
JTAM (Jurnal Teori dan Aplikasi Matematika)

http://journal.ummat.ac.id/index.php/jtam

p-ISSN 2597-7512 | e-ISSN 2614-1175
Vol. 7, No. 2, April 2023, pp. 522-532

522

Formation of Non-Perfect Maze Using Prim’s Algorithm

Mahyus Ihsan1, Fahrul Razi2, Ikhsan Maulidi3*, Vina Apriliani4, Zahnur5

1,2,3Department of Mathematics, Universitas Syiah Kuala, Banda Aceh, Indonesia
1,2,3Multimedia Research Group, Universitas Syiah Kuala, Banda Aceh, Indonesia

3Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Jepang
4Department of Mathematics Education, UIN Ar-Raniry, Banda Aceh, Indonesia

5Department of Informatics, Universitas Syiah Kuala, Banda Aceh, Indonesia
ikhsanmaulidi@usk.ac.id1

 ABSTRACT
Article History:
Received : 28-12-2022
Revised : 06-03-2023
Accepted : 06-04-2023
Online : 08-04-2023

 Maze is a place that has many paths with tortuous paths that are misleading and
full of dead ends and can be viewed as a grid graph. A non-perfect maze is a maze
that has a cycle. This research produces an algorithm that can form a non-perfect
maze with a size of 𝑚 × 𝑛 which has two types of bias. The first bias is the
composition of the percentage of horizontal and vertical partitions. The second
bias is the percentage of the number of cycles. The algorithm created in this study
was generated by modifying Prim’s algorithm and the use of Fisher-Yates
algorithm which is used in random selection in Prim’s algorithm. The non-perfect
maze algorithm begins with the calculation of the parameter values of the two
types of bias and continues with forming a perfect maze and ends with forming a
non-perfect maze. The algorithm that has been designed can form a non-perfect
maze with a complexity of 𝑂(|𝐸|2), where 𝐸 is the set of edges of an 𝑚 × 𝑛 grid
graph. Flash-based application development is also carried out in order to
implement algorithms to obtain a non-perfect maze. The non-perfect maze is
produced in a two-dimensional visual form in the form of an image along with its
corresponding grid graph. The application is capable of displaying up to the first
20 solutions of the biased maze.

Keywords:
maze;
non-perfect maze;
Prim’s algorithm;
Grid graph.

https://doi.org/10.31764/jtam.v7i2.12772

This is an open access article under the CC–BY-SA license

——————————  ——————————

A. INTRODUCTION

An algorithm is a well-defined computational procedure that requires a value or a set of

values as its input and produces a value or a set of values as its output (Cormen et al., 2022).

The algorithm itself has developed very far recently along with the emergence of new

problems with a higher level of complexity. Many fields use algorithms as a tool in solving a

problem, including the field of insect research which uses algorithms for automatic

classification of their research data (Miller, 2019). Another area that uses algorithms as a tool

in solving problems is mathematics.

One example of a problem that can be taken is the maze formation process. A maze is a

place that has many paths with tortuous paths that are misleading and full of dead ends. In the

field of psychology, a maze is used to create learning theories by studying albino rats in

studying the maze (Baddeley, 2012). The maze can also be used for map development in

http://journal.ummat.ac.id/index.php/jtam
mailto:ikhsanmaulidi@usk.ac.id
https://doi.org/10.31764/jtam.v7i2.12772

 Mahyus Ihsan, Formation of Non-Perfect Maze... 523

games, for example, Hendrawan produces Android-based maze games using the Growing Tree

algorithm (Hendrawan, 2018).

A maze is said to be perfect if there is only one route connecting two arbitrary positions in

the maze. On the other hand, a maze is said to be non-perfect if there is more than one route

connecting two arbitrary positions in the maze (Fitzgerald et al., 1985). A Perfect Maze has a

correspondence with the spanning tree of the grid graph. By adding at least one edge to the

spanning tree, it will form a cycle. This cycle forms a non-perfect maze. The structure of a

maze is closely related to the spanning tree of the graph. Therefore, the algorithm that forms a

spanning tree or a minimum spanning tree can be used in the formation of a generator

algorithm in a maze.

One of the algorithms used in spanning tree formation is Prim’s algorithm. Prim’s

algorithm works iteratively by growing a tree on each iteration. Each stage of the prim

algorithm will select a new vertex outside the vertex that has been selected where this new

vertex is an adjacency of the selected vertex so that each stage of the tree will increase by one

vertex. The iteration will stop until all connected vertices form a minimum spanning tree. In

maze formation, various algorithms have been successfully developed from research results,

one of the algorithms that are easy to apply to maze formation is a search algorithm using the

Depth First Search (DFS) (Dubey & Sarita, 2016).

Other maze formation studies have also been carried out using the Prim’s algorithm

which produces a Perfect Maze (Hutama et al., 2014), where this research became the

inspiration to develop research on the formation of the non-perfect maze using Kruskal

algorithm (Ihsan et al., 2021). Inspired by these two studies, this research studied non-perfect

maze objects with a modified Prim's algorithm. The research resulted in a maze with a

changeable ratio of the vertical aisle and horizontal aisle. Other research on mazes can be

seen in (Jonasson & Westerlind, 2016), (Hoetama et al., 2018), (Ullah et al., 2022), and (Roy et

al., 2022).

In this research, an algorithm for maze formation was developed by modifying Prim's

algorithm. The algorithm produced in this study will form a non-perfect maze that depends on

the composition of the percentage of horizontal and vertical biases and the percentage of

cycles, where the biases in the formation of the maze are useful for producing varied maze

shapes. The bias itself is a tendency of dominance between vertical partitions and horizontal

partitions. In addition to partition bias, other biases will also be added, namely the percentage

bias of the number of cycles contained in the maze. In addition, the complexity of the

algorithm that has been made and the visualization of the algorithm in the form of an

application are obtained. The benefit of this non-perfect maze is that it becomes a reference

for game creators to create variations of the game arena such as the maze game (Nugroho et

al., 2017).

524 | JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 2, April 2023, pp. 522-532

B. METHODS

The method of work carried out in this research has several stages as follows:

1. Algorithm Development and Complexity Analysis

The algorithm used in this study is Prim's algorithm, which is the algorithm used to find

the minimum spanning tree (Foulds, 2012). This algorithm starts by calculating the

parameters input that will be used to determine the appearance of the maze that will be

generated later, followed by making a spanning tree obtained using the Prim algorithm and

the use of the Fisher-Yates algorithm (Subaeki & Ardiansyah, 2017) in the randomization

process and ends by forming maze non-perfect.

For example, given a grid graph of size 𝑚 × 𝑛 and it is known that a value of 𝑝𝑐 represents

the percentage of the cycle base. A cycle base is the set of all cycles in a graph where each

cycle contained in a base cycle set cannot be formed by a combination of other cycles in the

cycle base set (Galbiati, 2003; Kavitha et al., 2009). Furthermore, it can be determined the

value of the parameter 𝑘 that corresponds to the equation

𝑘 = ⌈𝑝𝑐(𝑚𝑛 − 𝑚 − 𝑛 + 1)⌉. (1)

Let 𝑗𝑠 represent the number of partitions contained in a non-perfect Maze which can be

determined by the equation

𝑗𝑠 = 𝑚𝑛 − 𝑚 − 𝑛 + 1 − 𝑘. (2)

Suppose that 𝑝𝑠𝑣 and 𝑝𝑠ℎ represent the vertical partition percentage and the horizontal

partition percentage, where 𝑝𝑠𝑣 = 1 − 𝑝𝑠ℎ. Suppose 𝑗𝑠ℎ represents the number of horizontal

partitions, 𝑗𝑠𝑣 represents the number of vertical partitions, 𝑗𝑒ℎ represents the number of

horizontal edges and 𝑗𝑒𝑣 represents the number of vertical edges. Calculation of these

parameters can be determined by the equation

𝑗𝑠ℎ = [𝑝𝑠ℎ. 𝑗𝑠], (3)

𝑗𝑠𝑣 = 𝑗𝑠 − 𝑗𝑠ℎ, (4)

𝑗𝑒𝑣 = (𝑚 − 1)𝑛 − 𝑗𝑠ℎ, (5)

𝑗𝑒ℎ = (𝑛 − 1)𝑚 − 𝑗𝑠𝑣. (6)

An explanation of the equation determining this parameter can be seen in (Ihsan et al., 2021).

The schema of the formation of the algorithm is given in Figure 1.

Figure 1. Schematic of Spanning Tree Formation Algorithm

 Mahyus Ihsan, Formation of Non-Perfect Maze... 525

After the algorithm is formed, it is then seen how the complexity of the algorithm

Chatterjee & Kiao (2021) and its comparison with the algorithm that has been formulated

previously in the research of (Ihsan et al., 2021).

2. Program Design, Coding, and Testing

After obtaining a non-perfect maze formation algorithm, then the algorithm is

implemented into a program or application. The application for forming a non-perfect maze

refers to Prim's modified algorithm. This stage consists of application design, coding and

program testing. The design carried out at this stage includes the design of storyboards and

user interfaces. The design of the storyboard is carried out in order to explain how it works

and a general overview of the resulting application visualization. User interface design is the

design of interaction objects in applications that must pay attention to visual aspects such as

colour, layout, and size of objects, as well as the suitability of icon images on buttons and their

functions.

Program coding is done with the help of Adobe Animate CC 2017 software (Brooks, 2016).

The programming language used is Action Script 3.0 (Rosenzweig, 2013). This stage is the

realization of the storyboard and user interface design into the developed program. In this

process, coding is carried out starting from the navigation button which is useful for directing

the user to the desired page and followed by coding from the algorithm that has been made.

Coding is also done to make some features that will be used in the application. This stage is

also carried out to ensure the program produces the correct output. The program will be

tested to be able to accept valid input to match the existing parameter types. If at this stage

the program appears to have experienced an error, it will return to the coding stage and make

improvements. Some references in making storyboards and user interfaces can be seen in

(Hart, 2008), (Kung, 2013), and (Groner, 2016).

C. RESULT AND DISCUSSION

Making a non-perfect maze is obtained by first forming a perfect maze and then removing

some of the remaining partitions that are still there according to the desired number of cycles.

This aims to ensure that the maze is connected, where graph 𝐺 which was originally a

spanning tree will load cycles according to the addition of edges to graph 𝐺. In the spanning

tree formation process, edges are selected to be added to the tree where the addition of edges

at this stage can not be cause cycles to appear. This is prevented by removing the selected

vertex from the vertex set. An edge is added if it is an incident between the selected vertex

and the previously selected vertex. The vertex selected at this stage is the adjacency vertex of

the previously selected vertex. An illustration of adding edges can be seen in Figure 2 where

the orange vertex is the selected vertex and the green vertex is the vertex adjacency of the

selected vertex, as shown in Figure 2.

526 | JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 2, April 2023, pp. 522-532

 (a) (b) (c) (d)

 (e) (f) (g) (h)

 (i) (j) (k) (l)

Figure 2. Adding an Edge when Forming a Spanning Tree

In Prim's algorithm, the order of edge selection is done by sorting the edges based on the

smallest weight of the edge that is incident with its vertex parent and then reviewing whether

the edge is valid or not to be added. Selection using this method is not possible because the

weight for all edges in graph G is 1 so that selection based on the order of edge weights is not

possible. In the designed algorithm, the order of edge selection is done randomly using the

Fisher-Yates algorithm. The purpose of selecting one edge randomly at each stage is to obtain

one solution from other possible solutions from the existing candidate edges.

From Figure 2 above, the tracing of vertices starts from state 8. The vertices that are

adjacency to state 8 are vertex 4 and 9. In this illustration, the selected state is state 4 (Figure

2b). If the state chosen is state 9, then the solution formed is said to be different. This allows

for other solutions to be formed. Based on the illustration in Figure 2, the sequence of states

that form a non-perfect maze is 8-4-0-1-2-5-3-9-6-7-11-10.

The algorithm starts by calculating the parameters, namely the value of

𝑘, 𝑗𝑠, 𝑗𝑠ℎ, 𝑗𝑠𝑣, 𝑗𝑒ℎ, 𝑗𝑒𝑣 using equation (1) to equation (6). Furthermore, the addition of edges is

done to ensure that there is an edge that connects the rows and columns. The addition of

edges is done after the algorithm selects the initial vertex parent at random and selects the

vertex that has an adjacency with the vertex parent as the next vertex parent at random which

contains the edge as an incident from the two selected vertex. Then adds an edge that

connects the vertex that are mutually adjacency, with the maximum number of additional

edges as much as 𝑚𝑛 − 1 to form a spanning tree. Edge addition is done by checking whether

the added edge meets the 𝑗𝑒𝑣 and 𝑗𝑒ℎ values or not by using the CHECK-EDGE procedure. If

the addition of an edge meets the conditions, then the edge will be added to set 𝐴. After the set

𝐴 = 𝑚𝑛 − 1, then 𝑘 edges will be added. Edges that can be added are taken through the set

𝑄 = 𝐸 − 𝐴 where the set 𝑄 represents the set of edges that are not in set 𝐴. The selection of

this edge is done based on the results of randomization using the Fisher-Yates algorithm on

the set of vertex that are checked again by CHECK-EDGE. When the set 𝐴 = 𝑚𝑛 − 1 + 𝑘 then

the algorithm will be completed. This makes the resulting graph 𝐺 is a connected subgraph of

the 𝑚 × 𝑛 grid graph which has 𝑚𝑛 − 1 + 𝑘 edges and 𝑘 cycles.

 Mahyus Ihsan, Formation of Non-Perfect Maze... 527

Based on Figure 1, the formation of the spanning tree is the first part of the algorithm,

where at this stage the parameters are calculated, adding edges between rows and columns,

randomizing edges, and adding 𝑚𝑛 − 1 edges. For edge randomization, the Fisher-Yates

algorithm is used. The addition of an edge must meet two criteria, namely the edge that is

added is an edge that has an incident with the vertex parent and its vertex adjacency which

was chosen at random and the added edge does not violate the predetermined 𝑗𝑒𝑣 and 𝑗𝑒ℎ.

For the criteria for adding 𝑘 edges that must be met, only the addition of edges does not

violate 𝑗𝑒𝑣 and 𝑗𝑒ℎ. The overall algorithm can be seen in Table 1.

Table 1. Non-Perfect Maze Algorithm

Algorithm Non-Perfect Maze Algorithm
 1: procedure NON-PERFECT MAZE(𝐺(𝑚, 𝑛, 𝑤), 𝑝𝑠𝑣, 𝑝𝑠ℎ, 𝑝𝑐)
 2: 𝑘 = ⌈𝑝𝑐(𝑚𝑛 − 𝑚 − 𝑛 + 1)⌉
 3: 𝑗𝑠 = 𝑚𝑛 − 𝑛 − 𝑘 + 1
 4: 𝑗𝑠ℎ = [𝑝𝑠ℎ ∙ 𝑗𝑠]
 5: 𝑗𝑠𝑣 = 𝑗𝑠 − 𝑗𝑠ℎ
 6: 𝑗𝑒𝑣 = (𝑚 − 1)𝑛 − 𝑗𝑠ℎ
 7: 𝑗𝑒ℎ = (𝑛 − 1)𝑚 − 𝑗𝑠𝑣
 8: for setiap vertex 𝑣 𝜖 𝐺. 𝑉 do
 9: MAKE-SET(𝑉)
 10: 𝑉. 𝑘𝑒𝑦 = 100
 11: 𝑉. 𝜋 = 𝑁𝐼𝐿
 12: SHUFFLE-SET(𝑉)
 13: 𝑉(0). 𝑘𝑒𝑦 = 1
 14: 𝑉𝑇𝑒𝑚𝑝 = 𝑉
 15: while 𝑉𝑇𝑒𝑚𝑝 ≠ 0 do
 16: 𝑢 = EXTRACT-RANDOM-MIN(𝑄)
 17: for setiap vertex 𝑣 𝜖 𝑉. 𝑎𝑑𝑗[𝑢]
 18: if 𝑣 𝜖 𝑉𝑡𝑒𝑚𝑝 dan 𝑤(𝑢, 𝑣) < 𝑣. 𝑘𝑒𝑦
 19: 𝑣. 𝜋 = 𝑢
 20: 𝑣. 𝑘𝑒𝑦 = 𝑤(𝑢, 𝑣)
 21: ADD-RANDOM-EDGE(𝐸𝑇 , 𝑣])
 22: while 𝐸𝑇 < 𝐸𝑇 + 𝑘 do
 23: for setiap 𝑒(𝑢, 𝑣) 𝜖 𝐺. 𝐸
 24: ADD-EDGE(𝐸𝑇 , 𝑒(𝑢, 𝑣))
 25: procedure ADD-EDGE(𝐸𝑇 , 𝑒(𝑢, 𝑣))
 26: for setiap 𝑒𝑇 𝜖 𝐸𝑇 do
 27: if 𝑒(𝑢, 𝑣) ≠ 𝑒𝑇
 28: CHECK-EDGE(𝑒(𝑢, 𝑣))
 29: Tambahkan 𝑒(𝑢, 𝑣) ke 𝐸𝑇
 30: procedure CHECK-EDGE(𝑒(𝑢, 𝑣))
 31: if rasio 𝑣 − 𝑢 = 1
 32: 𝑒(𝑢, 𝑣) adalah edge vertikal
 33: else
 34: 𝑒(𝑢, 𝑣) adalah edge horizontal

528 | JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 2, April 2023, pp. 522-532

1. Algorithm Complexity Analysis

The complexity of the algorithm is obtained from the algorithm that has been compiled

above. The time complexity of lines 2-7 is 𝑂(6), followed by initializing vertex and assigning

attribute values that require 𝑂(1) time which is done as much as |𝑉| so the time complexity

on lines 8-11 is 𝑂(|𝑉|). SHUFFLE-SET randomization has a time complexity of 𝑂(|𝑉|) and

EXTRACT-RANDOM-MIN has a complexity of 𝑂(log|𝑉|) which is done as much as |𝑉|. The time

complexity for ADD-RANDOM-EDGE is 𝑂(log|𝐸|) which is done as much as |𝑉| and lines 22-24

have a time complexity of 𝑂(|𝐸|2) So the total time complexity required is 𝑂(6 + |𝑉| + |𝑉| +

|𝑉|log|𝑉| + |𝑉|log|𝐸| + |𝐸|2) = 𝑂(6 + 2|𝑉| + |𝑉|log|𝑉| + |𝑉|log|𝐸| + |𝐸|2). Due to 6,2|𝑉|,

|𝑉| log|𝑉|, and |𝑉| log|𝐸| being smaller than |𝐸|2, then the complexity of the algorithm is

𝑂(|𝐸|2). The complexity of the non-perfect maze formation algorithm with Prim's algorithm,

when compared with the results of previous studies using the Kruskal algorithm (Ihsan et al.,

2021), is still not good enough. This is because in previous studies the complexity of the

algorithm obtained was 𝑂(𝐸 log 𝑉).

2. Algorithm Coding and Non-Perfect Maze Application Design

The coding begins by initializing the vertex and edges contained in the 𝑚 × 𝑛 grid graph.

At this stage, labeling of 𝑚𝑛 vertex will be carried out according to the (𝑖, 𝑗) position of the

vertex. All labeled vertex will be accommodated in array V which is then assigned the value of

the property key and 𝜋 for each labeled vertex. The categorization of 2𝑚𝑛 − 𝑚 − 𝑛 edges is

also carried out by taking into account the type of the edge. The next step is to calculate some

of the maze parameters. The input obtained from the algorithm is 𝑚, 𝑛, 𝑝𝑠𝑣, 𝑝𝑠ℎ, and 𝑝𝑐

sequentially stating the number of rows, number of columns, percentage of vertical partition,

percentage of horizontal partition, and percentage of cycle base. The parameters calculated in

the algorithm are 𝑘, 𝑗𝑠, 𝑗𝑠ℎ, 𝑗𝑠𝑣, 𝑗𝑒𝑣, and 𝑗𝑒ℎ which sequentially state the number of additions

from the edges after the formation of the spanning tree, the number of partitions, the number

of vertical partitions, and the number of horizontal partitions, as shown in Figure 3.

Figure 3. Parameter Coding

The formation of a non-perfect maze begins with forming a perfect maze first, where the

initial vertex selection (Va) is carried out randomly using the Fisher-Yates algorithm on the

set of Vtemp vertex and continues with the search for its vertex adjacency. After that, it is

checked whether the value of the property key of the vertex adjacency is smaller than the

weight of the edge that connects Va to its adjacency, if it is true then changes are made to the

property value of the vertex adjacency. Next is the selection of the smallest property value

from the set of VTemp vertex. After the vertex with the smallest property value is obtained,

 Mahyus Ihsan, Formation of Non-Perfect Maze... 529

the edge will be added according to the next selected vertex while paying attention so that the

added edge does not violate the predetermined 𝑗𝑒𝑣 and 𝑗𝑒ℎ. If there is a case of a vertex with

the smallest property value more than one, a random selection will be made using the Fisher-

Yates algorithm. This happens because the weight value is assumed to be equal to 1 for each

edge in graph G. Since Prim's algorithm only works on weighted connected graphs, then to

overcome the graph equivalent of the maze created where the graph of the maze equivalent is

a connected grid graph that is not weighted, then an assumption is made for the weight of

each edge on the grid graph to be 1, as shown in Figure 4.

Figure 4. Edge Increment Coding Based on Selected Vertex

The next step is to form a cycle by adding edges to the spanning tree that has been formed.

This is done by first checking all edges in the set of edges and checking whether the edges

have been selected or not in the loop. If there is an edge that has been selected, then the

CekSama attribute will be added 1. Edge will be added if after checking the iteration, the value

of the CekSama attribute is 0. The visualization media application that forms a non-perfect

maze consists of nine frames, namely the main menu page, developer page, algorithm

visualization page, maze list page, parameter limitation page, and the rest are guide pages.

The relationship between the nine page frames can be seen in Figure 5 and Figure 6.

530 | JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 2, April 2023, pp. 522-532

Figure 5. Relationship Diagram between Pages

Figure 6. Algorithm Visualization Page User Interface Design

The number of candidate solutions from maze perfect that corresponds to the number of

ways to choose 𝑚𝑛 − 1 edge from the available 2𝑚𝑛 − 𝑚 − 𝑛 edges is 𝐶(𝑚𝑛 − 1,2𝑚𝑛 − 𝑚 −

𝑛). Then check whether the candidate solutions as many as 𝐶(𝑚𝑛 − 1,2𝑚𝑛 − 𝑚 − 𝑛) are

connected or not. If the solution produces a connected maze, then the resulting maze is a

perfect maze. Using the same method, the non-perfect maze solution candidates are 𝐶(𝑚𝑛 −

1 + 𝑘, 2𝑚𝑛 − 𝑚 − 𝑛) where 𝑘 is the number of cycle bases. For example, the number of

candidate solutions for a perfect 4 × 4 maze is 𝐶(15,24) = 1307504, while the number of

candidate solutions for a non-perfect maze 4 × 4 with 3 cycle bases is 𝐶(18,24) = 134596.

The number of solutions this will increase as the maze size increases. Taking into account the

magnitude of this value, the maze list frame will only display the entire maze solution if the

number of solutions is less than 20, while for solutions with a number of more than 20, the

maze list page will only display a maximum of 20 other solutions.

The maze that has been generated on the algorithm visualization page can be saved by

using the SAVE button. This storage feature is made to make it easier for users to look back at

the previously generated maze. All information regarding the maze is stored in this maze

repository. The information stored is the value of the parameters 𝑚, 𝑛, 𝑝𝑠𝑣, 𝑝𝑠ℎ, 𝑝𝑐, 𝑗𝑠, 𝑗𝑒ℎ,

Main page

Drawing Page Guide Page Developer Page

Maze List Page Parameter
Limitation Page

 Mahyus Ihsan, Formation of Non-Perfect Maze... 531

𝑗𝑒𝑣, 𝑗𝑠ℎ, 𝑗𝑠𝑣, and the string text field of the History Box and the string text field parameter. To

display the same maze, information about the selected edge is also stored. The maze is saved

to a file of type XML using a FileReference object.

D. CONCLUSION AND SUGGESTIONS

This study discusses the creation of a non-perfect maze using Prim's algorithm. An

algorithm for biased non-perfect maze formation is designed by modifying Prim's algorithm

and the use of the Fisher-Yates algorithm placed in modifying Prim's algorithm. This

algorithm has a complexity of 𝑂(|𝐸|2). Visualization applications designed using Adobe

Animate software can visualize biased non-perfect maze. Visualization is done by displaying

an image of the maze formed along with its corresponding grid graph in two-dimensional

form. A maze that has been generated in the application can be saved in the form of a file with

XML format and can also display files that have been previously saved.

The suggestions that can be given for this research are the need to increase the number of

display solutions from the maze being sought while at the same time developing a non-perfect

maze visualization for sizes more than 20 × 20 with a more diverse maze shape that displays

more than 20 solutions. New search methods to generate non-perfect mazes can also be

added so that it can be expected that future non-perfect maze searches will be able to go

through the stages of finding perfect mazes first. The contribution of this research is that it

can become a basis for expanding the dimensions of the study space from 2 dimensions to 3

dimensions.

REFERENCES

Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of
Psychology, 63(2012), 1–29. https://doi.org/10.1146/annurev-psych-120710-100422

Brooks, S. (2016). Tradigital Animate CC: 12 Principles of Animation in Adobe Animate. CRC Press.
Chatterjee, A., & Kiao, U. (2021). Time Complexity Analysis. OpenGenus.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms. MIT Press.
Dubey, P., & Sarita, K. (2016). Maze generation and solver. International Journal of Scientific and

Technical Advancements, 2(4), 139–142.
Fitzgerald, R. E., Isler, R., Rosenberg, E., Oettinger, R., & Bättig, K. (1985). Maze patrolling by rats with

and without food reward. Animal Learning & Behavior, 13(4), 451–462.
https://doi.org/10.3758/BF03208022

Foulds, L. R. (2012). Graph Theory Applications. Springer Science & Business Media.
Galbiati, G. (2003). On finding cycle bases and fundamental cycle bases with a shortest maximal cycle.

Information Processing Letters, 88(4), 155–159. https://doi.org/10.1016/j.ipl.2003.07.003
Groner, L. (2016). Learning JavaScript Data Structures and Algorithms. Packt Publishing Ltd.
Hart, J. (2008). The Art of the Storyboard Second Edition. Elsevier.
Hendrawan, Y. F. (2018). A Maze Game on Android Using Growing Tree Method. Journal of Physics:

Conference Series, Vol. 953, No. 1, 012148. https://doi.org/10.1088/1742-
6596/953/1/012148/meta

Hoetama, D. O., Putri, F. P., & Winarno, P. M. (2018). Algoritma Fisher-Yates Shuffle dan flood fill
sebagai maze generator pada game labirin. Ultima Computing: Jurnal Sistem Komputer, 10(2), 59–
64. https://doi.org/10.31937/sk.v10i2.1064

Hutama, D. R., Santosa, R. G., & Karel, J. (2014). Implementasi algoritma Prim sebagai creator jalur
permainan maze. Jurnal Informatika, 9(2), 147–155.

Ihsan, M., Suhaimi, D., Ramli, M., Yuni, S. M., & Maulidi, I. (2021). Non-perfect maze generation using
Kruskal algorithm. Jurnal Natural, 21(1), 35–45. https://doi.org/10.24815/jn.v21i1.18840

Jonasson, A., & Westerlind, S. (2016). Genetic algorithms in mazes: a comparative study of the

532 | JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 2, April 2023, pp. 522-532

performance for solving mazes between genetic algorithms, BFS and DFS.
Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T., & Zweig, K. A. (2009). Cycle

bases in graphs characterization, algorithms, complexity, and applications. Computer Science
Review, 3(4), 199–243. https://doi.org/10.1016/j.cosrev.2009.08.001

Kung, D. (2013). Object-oriented Software Engineering. McGraw-Hill Higher Education.
Miller, T. (2019). Explanation in artificial intelligence: insights from the social sciences. Artificial

Intelligence, 267(2019), 1–38. https://doi.org/10.1016/j.artint.2018.07.007
Nugroho, D. A., Harmastuti, H., & Uminingsih, U. (2017). Membangun game edukasi “mathematic maze”

berbasis android untuk meningkatkan kemampuan berhitung pada anak sekolah dasar. Jurnal
Statistika Industri Dan Komputasi, 2(1), 67–77. https://doi.org/10.34151/statistika.v2i01.1101

Rosenzweig, G. (2013). ActionScript 3.0 Game Programming University. Pearson Education India.
Roy, S., Das, S. K., & Kamal, A. H. M. (2022). A multi-path based embedding scheme at perfect maze.

Indian Journal of Computer Science, 7(1). https://doi.org/10.17010/ijcs/2022/v7/i1/168954
Subaeki, B., & Ardiansyah, D. (2017). Implementasi algoritma Fisher-Yates Shuffle pada aplikasi

multimedia interaktif untuk pembelajaran tenses bahasa inggris. Infotronik: Jurnal Teknologi
Informasi Dan Elektronika, 2(1), 67–74. https://doi.org/10.32897/infotronik.2017.2.1.31

Ullah, Z., Chen, X., Gou, S., Xu, Y., & Salam, M. (2022). FNUG: imperfect mazes traversal based on
detecting and following the nearest-to-final-goal and unvisited gaps. IEEE Robotics and
Automation Letters, 7(2), 5175–5182. https://doi.org/10.1109/LRA.2022.3151393

