference Proceedings, 1708(February 2016). https://doi.org/10.1063/1.4941170
Zhang, L., Tan, C., \& Yu, F. (2013). An Improved Rainbow Table Attack for Long Passwords. Procedia Computer Science, 107(2017), 47-52. https://doi.org/10.1016/j.procs.2017.03.054

