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 Integral equations are equations in which the unknown function is found to be 
inside the integral sign. N. H. Abel used the integral equation to analyze the 
relationship between kinetic energy and potential energy in a falling object, 
expressed by two integral equations. This integral equation is called Abel's integral 
equation. Furthermore, these equations are developed to produce generalizations 
and further generalizations for each equation. This study aims to explain 
generalizations of the first and second kind of Abel’s integral equations, and to find 
solution for each equation. The method used to determine the solution of the 
equation is an analytical method, which includes Laplace transform, fractional 
calculus, and manipulation of equation. When the analytical approach cannot solve 
the equation, the solution will be determined by a numerical method, namely 
successive approximations. The results showed that the generalization of the first 
kind of Abel’s integral equation solution can be determined using the Laplace 
transform method, fractional calculus, and manipulation of equation. On the other 
hand, the generalization of the second kind of Abel’s integral equation solution is 
obtained from the Laplace transform method. Further generalization of the first 
kind of Abel’s integral equation solution can be obtained using manipulation of 
equation method. Further generalization of the second kind of Abel’s integral 
equation solution cannot be determined by analytical method, so a numerical 
method (successive approximations) is used.  
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A. INTRODUCTION  

An integral equation is an equation with an unknown function that appears under the 

integral sign (Ahmad, 2021). Integral equations can be applied in various fields such as 

geophysics, engineering, electricity and magnetism, optimal control systems, mathematics, 

population genetics, and medicine (Ray & Sahu, 2013; Sattaso et al., 2023). In 1823, N. H. Abel 

pioneered integral equations for mechanical problems. Abel's integral equation is one of the 

integral equations which is derived directly from certain physics problems without going 

through the equations (Kumar et al., 2015). Abel's integral equations have two kinds: the first 

and second. In 1924, the generalized and further generalization of Abel's integral equation on 

a finite segment was studied (Bairwa et al., 2020). Over time, generalization of Abel’s integral 

equations was applied in several branches of science (Wang et al., 2014; Li et al., 2018). Some 

of them are modelling plasma (Merk et al., 2013), seismology (Cuha & Peker, 2022), and 

stereology (Ziada, 2021). The generalization of Abel’s integral equation can also be applied to 
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astrophysics (Kumar et al., 2015), optical fibres (Singh et al., 2019), and spectroscopy (Senel et 

al., 2021).  

There are two methods for solving integral equations: the analytical and the numerical 

methods. In previous research,  Abel’s integral equations of the first kind (𝛼 =
1

2
) is solved 

analytically with Laplace transform (Aggarwal & Sharma, 2019). Meanwhile, generalizations of 

Abel’s integral equations of the first kind (0 < 𝛼 < 1) are solved analytically using fractional 

calculus (Jahanshahi et al., 2015) and fractional-order Mikusinski operator (M. Li & Zhao, 2013). 

Solving the Abel’s integral equations with numerical methods has been carried out using 

Touchard and Laguerre polynomials (Abdullah et al., 2021) and the Laguerre wavelet 

(Mundewadi, 2019). In addition, the generalization of Abel’s integral equations has been solved 

by numerical methods, named the hp-version collocation method (Dehbozorgi & Nedaiasl, 

2020). 

This study will determine the solutions of generalization of the first and second kinds of 

Abel’s integral equations. The methods that will be used in this study include analytical 

methods, which include Laplace transforms, fractional calculus, and equation manipulation. In 

previous study, the Laplace transform method was used by Aggarwal & Sharma (2019) to solve 

the first kind of Abel’s integral equation (𝛼 =
1

2
). In this paper, the ideas from Aggarwal & 

Sharma (2019) will be used to determine the generalization solutions of the first and second 

kinds of Abel’s integral equations (0 < 𝛼 < 1). Determination of generalization solutions with 

fractional calculus using ideas from  (Jahanshahi et al., 2015). This study also uses numerical 

methods when solutions cannot be determined analytically. The numerical method chosen is 

successive approximations. After obtaining the generalization solution, it is expected to be able 

to solve various problems (stereology, seismology, geometry, etc.), which are represented in 

the generalized form of the first or second kind of Abel’s integral equations.  

 

B. METHODS 

This research studies the generalization of the first and second kinds of Abel’s integral 

equations, and then the solution will be determined. The first step is to learn some of the 

analytical methods used to determine the solution of the integral equation. Next, select the 

methods that can be applied to Abel’s integral equation, including the Laplace transform, 

fractional calculus, and equation manipulation. When the solution of the equation cannot be 

determined by analytical methods, the solution is determined by numerical methods. In this 

study, the numerical method chosen was successive approximations. 

1. Gamma and Beta Functions 

According to Goyal et al. (2021) the Gamma function is defined as: 

Г(𝑥) = ∫ 𝑒−𝑡
∞

0

𝑡𝑥−1𝑑𝑡,                             𝑥 ≥ 0                                      (1) 

and the Beta function is defined as: 

𝐵(𝑥, 𝑦) = ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−1𝑑𝑡,   𝑥 > 0, 𝑦 > 0
1

0

.                                  (2) 

According to Salah (2015) and Al-Gonah et al. (2018), the Gamma and Beta functions have 

the following properties: 
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a. Г(1) = 1 

b. Г(𝑥 + 1) = 𝑥Г(𝑥), (𝑥 > 0), 

c. Г(𝑛 + 1) = 𝑛! where n is a non-negative integer 

d. Г(𝑥) = 2∫ 𝑒−𝑡
2∞

0
𝑡2𝑥−1𝑑𝑡 

e. ∫ cos2𝑥−1 𝜃
𝜋

2
0

sin2𝑦−1 𝜃  𝑑𝜃 =
Г(𝑥)Г(𝑦)

2Г(𝑥+𝑦)
  

f. Г (
1

2
) = √𝜋 

g. 𝐵(𝑥, 𝑦) =
Г(𝑥)Г(𝑦)

Г(𝑥+𝑦)
 

h. 𝐵(𝑥, 𝑦) = 𝐵(𝑦, 𝑥) 

i. 𝐵(𝑥 + 1, 𝑦) =
𝑥

𝑥+𝑦
𝐵(𝑥, 𝑦) and 𝐵(𝑥, 𝑦 + 1) =

𝑦

𝑥+𝑦
𝐵(𝑥, 𝑦). 

j. Г(2𝑥) =
22𝑥−1

√𝜋
Г(𝑥)Г (𝑥 +

1

2
) 

k. Г(𝑥)Г(1 − 𝑥) =
𝜋

sin𝜋𝑥
. 

 

2. Laplace Transform 

According to Saif et al. (2020) the Laplace transform of the function 𝑓(𝑡)  is defined as 

follows: 

ℒ[𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0

= 𝐹(𝑠),                                          (3) 

with 𝑓(𝑡) = 0 for 𝑡 ≤ 0, and 𝑠 is a complex variable. The inverse Laplace transform, denoted 

as 

ℒ−1[𝐹(𝑠)] = 𝑓(𝑡).                                                                   (4) 

Suppose ℒ[𝑓(𝑡)] = 𝐹(𝑠)  and ℒ[𝑔(𝑡)] = 𝐺(𝑠). According to Debnath (2016) and Wang & 

Chen (2019) the properties of the Laplace transform are: 

ℒ[𝑓(𝑡) + 𝑔(𝑡)] = 𝐹(𝑠) + 𝐺(𝑠) 

a. ℒ[𝑎𝑓(𝑡)] = 𝑎𝐹(𝑠); 𝑎 ∈ ℝ  

b. ℒ [𝑓′(𝑡)] = 𝑠𝐹(𝑠) − 𝑓(0) 

c. ℒ [𝑓 ′′(𝑡)] = 𝑠2𝐹(𝑠) − 𝑓′(0) − 𝑠𝑓(0) 

d. ℒ[𝑡𝑝] =
Γ(𝑝+1)

𝑠𝑝+1
, where 𝑝 > −1. 

 

Theorem 1  

Suppose 𝑓1 and 𝑓2  are continuous functions defined at (0,∞). The Laplace transform of 𝑓1(𝑥) 

and 𝑓2(𝑥) is 

ℒ{𝑓1(𝑥)} = 𝐹1(𝑠),   ℒ{𝑓2(𝑥)} = 𝐹2(𝑠)                                                (5) 

The Laplace convolution product ((𝑓 ∗ 𝑔)(𝑥)) is defined by 
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ℒ {∫ 𝑓1(𝑥 − 𝑡)𝑓2(𝑡)𝑑𝑡
𝑡

0

} = 𝐹1(𝑠)𝐹2(𝑠)                                                (6) 

(Yang, 2014). 

 

3. Fractional Calculus 

Fractional calculus is a branch of classical mathematics which deals with the generalization 

of operations of differentiation and integration to fractional order (Delkhosh, 2013). The 𝑛-

derivative of a function 𝑓(𝑥) is 
𝑑𝑛𝑓(𝑥)

𝑑𝑥𝑛
. In general, the value of 𝑛 is a positive integer, 𝑛 can be a 

rational, irrational, or complex number. 

Definition of fractional integral by Riemann–Liouville: 

𝐼𝑥
1−𝛼𝑢(𝑥) =

1

𝛤(1 − 𝛼)
∫

1

(𝑥 − 𝑡)𝛼
𝑢(𝑡)

𝑥

0

𝑑𝑡,                                       (7) 

and the Riemann–Liouville fractional derivative is defined as: 

𝐷𝑥
1−𝛼𝑓(𝑥) =

1

𝛤(𝛼)

𝑑

𝑑𝑡
∫

1

(𝑥 − 𝑡)1−𝛼
𝑓(𝑡)

𝑥

0

𝑑𝑡.                                      (8) 

 

C. RESULT AND DISCUSSION 

1. Generalization of Abel’s Integral Equations of the First Kind 

Let 𝑓 be any known function, and 𝑢 be the function to be determined. The Abel’s integral 

equation of the first kind is 

𝑓(𝑥) = ∫
1

(𝑥 − 𝑡)
1
2

𝑢(𝑡)𝑑𝑡,
𝑥

0

                               𝑥 ≥ 0.                                   (9) 

Equation (9) can be generalized as follows: 

𝑓(𝑥) = ∫
1

(𝑥 − 𝑡)𝛼
𝑢(𝑡)𝑑𝑡,

𝑥

0

   0 < 𝛼 < 1, 𝑥 ≥ 0,                                 (10) 

where 𝐾(𝑥, 𝑡) =
1

(𝑥−𝑡)𝛼
 is called an Abel’s kernel. In this case, equation (9) is a special case 

of generalization of the first kind of Abel’s integral equation with a value of 𝛼 =
1

2
. 

A further generalization of first kind of Abel’s integral equations considers the following 

Abel’s kernel: 

𝐾(𝑥, 𝑡) =
1

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
, 0 < 𝛼 < 1, 

equation (10) becomes 

𝑓(𝑥) = ∫
1

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
𝑢(𝑡)𝑑𝑡

𝑥

0

, 0 < 𝛼 < 1, 𝑥 ≥ 0,                      (11) 

where 𝑔(𝑡) is a a monotonic function of increasing and decreasing in the interval 0 < 𝑡 < 𝑏 

and 𝑔′(𝑡) ≠ 0 for every 𝑡 in the interval.  

 

Theorem 2 

Let 𝑓 be any known function, with 

𝑓(𝑥) = ∫
1

(𝑥 − 𝑡)𝛼
𝑢(𝑡)𝑑𝑡,

𝑥

0

 𝑥 ≥ 0 
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then 

𝑢(𝑥) =
sin 𝜋𝛼

𝜋

𝑑

𝑑𝑥
∫

1

(𝑥 − 𝑡)1−𝛼
𝑓(𝑡)

𝑥

0

𝑑𝑡. 

 

Proof: 

There are three methods to prove Theorem 2. 

a.  Laplace Transform 

The proof of the Laplace transformation uses ideas from Aggarwal & Sharma (2019). The 

first step is to use the definition of convolution for equation (10) so that 

𝑓(𝑥) = ∫
1

(𝑥 − 𝑡)𝛼
𝑢(𝑡)

𝑥

0

𝑑𝑡 =
1

𝑥𝛼
∗ 𝑢(𝑥).                                      (12) 

Then a Laplace transform is performed on both sides of equation (12) 

ℒ{𝑓(𝑥)} = ℒ{𝑥−𝛼} ℒ{𝑢(𝑥)}.                                                     (13) 

Suppose 𝐹(𝑠) = ℒ{𝑓(𝑥)} and 𝑈(𝑠) = ℒ{𝑢(𝑥)}, so  

𝐹(𝑠) =
Γ(1 − 𝛼)

𝑠1−𝛼
𝑈(𝑠)                                                         (14) 

𝑈(𝑠) =
𝑠1−𝛼

Γ(1 − 𝛼)
𝐹(𝑠),                                                         (15) 

where Γ is the Gamma function. To obtain the inverse Laplace transform, equation (15) 

can be expressed by 

ℒ{𝑢(𝑥)} =
𝑠

Γ(1 − 𝛼)Γ(𝛼)
ℒ{𝑦(𝑥)}                                          (16) 

where 

𝑦(𝑥) = ∫
1

(𝑥 − 𝑡)1−𝛼
𝑓(𝑡)

𝑥

0

𝑑𝑡.                                           (17) 

From the Laplace transform properties are obtained 

ℒ{𝑦′(𝑥)} = 𝑠ℒ{𝑦(𝑥)} − 𝑦(0).                                          (18) 

Equation (16) becomes the following equation: 

ℒ{𝑢(𝑥)} =
sin 𝜋𝛼

𝜋
ℒ{𝑦′(𝑥)}.                                            (19) 

By applying the inverse of the Laplace transform (ℒ−1) to equation (19), we get 

𝑢(𝑥) =
sin𝜋𝛼

𝜋

𝑑

𝑑𝑥
∫

1

(𝑥 − 𝑡)1−𝛼
𝑓(𝑡)

𝑥

0

𝑑𝑡. 

b. Equation Manipulation 

Both sides of equation (10) are multiplied by 
1

(𝑠−𝑥)1−𝛼
 and integrated at the lower bound 

0 and upper bound 𝑠 over 𝑥, so 

∫
𝑓(𝑥)

(𝑠 − 𝑥)1−𝛼

𝑠

0

𝑑𝑥 = ∫
1

(𝑠 − 𝑥)1−𝛼
(∫

𝑢(𝑡)

(𝑥 − 𝑡)𝛼
𝑑𝑡

𝑥

0

)
𝑠

0

𝑑𝑥  

 = ∫ 𝑢(𝑡) (∫
1

(𝑠 − 𝑥)1−𝛼(𝑥 − 𝑡)𝛼

𝑠

𝑡

𝑑𝑥)
𝑠

0

𝑑𝑡, (20) 

by substituting 𝑦 =
𝑠−𝑥

𝑠−𝑡
, we get 𝑑𝑥 = −(𝑠 − 𝑡)𝑑𝑦. This resulted 



636  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 3, July 2023, pp. 631-642 

∫
1

(𝑠 − 𝑥)1−𝛼(𝑥 − 𝑡)𝛼

𝑠

𝑡

𝑑𝑥 = ∫ 𝑦𝛼−1(1 − 𝑦)−𝛼
1

0

𝑑𝑦  

 = 𝐵(𝛼,  1 − 𝛼), (21) 

where 𝐵 is the Beta function. Equation (20) can be expressed by 

∫
𝑓(𝑥)

(𝑠 − 𝑥)1−𝛼

𝑠

0

𝑑𝑥 = ∫ 𝑢(𝑡) 𝐵(𝛼,  1 − 𝛼)
𝑠

0

𝑑𝑡.                                          (22) 

From the properties of the Gamma and Beta functions, we get 

sin 𝜋𝛼

𝜋
∫

𝑓(𝑥)

(𝑠 − 𝑥)1−𝛼

𝑠

0

𝑑𝑥 = ∫ 𝑢(𝑡) 
𝑠

0

𝑑𝑡.                                          (23) 

Furthermore, both sides are derived from the variable 𝑠 so that 

𝑢(𝑠) =
sin 𝜋𝛼

𝜋

𝑑

𝑑𝑠
∫

𝑓(𝑥)

(𝑠 − 𝑥)1−𝛼

𝑠

0

𝑑𝑥.                                              (24) 

The variable 𝑥, 𝑠 is a dummy variable, then 

𝑢(𝑥) =
sin 𝜋𝛼

𝜋

𝑑

𝑑𝑥
∫

𝑓(𝑡)

(𝑥 − 𝑡)1−𝛼

𝑥

0

𝑑𝑡. 

c. Fractional Calculus 

The proof of the fractional calculus uses ideas from Jahanshahi et al. (2015). Based on 

the definition of fractional integral by Riemann–Liouville, equation (10) can be written 

as 

𝑓(𝑥) = 𝐼𝑥
1−𝛼𝑢(𝑥)Γ(1 − 𝛼).                                                   (25) 

Then both sides are derived by definition of the Riemann–Liouville fractional derivative 

so that 
1

Γ(1 − 𝛼)
𝐷𝑥
1−𝛼𝑓(𝑥) = 𝐷𝑥

1−𝛼𝐼𝑥
1−𝛼𝑢(𝑥).                                         (26) 

Based on the properties of calculus fractions are obtained: 

1

Γ(1 − 𝛼)

1

Γ(𝛼)

𝑑

𝑑𝑥
∫

1

(𝑥 − 𝑡)1−𝛼
𝑓(𝑡)

𝑥

0

𝑑𝑡 = 𝑢(𝑥).                                (27) 

So, the solution is 

𝑢(𝑥) =
sin 𝜋𝛼

𝜋

𝑑

𝑑𝑥
∫

1

(𝑥 − 𝑡)1−𝛼
𝑓(𝑡)

𝑥

0

𝑑𝑡. 

Theorem 3 

Let 𝑓 be any known function, and 𝑔(𝑡) be a monotone increasing and decreasing function on 

the interval 0 < 𝑡 < 𝑏 and 𝑔′(𝑡) ≠ 0, with 

𝑓(𝑥) = ∫
1

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
𝑢(𝑡)𝑑𝑡, 0 < 𝛼 < 1, 𝑥 ≥ 0,

𝑥

0

 

then 

𝑢(𝑥) =
sin𝜋𝛼

𝜋

𝑑

𝑑𝑥
∫

𝑔′(𝑡) 𝑓(𝑡)

(𝑔(𝑥) − 𝑔(𝑡))
1−𝛼

𝑥

0

𝑑𝑡. 

Proof: 

The method used to prove Theorem 3 is equation manipulation. The steps are to multiply both 

sides of equation (11) by 
𝑔′(𝑥)

(𝑔(𝑠)−𝑔(𝑥))
1−𝛼 , then integrate over 𝑥 from the lower bound 0 and upper 
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bound 𝑠 so that 

∫
𝑔′(𝑥) 𝑓(𝑥)

(𝑔(𝑠) − 𝑔(𝑥))
1−𝛼

𝑠

0

𝑑𝑥 = ∫ 𝑢(𝑡) (∫
𝑔′(𝑥)

(𝑔(𝑠) − 𝑔(𝑥))
1−𝛼

(𝑔(𝑥) − 𝑔(𝑡))
𝛼

𝑠

𝑡

𝑑𝑥)
𝑠

0

𝑑𝑡. (28) 

By substituting 𝑦 =
𝑔(𝑠)−𝑔(𝑥)

𝑔(𝑠)−𝑔(𝑡)
 then 𝑔′(𝑥)𝑑𝑥 = −(𝑔(𝑠) − 𝑔(𝑡))𝑑𝑦 which resulted 

∫
𝑔′(𝑥)

(𝑔(𝑠) − 𝑔(𝑥))
1−𝛼

(𝑔(𝑥) − 𝑔(𝑡))
𝛼

𝑠

𝑡

𝑑𝑥 = ∫ 𝑦𝛼−1(1 − 𝑦)−𝛼
1

0

𝑑𝑦  

 = 𝐵(𝛼, 1 − 𝛼)  

 = 
𝜋

sin 𝜋𝛼
. (29) 

From equation (28), it is obtained that 

sin 𝜋𝛼

𝜋
∫

𝑔′(𝑥) 𝑓(𝑥)

(𝑔(𝑠) − 𝑔(𝑥))
1−𝛼

𝑠

0

𝑑𝑥 = ∫ 𝑢(𝑡)
𝑠

0

𝑑𝑡.                                (30) 

Then both sides are derived to 𝑠, then 

𝑢(𝑠) =
sin 𝜋𝛼

𝜋

𝑑

𝑑𝑠
∫

𝑔′(𝑥) 𝑓(𝑥)

(𝑔(𝑠) − 𝑔(𝑥))
1−𝛼

𝑠

0

𝑑𝑥.                               (31) 

The variable 𝑥, 𝑠 is a dummy variable, so it applies 

𝑢(𝑥) =
sin𝜋𝛼

𝜋

𝑑

𝑑𝑥
∫

𝑔′(𝑡) 𝑓(𝑡)

(𝑔(𝑥) − 𝑔(𝑡))
1−𝛼

𝑥

0

𝑑𝑡. 

 

2. Generalization of Abel’s Integral Equations of the Second Kind 

Let 𝑓 be any known function, and 𝑢 be the function to be determined. The Abel’s integral 

equation of the second kind is 

𝑢(𝑥) = 𝑓(𝑥) + ∫
1

(𝑥 − 𝑡)
1
2

𝑢(𝑡)𝑑𝑡,                𝑥 ≥ 0.
𝑥

0

                               (32) 

Equation (32) can be generalized as follows: 

𝑢(𝑥) = 𝑓(𝑥) + ∫
1

(𝑥 − 𝑡)𝛼
𝑢(𝑡)𝑑𝑡, 0 < 𝛼 < 1, 𝑥 ≥ 0.

𝑥

0

                       (33) 

where 
1

(𝑥−𝑡)𝛼
= 𝐾(𝑥, 𝑡)  is called an Abel’s kernel. Equation (32) is a special case of 

generalization of the second kind of Abel’s integral equation with a value of 𝛼 =
1

2
. 

A further generalization of the second kind of Abel’s integral equations considers the kernel 

𝐾(𝑥, 𝑡) =
1

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
, 0 < 𝛼 < 1, 

so that 

𝑢(𝑥) = 𝑓(𝑥) + ∫
1

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
𝑢(𝑡)𝑑𝑡, 0 < 𝛼 < 1, 𝑥 ≥ 0,

𝑥

0

                 (34) 

where 𝑔(𝑡) is a monotonic function of increasing and decreasing in the interval 0 < 𝑡 < 𝑏 

and 𝑔′ (𝑡) ≠ 0 for each 𝑡 in the interval. 
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Theorem 4 

Let 𝑓 be any known function, with 

𝑢(𝑥) = 𝑓(𝑥) + ∫
1

(𝑥 − 𝑡)𝛼
𝑢(𝑡)𝑑𝑡,                𝑥 ≥ 0,

𝑥

0

 

then 

𝑢(𝑥) = ℒ−1 {
s1−𝛼

𝑠1−𝛼 − Γ(1 − 𝛼)
ℒ{𝑓(𝑥)}}. 

Proof: 

The Laplace transform method is used to prove Theorem 4. By carrying out the Laplace 

transformation on both sides of equation (33), it is obtained that 

ℒ{𝑢(𝑥)} = ℒ{𝑓(𝑥)} + ℒ {∫
1

(𝑥 − 𝑡)𝛼
𝑢(𝑡)

𝑥

0

𝑑𝑡}                                     (35) 

𝑈(𝑠) =
s1−𝛼

𝑠1−𝛼 −Γ(1 − 𝛼)
𝐹(𝑠),                                                              (36) 

where Γ  is a gamma function, 𝑈(𝑠) = ℒ{𝑢(𝑥)} , and 𝐹(𝑠) = ℒ{𝑓(𝑥)} . The inverse of the 

Laplace transforms (ℒ−1) for both sides is 

𝑢(𝑥) = ℒ−1 {
s1−𝛼

𝑠1−𝛼 −Γ(1 − 𝛼)
ℒ{𝑓(𝑥)}}. 

The solution 𝑢(𝑥) in Theorem 4 is still in the inverse Laplace form, so it is difficult for some 

functions 𝑓 . Therefore, the equation (33) solution can also be approached using numerical 

methods, namely successive approximations. This method begins by determining the initial 

guess. Then the initial guess is an approximation of the next function (Kanwal, 2013). The 

recurrence relation of equation (33) for this method is 

𝑢𝑛+1(𝑥) = 𝑓(𝑥) + ∫
1

(𝑥 − 𝑡)𝛼
𝑢𝑛(𝑡)

𝑥

0

𝑑𝑡, 𝑛 ≥ 0.                                   (37) 

When the initial guess 𝑢0(𝑥) = 0, some successive approximations 𝑢𝑘 with 𝑘 ≥ 1 are 

𝑢1(𝑥) = 𝑓(𝑥) 

𝑢2(𝑥) = 𝑓(𝑥) + ∫
1

(𝑥 − 𝑡)𝛼
𝑢1(𝑡)

𝑥

0

𝑑𝑡 

𝑢3(𝑥) = 𝑓(𝑥) + ∫
1

(𝑥 − 𝑡)𝛼
𝑢2(𝑡)

𝑥

0

𝑑𝑡 

⋮ 

 
  

So, 𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥). 

Further generalization solutions of the second kind of Abel’s integral equations can be 

approached using successive approximations. When the initial guess is 𝑢0 (𝑥) = 0, then 

𝑢1(𝑥) = 𝑓(𝑥) 

𝑢2(𝑥) = 𝑓(𝑥) + ∫
1

(𝑔(𝑥) − 𝑔(𝑡))
𝛼 𝑢1(𝑡)

𝑥

0

𝑑𝑡 
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𝑢3(𝑥) = 𝑓(𝑥) + ∫
1

(𝑔(𝑥) − 𝑔(𝑡))
𝛼 𝑢2(𝑡)

𝑥

0

𝑑𝑡 

⋮ 

 
  

So, 𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥).  

 

3. Illustration of Abel’s Integral Equation 

The following are some illustrations in solving generalizations of the first and second kinds 

of Abel’s integral equations: 

a. Suppose 𝑓(𝑥) =
16

5
𝑥
5

4 − 𝑥 − 4𝑥
1

4 + 1, with 𝛼 =
3

4
, then equation (33) becomes 

𝑢(𝑥) =
16

5
𝑥
5
4 − 𝑥 − 4𝑥

1
4 + 1 +∫

1

(𝑥 − 𝑡)
3
4

𝑢(𝑡)
𝑥

0

𝑑𝑡. 

In this case, the Laplace transform method is used so that the formulation 𝑢(𝑥)  in 

Theorem 4 becomes 

𝑢(𝑥) = ℒ−1

{
 

 
s
1
4

𝑠
1
4 −Γ (

1
4)
 ℒ {

16

5
𝑥
5
4 − 𝑥 − 4𝑥

1
4 + 1}

}
 

 

 

 = ℒ−1 {
s
1
4

𝑠
1
4 −Γ (

1
4)
(
16

5

Γ (
5
4 + 1)

𝑠
5
4
+1

−
1

𝑠2
− 4
Γ (

1
4 + 1)

𝑠
1
4
+1

+
1

𝑠
)} 

 = ℒ−1 {
1

𝑠
−
1

𝑠2
}, 

Therefore, 𝑢(𝑥) = 1 − 𝑥. 

b. Suppose 𝑓(𝑥) = 𝑥𝑛 and 𝛼 =
1

2
, then equation (10) becomes 

𝑥𝑛 = ∫
1

(𝑥 − 𝑡)
1
2

𝑢(𝑡)𝑑𝑡
𝑥

0

, 𝑛 > −1, 𝑥 ≥ 0. 

with the equation manipulation method, it is obtained that 

𝑢(𝑥) = 
1

𝜋

𝑑

𝑑𝑥
∫

𝑡𝑛

(𝑥 − 𝑡)
1
2

𝑥

0

𝑑𝑡 

 = 
(𝑛 +

1
2)  Γ

(𝑛 + 1)

√𝜋 Γ (𝑛 +
3
2)

𝑥𝑛−
1
2. 

c. Suppose 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = 𝑥2 and 𝛼 =
1

2
, then equation (34) becomes 

𝑢(𝑥) = 𝑥2 +∫
1

(𝑥2 − 𝑡2)
1
2

𝑢(𝑡)
𝑥

0

𝑑𝑡. 

When the initial guess is 𝑢0 (𝑥) = 0, then 

𝑢1(𝑥) = 𝑥2 
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𝑢2(𝑥) = 𝑥
2 +∫

1

(𝑥2 − 𝑡2)
1
2

𝑡2
𝑥

0

𝑑𝑡 

= 𝑥2 +
𝜋

4
𝑥2 

= (1 +
𝜋

4
)𝑥2 

𝑢3(𝑥) = 𝑥
2 +∫

1

(𝑥2 − 𝑡2)
1
2

(1 +
𝜋

4
) 𝑡2

𝑥

0

𝑑𝑡 

= 𝑥2 + (1 +
𝜋

4
)
𝜋

4
𝑥2 

= (1 +
𝜋

4
+ (

𝜋

4
)
2

) 𝑥2 

𝑢𝑛(𝑥) = (1 +
𝜋

4
+ (

𝜋

4
)
2

+⋯+ (
𝜋

4
)
𝑛−1

) 𝑥2. 

So, 𝑢(𝑥) = (1 +
𝜋

4
+ (

𝜋

4
)
2

+⋯+ (
𝜋

4
)
𝑛

+⋯)𝑥2 

= 𝑥2∑(
𝜋

4
)
𝑛

∞

𝑛=0

 

=
4

4 − 𝜋
𝑥2. 

d. According to Thórisdóttir & Kiderlen (2013), the first kind of Abel’s integral equation is 

applied in stereology, namely in the random ball model, with the equation is 

𝑡(𝑥2) =
2

𝑟
∫

𝐷(𝑥1)

(𝑥1
2 − 𝑥2

2)
1
2

𝑑𝑥1

𝑀

𝑥2

,            0 ≤ 𝑥2 ≤ 𝑥1 ≤ 𝑀 < ∞, 

where 

𝑟 = ∫ 𝐷(𝑥2)𝑑𝑥2 =
𝜋

2𝐻
 

𝑀

0
 and  𝐻 = ∫

𝑡(𝑥2)

𝑥2

𝑀

0
𝑑𝑥2, 

with 

𝐷(𝑥1): spherical particle size distribution 

𝑡(𝑥2) : circular section size distribution of the random plane section particle 

𝑀       : upper limit on the maximum size of spherical particles 

𝑟         : average radius of the sphere. 

 

D. CONCLUSION AND SUGGESTIONS 

Suppose 𝑓 is any known function, and 𝑔 is a known increasing and decreasing monotone 

function, and 𝑢 is the function to be determined, then: The generalization of the first kind of 

Abel’s integral equation solution using the Laplace transform method, fractional calculus, and 

equation manipulation is 

𝑢(𝑥) =
sin 𝜋𝛼

𝜋

𝑑

𝑑𝑥
∫

1

(𝑥 − 𝑡)1−𝛼
𝑓(𝑡)

x

0

𝑑𝑡. 

The further generalization of the first kind of Abel’s integral equation solution is 

𝑢(𝑥) =
sin𝜋𝛼

𝜋

𝑑

𝑑𝑥
∫

𝑔′(𝑡) 𝑓(𝑡)

(𝑔(𝑥) − 𝑔(𝑡))
1−𝛼

𝑥

0

𝑑𝑡. 
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The generalization of the second kind of Abel’s integral equation solution using the Laplace 

transform method is 

𝑢(𝑥) = ℒ−1 {
s1−𝛼

𝑠1−𝛼 −Γ(1 − 𝛼)
ℒ{𝑓(𝑥)}}. 

The three analytical methods cannot determine further generalization of the second kind of 

Abel’s integral equations solution, so determined by numerical methods (successive 

approximations). The solution is 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥). 

In this study, the further generalization solution of the second kind of Abel’s integral equation 

is determined using a numerical method, namely successive approximations. Future research 

is expected to determine the advanced generalization solution of the second kind of Abel’s 

integral equation using analytical methods. 
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