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 Sharp-interface models and diffuse-interface models are the two basic types of 
models that describe liquid-vapour flow for compressible fluids. Their depictions 
of the line dividing liquid from vapour are different. The interface is modeled as a 
hypersurface in sharp-interface models. Sharp-interface models are free-boundary 
problems from a mathematical perspective since the position of the interface is a 
priori unknown and therefore a component of the solution to the free-boundary 
problem. A unique system of partial differential equations describes the motion of 
the fluid in the liquid and vapour phases, respectively. At the interface, boundary 
conditions between these systems are connected.. A mathematical model for liquid-
vapour flows including phase transition known as the Navier-Stokes-Korteweg 
system which is the extension of the compressible Navier-Stokes equations. The 
purpose of Ihis article, we consider the soluton formula of Korteweg fluid model in 
half-space without surface tension. Since we consider in half-space case, Partial 
Fourier transform become appropriate method to find the formula of velocity and 
density for Korteweg type. The solution formula of the model problem for the 
velocity (u) and the (𝜑 ) are obtained by using the invers of partial Fourier 
transform. It consist multipliers. For the future research, we can investigate the 
estimation of the multiplier. Furthermore, by using Weis’s multiplier theorem we 
can find not only maximal Lp-Lq regularity class, but also we can consider the local 
well-posedness of the model problem.  
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A. INTRODUCTION  

In everyday life water occurs in various forms, such as ice, liquid water and water vapour. 

This different physical states are respectively referred to as the solid, water and vapour (or gas) 

phase of water. For water vapour one might have in mind the example of boiling water while 

preparing a cup of tea. However, what we observe coming out of the kettle and filling the 

kitchen is water steam: a mixture of air, water vapour and fine droplets of water. In the natural 

sciences, however, water vapour means the gaseous phase of water. Water can be found in 

many different forms in daily life, including ice, liquid water, and water vapour. One might think 

of boiling water while brewing a cup of tea as an example of water vapour (Shine et al., 2012). 

Instead, we see water steam—a mixture of air, water vapour, and tiny droplets of water—

erupting from the kettle and filling the kitchen. Water vapour, on the other hand, refers to the 

gaseous state of water in the natural sciences. Despite the imprecision in this common example, 

we nevertheless gain a general understanding of how water vaporizes, or changes phases from 
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the liquid to the vapour phase. On chilly winter days, we can observe the water easily changing 

back into tiny drops of water by looking out the kitchen window. Condensation, the phase 

change from the vapour to the liquid phase, is demonstrated here. In contrast to solids, liquids 

and gases both have the ability to flow. Together they form the class of the fluids. However, they 

significantly differ in their mass densities (Langer, 2000). In constant temperature, we can use 

the mass density to distinguish different phases. 

Liquids and gases both have the ability to flow, in contrast to solids. Together, they make 

up the fluids class. Their mass densities, however, greatly differ from one another. This enables 

us to distinguish between various phases using the mass density, assuming a constant 

temperature. It makes sense to be interested in the phase boundaries that separate the liquid 

phase from the vapour phase when thinking about a container filled with a fluid. We anticipate 

phase borders to be areas where the density function has steep slopes or even leaps, i.e., is 

discontinuous, as a result of the difference in the mass densities. Due to this, phase borders can 

be depicted in one of two ways: as narrow regions with steep density gradients, or as 

infinitesimally tiny regions with density jumps. The terms diffuse-interface models and sharp-

interface models, respectively, are used to describe these concepts (Volkov et al., 2015). 

Diffuse and sharp-interface models are two separate categories of mathematical models 

that can be used to describe liquid-vapor fluxes. The interfacial layer where phase changes take 

place is represented differently in each of them. In sharp-interface models, an infinitesimally 

thin hypersurface is employed in place of the small, positive thickness that is present in diffuse-

interface models. By taking the limit where the interfacial region's thickness goes to zero, the 

diffuse-interface model can be connected to the related sharp-interface model. This is what 

we'll refer to as the diffuse-interface model's sharp-interface limit (Magnaudet & Mercier, 

2020).  

There are many researcher who consider Navier-Stokes equation and others type of fluid 

flows. Three dimension case of the Stokes equation which known as linearize of Navier-Stokes 

equation is investigated by (Alif et al., 2021). Meanwhile, reseachers who conducted fluid 

motion, they considered not only for local well-posedness but also global well-posedness. For 

instance, Global well-posedness of the Oldroyd-B model fluid flow was studied by (Maryani, 

2016a). In the same year, she also investigated same type of fluid flow for free boundary case 

(Maryani, 2016b). In that article, she considered not only in bounded domain but also in 

unbounded domain case.  

The Navier-Stokes-Korteweg model's sharp-interface limit, which is an extension of the 

compressible Navier-Stokes equations. The Dutch mathematician Diederik Johannes Korteweg 

first presented this diffuse-interface model for liquid-vapour movements in 1901 (Korteweg & 

De Vries, 1895). In that year, Korteweg developed a constitutive equation of stress tensors with 

density gradients to explain the effects of fluid capillarity. We are all quite familiar with 

capillary effects from everyday occurrences like tissue absorbing liquid from a surface, 

raindrops forming, ink in pens being carried to the tip, and candles burning. In the final 

illustration, capillary action causes the candle's wick to lift melted wax toward the flame. Once 

the wax has come into contact with the flame there, it vaporizes and burns (Daube, 2016). 

If you place a thin tube into a cup of tea, you will observe the same result as in the tea 

example earlier: the tea will enter the tube and rise to the top. The tea's top surface concavely 
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shapes a meniscus. The substance determines whether the surface is convex or concave; 

mercury, for instance, creates convex menisci (an effect known from mercury-in- glass 

thermometers (Benzoni-Gavage et al., 2005). In the Middle Ages, this liquids in narrow tubes 

phenomenon was already noted (or even earlier). The Latin word capillus, which means hair, 

was used to describe it at the time because no other terminology existed (Finn, 2012) and also 

can be read in (Emmer, 1987). We now understand that this effect is brought on by the tea's 

own surface tension as well as the interfacial tension between the liquid and the tube's solid 

surface. 

A fluid is said to be Newtonian if it satisfies the Newton's law of viscosity i.e the shear stress 

is proportional to the rate of shear and the viscosity is the constant of proportionality such as 

water. Otherwise, depending on the size of the blood vessels and the flow behavior, it is 

approximated as a Navier-Stokes fluid or as a non-Newtonian fluid. So that the continuum 

hypotesis holds. The concepts of continuum mechanics developed over the last half-century. 

From continuum mechanics, we derive fluid mechanics that covers both statics and dynamics 

of the fluids (Daube, 2016). 

The theory of non-Newtonian and viscoelastic fluids flourished in the second half of last 

century with the developments of (molten and dilute) polymers and the growth of materials 

science and engineering that generated many new products and applications. The 

mathematical setting of the constitutive equations required new tools from tensor analysis and 

algebra. In addition, the non-Newtonian fluids arise in a large variety of industrial applications, 

such as chemical processes, food industries, construction engineering (Daube, 2016).  

Analysis of the behaviour of the fluid motion for non-Newtonian fluids is essentially more 

complex in comparison with Newtonian fluid motions. It is well known that for Newtonian fluid 

flows, we can found the analytical solutions, while for non-Newtonian fluid flows are rarely 

found. Several recent studies investigating this model have been carried out not only on some 

polymer application but also blood flow using the numerical analysis. Despite this, the 

mathematical investigation has not been developed yet in the compressible viscous fluid case 

(Daube, 2016). 

Studying about fluid flow is very interesting point in fluid dynamics. Recently, there has 

been an increasing amount of literature on fluid motion. Many researcher investigated about 

this subject. However, they conducted in numerical analysis and rarely of them investigated 

fluid motion in mathematical analysis approach. Therefore, this reason become important 

motivation for researcher to investigate the fluid flow in the mathematical analysis point of 

view. The one dimensional of the compressible fluid for Korteweg type with large initial data 

from vacuum to Cauchy problem has been investigated by Chen et.al (Chen et al., 2015). They 

use the energy estimate approximation.  

This research consider the solution formula of compressible fluid flow of the Korteweg 

model without surface tension in half-space case with slip boundary condition. The fact that a 

flowing fluid in touch with a solid body won't have any velocity relative to the body at the 

contact surface is now beyond dispute. This requirement of not slipping over a solid surface 

needs to be met by a moving fluid. The no-slip condition is what is meant by this (Inna et al., 

2020). In this article, the domain Ω of the problem is the domain of any bounded region of the 
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N-dimensional Euclidean space ℝ𝑁  and Γ  the boundary of Ω . The equation system of 

Korteweg with slip boundary condition can be described in the following 

 

{
 
 
 

 
 
 

𝜕𝑡𝜌 + div(𝜌𝐮)

𝜌(𝜕𝑡𝐮 + 𝐮 ∙ ∇𝐮) − Div(𝐒(𝐮) − 𝑃(𝜌)𝐈)
𝐧 ∙ ∇𝜌

𝐃(𝐮)𝐧 − ⟨𝐃(𝐮)𝐧, 𝐧 ⟩𝐧
𝐮 ⋅ 𝐧

=
=

=
=
=

0
Div(𝐊(𝜌))

𝑔
𝐡
0

in Ω
𝑡

in Ω
𝑡

on Γ
𝑡

on Γ
𝑡

on Γ
𝑡

                                          (1) 

 

for 0 < 𝑡 < 𝑇, the domain Ω is replaced by an unknown domain Ω
𝑡
 depending on time 𝑡 with 

the boundary Γ
𝑡
. Let Ω

𝑡
 and Γ

𝑡
 the evaluation of reference body Ω and its boundary Γ , 

respectively. The velocity field 𝐮 = (𝑢1(𝑥, 𝑡), … , 𝑢𝑁(𝑥, 𝑡))
T, where (𝑢1(𝑥, 𝑡), … , 𝑢𝑁(𝑥, 𝑡))

T is the 

transposed of (𝑢1(𝑥, 𝑡), … , 𝑢𝑁(𝑥, 𝑡)) and 𝜌 = 𝜌(𝑥, 𝑡) is the fluid density as an unknown function.  

The material Korteweg of  𝐒(𝐮) and 𝐊(𝜌) which introduced by Dunn and Serrin (Dunn & 

Serrin, 1985) are defined as  

 

𝐒(𝐮) = 𝜇𝐃(𝐮) + (𝜈 − 𝜇)div 𝐮 𝐈,      𝐊(𝜌) =
𝜅

2
(Δ𝜌2 − |∇𝜌|2𝐈 − 𝜅∇𝜌⊗ ∇𝜌),  

 

𝐃(𝐮) the double deformation tensor whose (𝑖, 𝑗) components are 𝐷𝑖𝑗(𝐮) = 𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖 , (𝜕𝑖 =

𝜕/𝜕𝑥𝑗) , 𝐈  the 𝑁 × 𝑁  identity matrix, 𝜇  and 𝜈  are the first and second viscosity coefficients, 

respectively, and 𝐧 is an outer normal of Γ
𝑡
.  

The historical of mathematical analysis point of view for compressible fluid model of 

Korteweg which mean the system of (1) firstly introduced by Kotcshote in 2008 (Kotschote, 

2008) for isothermal cases. He proved the existence and uniqueness of strong solution local in 

time using the contraction mapping principle and result of maximal regularity for 𝐿𝑝 − 𝐿𝑞,  p=q. 

The similar approach also treated by Kotcshote (Kotschote, 2010), (Freistühler & Kotschote, 

2017) and (Kotschote, 2014) in the case of non-isothermal. For the same problem, (Bresch et 

al., 2003) investigated the equilibria point of stability and the initial densities away from zero. 

In 2019, (Bresch et al., 2019) investigated Navier-Stokes-Korteweg and Euleur-Korteweg 

system as application to quantum fluids models. In contrast, (Haspot, 2011) studied the 

existence of global weak solution. 

The equation system of (1) explained a liquid-vapour two-phase flow for compressible 

fluids with phase transition as a diffuse interface model in addition to modelling capillarity 

effect, see e.g. (Siddique et al., 2009) and (Li et al., 2020). Beside that in thermodynamic 

framework for developing boundary condition for Korteweg-type fluids has been considered 

by (Souček et al., 2020). On the other hand, (Suzuki, 2020) investigated the higher order model 

and relation to microforces for Korteweg type fluids. 

There are two main categories for models that describe liquid-vapour flow for 

compressible fluids: sharp-interface models and diffuse-interface models. They differ in how 

they depict the boundary separating liquid from vapour. In sharp-interface models, the 
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interface is represented as a hypersurface. From a mathematical point of view, sharp-interface 

models are free-boundary problems, since the position of the interface is a priori unknown and 

thus is part of the solution to the free-boundary problem. A sharp-interface with Lagrangian 

Eulerian method for rigid-body fluid structure has been studied by Kolahdouz (Kolahdouz et 

al., 2021). In the liquid and vapour phase, respectively, a distinct system of partial differential 

equations describes the motion of the fluid. These systems are coupled by boundary conditions 

at the interface. For a more complete overview and additional references on capillary and 

interfacial phenomena we refer to the aforementioned references (Benzoni-Gavage et al., 2005) 

and (Bhatnagar & Finn, 2016) and additionally to (Siddique et al., 2009).  For the asymptotic 

behaviour of solutions to an impermeable wall problem of the compressible fluid model of 

Korteweg type with density-dependent viscosity and capillarity was investigated by (Chen & Li, 

2021). 

Recently, many researchers studied about Korteweg type. In 2022 (Kobayashi et al., 2022) 

investigated the estimation of resolvent problem for a compressible fluid model of Korteweg 

type and their application. Two year before, (Inna et al., 2020) and (Saito, 2020) studied R-

boundedness solution operator of Korteweg model fluid flow in half-space case and the 

regularity of  𝐿𝑝 − 𝐿𝑞   framework for a compressible fluid model of Korteweg in general 

domains, respectively. In 2021, Saito investigated the R-boundedness of the solution operator 

for compressible fluid flow of of the Korteweg in half-space not only for large resolvent (𝜆) 

parameter but also for small resolvent (𝜆) (Saito, 2021). Meanwhile, (Lauro, 2014) studied the 

linear stability for Korteweg fluid. In (Inna et al., 2020), they considered the estimating for 

multiplier which appear in the solution formula of the Korteweg type in half-space by using 

Weis’s multiplier theorem. Then, they found a positive constant which known as R-

boundedness of the solution formula for Korteweg model fluid flow.  Different from that article, 

in this article we consider the solution formula of the model problem (2) by using partial 

Fourier transform.  

 

Notation ℕ denotes the sets of natural numbers and we set ℕ𝟎 =  ℕ ∪ {𝟎}. ℂ and ℝ denote the 

sets of complex numbers and real numbers, respectively. For any multi-index κ =

 (κ
1
, … ,κ

N
) ∈  ℕ𝟎

𝑵, we write |κ| =κ
1
+⋯+κ

N
  and 𝜕𝑥

𝜅 = 𝜕1
𝜅1⋯𝜕𝑁

𝜅𝑁 with x =  (x1, … , xN). 

For scalar function 𝑓 and 𝑁-vector of function 𝐠, we get  

 

∇𝑓 = (𝜕1𝑓, … , 𝜕𝑁𝑓), ∇𝐠 = { 𝜕𝑖𝑔𝑗 ∣ 𝑖, 𝑗 = 1, … ,𝑁}, 

∇2𝑓 = {𝜕𝑖𝜕𝑗𝑓 ∣ 𝑖, 𝑗 = 1,… , 𝑁},   ∇2𝐠 = {𝜕𝑖𝜕𝑗𝑔𝑘 ∣ 𝑖, 𝑗, 𝑘 = 1,… , 𝑁}, 

𝑊𝑞
𝑚,ℓ(Ω) ≔ { (𝐟, 𝐠) ∣∣ 𝐟 ∈ 𝑊𝑞

𝑚(Ω), 𝐠 ∈ 𝑊𝑞
ℓ(Ω) }. 

 

Let ℱ𝑥 = ℱ  and ℱ𝜉
−1 = ℱ−1  denote the Fourier transform and Fourier inverse transform, 

respectively, which are defined by 

 

ℱ𝑥[𝑓](𝜉) = 𝑓(𝜉) = ∫ 𝑒−𝑖𝑥⋅𝜉𝑓(𝑥) 𝑑𝑥,
ℝ𝑁

  ℱ𝜉
−1[𝑔](𝑥) =

1

(2𝜋)𝑁
∫ 𝑒𝑖𝑥⋅𝜉𝑔(𝜉) 𝑑𝜉.  
ℝ𝑁

                   (1a) 
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In other hand, the partial Fourier transform with respect to 𝑥′ = (𝑥1, … , 𝑥𝑁−1) and its inverse 

transform are defined as 

 

ℱ𝑥′ [𝑢(𝑥
′, 𝑥𝑁)] (𝜉) = �̂�(𝜉

′, 𝑥𝑁) = ∫ 𝑒−𝑖𝑥′⋅𝜉′𝑢 (𝑥′, 𝑥𝑁)  𝑑𝑥′,ℝ𝑁−1
                        (1b) 

  ℱ
𝜉′
−1 [𝑢(𝜉′, 𝑥𝑁)] (𝑥′) =

1

(2𝜋)𝑁−1
∫ 𝑒𝑖𝑥

′⋅𝜉′𝑢 (𝜉′, 𝑥𝑁) 𝑑𝜉
′,

ℝ𝑁−1
                       (1c) 

 

where 𝜉′ = (𝜉1, … , 𝜉𝑁−1) ∈ ℝ
𝑁−1. 

Let ℒ and ℒ−1 denote the Laplace transform and the Laplace inverse transform, respectively, 

which are defined by 

 

ℒ[𝑓](𝜆) = ∫ 𝑒−𝜆𝑡𝑓(𝑡) 𝑑𝑡,

∞

−∞

   ℒ−1[𝑔](𝑥) =
1

2𝜋
∫ 𝑒𝜆𝑡𝑔(𝜏) 𝑑𝜏,

∞

−∞

 

 

with  𝜆 = 𝛾 + 𝑖𝜏 ∈ ℂ.  For 𝐱 = (𝑥1, … , 𝑥𝑁) and 𝐲 = (𝑦1, … , 𝑦𝑁), we set 𝐱 ⋅ 𝐲 = ⟨𝐱, 𝐲⟩ = ∑ 𝑥𝑗𝑦𝑗
𝑁
𝑗=1 . 

For scalar functions 𝑓, 𝑔 and N-vectors of function , 𝐠 , we get (𝐤, 𝐠)𝐷 = ∫ 𝐤 ⋅  𝐠 𝑑𝑥,
𝐷

  (𝑘, 𝑔)Γ =

∫ kg 𝑑𝜎,
Γ

 (𝐤, 𝐠)Γ = ∫ 𝐤 ⋅  𝐠 𝑑𝜎,
Γ

 where 𝜎 is the surface element of Γ. For 𝑁 × 𝑁 matrices of 

function 𝐅 = (𝐹𝑖𝑗) and 𝐆 = (𝐺𝑖𝑗), we get (𝐅, 𝐆)𝐷 = ∫ 𝐅 ∶  𝐆 𝑑𝑥,
𝐷

  (𝐅, 𝐆)Γ = ∫ 𝐅 ∶  𝐆 𝑑𝜎,
Γ

 where 

𝐅 ∶  𝐆 ≡ ∑ 𝐹𝑖𝑗𝐺𝑖𝑗
𝑁
𝑖,𝑗=1 . The letter C denotes generic constants and the constant 𝐶𝑎,𝑏,… depends on 

𝑎, 𝑏,…. The values of constants C and 𝐶𝑎,𝑏,… denote a positive constant which maybe different 

even in a single chain of inequalities. We use small boldface letter, e.g. 𝐮 to denote vector-valued 

functions and capital boldface letters, e.g. 𝐇 to denote matrix-valued functions, respectively. 

But, we also use the Greek letters, e.g 𝜎, 𝜌, 𝜃, 𝜏, 𝜔 such as mass densities. 

 

B. METHODS 

This article's research approach makes use of a literature review of linked topics, 

particularly the article of (Inna et al., 2020). With their establishment of the velocity formula, 

we defined the solution of velocity differently in this article. In the steps that follow to 

determine the model problem's formula, we first use the Laplace transform to transform model 

problem (1), then we get the resolvent issue, which is expressed in (2). Furthermore, by using 

partial Fourier transform and inverse partial Fourier transform of the equation system of (2), 

we have the solution formula of equation (2). Therefore, we obtain the answer formula or 

velocity u and density 𝜌 in half space case. Studying the partial Fourier transform is thus the 

first and most crucial step towards proving Theorem 1. The research procedure can be 

described in the following flowchart, as shown in Figure 1. 



882  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 3, July 2023, pp. 876-888   

 

 

 
Figure 1. Reserach Procedure 

 

C. RESULT AND DISCUSSION 

In everyday life, we are very familiar with capillary effects, such as tissue absorbs liquid 

from a surface and a raindrop forms. These effects make the surface concave or convex. We 

know that this is happening depends on the material. The phase transitions of the material can 

be described in the mathematical model. In this section, we consider the two phenomena of 

phase change. This phenomena known as Korteweg type. Some researcher consider the 

solution formula of the model problem in the numerical point of view. However, in this section, 

we consider the solution formula of the model problem for velocity 𝐮(x, t) and density 𝜌(𝑥, 𝑡) 

in the mathematical point of view. In the following, we state the main theorem from the problem 

of Korteweg type without surface tension. The method of to find the solution formula of the 

model problem (2) for velocity and density in half-space case is followed (Kobayashi et al., 

2022). 
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1. Main Theorem 

Before we state the main result for the linear problem of equation (1), we Introduce the 

definition of Sobolev space 𝑊𝑞
𝑚,𝑛(Ω) and technical lemma in the following  

 

Definition 1. (Adams & Fournier, 2003) 

Let k ∈ ℕ ∪ ℕ0 and p ∈ [1,∞) then the Sobolev Space 𝑊𝑞
𝑚(Ω) is defined by  

 

𝑊𝑞
𝑚(Ω) ≔ {𝐮 ∈ 𝐿𝑞(Ω) ∣ D

𝛼𝐮 ∈ 𝐿𝑞(Ω), ∀𝛼 with |𝛼| ≤ m} 

 

Following theorem is the main result of this article 

 

Theorem 1. Let 𝜌(𝑥, 𝑡) be a density and 𝐮(x, t) velocity in 𝑁-dimensional Euclidean space ℝ𝑁,

𝑁 ≥ 2  and set 𝒙′ = (𝑥1, … , 𝑥𝑁−1)  and 𝜉′ = (𝜉1, … , 𝜉𝑁−1) ∈ ℝ
𝑁−1  then for  

𝜂∗
𝜔 > 0 the equation system of (2) has a unique solution formula of (𝜌, 𝐮) ∈ 𝑊𝑞

3,2(ℝ+
𝑁) with  

 

𝜌 = ℱ𝜉′
−1 [

𝑠1𝜆

𝑡1
𝛽𝑁𝑒

−𝑡1𝑥𝑁 +
𝑠2𝜆

𝑡2
𝛾𝑁𝑒

−𝑡2𝑥𝑁] (𝒙′, 𝑥𝑁) 

 

and  

𝑢𝑗 = ℱ𝜉′
−1 [(−

1

𝜔𝜆
(ℎ̂𝑗(0) +

𝑖𝜉𝑗

𝑡1
(𝜔𝜆 − 𝑡1)𝛽𝑁 +

𝑖𝜉𝑗

𝑡2
(𝜔𝜆 − 𝑡2)𝛾𝑁)) 𝑒

−𝜔𝜆𝑥𝑁 

+(−
𝑖𝜉𝑗

𝑡1
𝛽𝑁) (𝑒

−𝑡1𝑥𝑁 − 𝑒−𝜔𝜆𝑥𝑁) + (−
𝑖𝜉𝑗

𝑡2
𝛾𝑁) (𝑒

−𝑡2𝑥𝑁 − 𝑒−𝜔𝜆𝑥𝑁). ] (𝒙′, 𝑥𝑁),   𝑗 = 1,… , 𝑁 − 1 

and also 

𝑢𝑁 = ℱ𝜉′
−1[𝛽𝑁(𝑒

−𝑡1𝑥𝑁 − 𝑒−𝜔𝜆𝑥𝑁) + 𝛾𝑁(𝑒
−𝑡2𝑥𝑁 − 𝑒−𝜔𝜆𝑥𝑁)](𝒙′, 𝑥𝑁). 

where 

 

𝛽𝑁 =
1

𝑠2 − 𝑠1
(−�̂�(0) + 𝑠2𝜇𝜆

−1𝑖𝜉′ℎ̂′(0)), 

𝛾𝑁 =
�̂�(0) − 𝑠1𝛽𝑁

𝑠2
,    𝑡1,2 = ±√|ξ

′
|

2

+ 𝑠𝑘𝜆, 

and  

 

𝑠± =
(𝜇 + 𝜈)

2𝜅
± √𝜂∗𝜔 . 

 

2. Proof of the main theorem 

a. Resolvent problem 

In this part, we consider the resolvent problem of the linearized of equation (1) in half-

space by using Laplace transformation, we have  
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{
 
 

 
 

𝜆𝜌 + div 𝐮

𝜆𝐮 −μΔ𝐮 −ν∇div 𝐮 −κ∇Δρ

𝐧 ∙ ∇𝜌
∂N𝑢𝑗 + 𝜕𝑗𝑢𝑁

𝑢𝑁

=
=

=
=
=

0
0
𝑔
ℎ𝑗
0

in ℝ+
𝑁

in ℝ+
𝑁

on ℝ0
𝑁

on ℝ0
𝑁

on ℝ0
𝑁

                                 (2) 

       

for 𝑗 = 1, …𝑁 − 1  and ℝ+
𝑁 , ℝ0

𝑁,    𝑁 ≥ 2 , are the upper half-space and its boundary,       

respectively,  which defined as  

 

ℝ+
𝑁 = {𝑥 = (𝑥1, … , 𝑥𝑁−1, 𝑥𝑁) ∈ ℝ

𝑁 ∣ 𝑥𝑁 > 0}, 

ℝ0
𝑁 = {𝑥 = (𝑥1, … , 𝑥𝑁−1, 𝑥𝑁) ∈ ℝ

𝑁 ∣ 𝑥𝑁 = 0}, 

 

and also 𝐧 = (0, …0,−1)T is the outward unit normal vector on ℝ0
𝑁.  

 

b. Partial Fourier Transform 

Before we elaborate the part of transformation process to the equation system of (2), 

first of all the definition of partial Fourier transform and inverse partial Fourier 

transform as in (1b) and (1c), respectively.  

            

Applying partial Fourier transform to equation (2), and let  𝜑 = div 𝐮, we have  

 

𝜆�̂� + �̂� = 0, 𝑥𝑁 > 0  

𝜆�̂�𝑗 − 𝜇 (𝜕𝑁
2 − |𝜉′|

2
) �̂�𝑗 − 𝜈𝑖𝜉𝑗�̂� − 𝜅𝑖𝜉𝑗(𝜕𝑁

2 − |𝜉′|2)�̂� = 0, 𝑥𝑁 > 0  

(𝜆�̂�𝑁 − 𝜇 (𝜕𝑁
2 − |𝜉′|

2
) �̂�𝑁 − 𝜈𝜕𝑁�̂� − 𝜅𝜕𝑁(𝜕𝑁

2 − |𝜉′|2)�̂� = 0, 𝑥𝑁 > 0 (3) 

 

and boundary condition when 𝑥𝑁 = 0  

 

𝜕𝑁�̂�(0) = −�̂�(0),   

𝜕𝑁�̂�𝑗(0) + 𝑖𝜉𝑗�̂�𝑁(0) = ℎ̂𝑗(0), 𝑗 = 1,… ,𝑁 − 1  

�̂�𝑁(0) = 0.  (4) 

 

Substituting first equation to the second equation of (3) then multiplying by 𝑖𝜉𝑗 , we have 

 

𝜆2�̂�𝑗 − 𝜆𝜇 (𝜕𝑁
2 − |𝜉′|

2
) �̂�𝑗 − 𝜆𝜈𝑖𝜉𝑗�̂� − 𝜆𝜅𝑖𝜉𝑗(𝜕𝑁

2 − |𝜉′|2)�̂� = 0. 

 

(5) 

 

𝜆2𝑖𝜉𝑗�̂�𝑗 − 𝜆𝜇𝑖𝜉𝑗 (𝜕𝑁
2 − |𝜉′|

2
) �̂�𝑗 − 𝜆𝜈 |𝜉

′|
2

�̂� − 𝜆𝜅 |𝜉′|
2
(𝜕𝑁

2 − |𝜉′|2)�̂� = 0. 

 

(6) 

 

Applying same technique to third equation of (3) then differentiate with respect to 𝑥𝑁,         

we have  
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𝜆2𝜕𝑁�̂�𝑁 − 𝜆𝜇𝜕𝑁 (𝜕𝑁
2 − |𝜉′|

2
) �̂�𝑁 − 𝜆𝜈𝜕𝑁

2 �̂� + 𝜅𝜕𝑁
2(𝜕𝑁

2 − |𝜉′|2)�̂� = 0. 
(7) 

By using 𝑖𝜉𝑗�̂�𝑗 + 𝜕𝑁�̂�𝑁 = �̂�, adding equation (6) and (7), we have  

𝑃𝜆(𝜕𝑁)�̂� = 0, (8) 

where  

 

𝑃𝜆(𝜕𝑁) = (𝜆2 − 𝜆(𝜇 + 𝜈) (𝜕𝑁
2 − |𝜉′|

2
)

+ 𝜅(𝜕𝑁
2 − |𝜉′|2)2). 

(9) 

 

Furthermore, we have the formula of  𝑃𝜆(𝑡) i.e  

 

𝑃𝜆(𝑡) = (𝜆2 − 𝜆(𝜇 + 𝜈) (𝑡2 − |𝜉′|
2
) + 𝜅(𝑡2 − |𝜉′|2)2). 

(10) 

 

Multiplying equation (5) by  𝑃𝜆(𝜕𝑁) we have 

 

(𝜆2 − 𝜆𝜇 (𝜕𝑁
2 − |𝜉′|

2
))𝑃𝜆(𝜕𝑁)�̂�𝑗 − 𝑖𝜉𝑗(𝜆𝜈 − 𝜅(𝜕𝑁

2 − |𝜉′|2))𝑃𝜆(𝜕𝑁)�̂� = 0. 
(11) 

 

By equation (8), we can write the equation (10) to be   

 

(𝜆2 − 𝜆𝜇 (𝜕𝑁
2 − |𝜉′|

2
))𝑃𝜆(𝜕𝑁)�̂�𝑗 = 0. 

(12) 

 

Since �̂�𝑗 ≠ 0 , then 𝑃𝜆(𝜕𝑁) = 0  or (𝜆2 − 𝜆𝜇 (𝜕𝑁
2 − |𝜉′|

2
)) = 0.  Moreover, roots of the 

equation (10) i.e  

 

𝑃𝜆(𝑡) = 𝜆2𝜅𝐴(𝑠), 

with   

𝐴(𝑠) = (
1

𝜅
−
(𝜇 + 𝜈)

𝜅
𝑠 + s2), 

then, for 𝜂∗
𝜔 = (

𝜇+𝜈

2𝜅
)
2

−
1

𝜅
≠ 0 we have  

 

𝑠± = {

(𝜇 + 𝜈)

2𝜅
± √𝜂∗

𝜔

(𝜇 + 𝜈)

2𝜅
± 𝑖√𝜂∗𝜔

. 

𝜂∗
𝜔 > 0 

𝜂∗
𝜔 < 0 

and  

𝑡1,2 = ±√|ξ
′
|

2

+ 𝑠𝑘𝜆. 
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In this article we consider only for 𝜂∗
𝜔 > 0 and 𝑡1 ≠ 𝑡2,   𝜔𝜆 = 𝑡1 and 𝜔𝜆 = 𝑡2. Therefore,  

 

�̂�𝐽 = 𝛼𝐽𝑒
−𝜔𝜆𝑥𝑁 + 𝛽𝐽(𝑒

−𝑡1𝑥𝑁 − 𝑒−𝜔𝜆𝑥𝑁) + 𝛾𝐽(𝑒
−𝑡2𝑥𝑁 − 𝑒−𝜔𝜆𝑥𝑁), 𝑗 = 1,… ,𝑁 (13) 

 

Multiplying equation (13) by 𝑖𝜉𝑗 and differentiate equation (13) respect to 𝑥𝑁 variable, 

summing up then substituting to formula 𝑖𝜉𝑗�̂�𝑗 + 𝜕𝑁�̂�𝑁 = �̂�, we can find the formula of           

      �̂�  that is  

 

 �̂� = 𝜎𝑒−𝑡1𝑥𝑁 + 𝜏𝑒−𝑡2𝑥𝑁, 

 

with  

𝜎 = 𝑖
(|𝜉′|

2
−𝑡1

2)

𝑡1
𝛽𝑁,     𝜏 =

(|𝜉′|−𝑡2)

𝑡2
𝛾𝑁,   𝛽𝑗 = −

𝑖𝜉𝑗

𝑡1
𝛽𝑁, 𝛾𝑗 = −

𝑖𝜉𝑗

𝑡2
𝛾𝑁   

       

𝛼𝑗 = −
1

𝜔𝜆
(ℎ̂𝑗(0) +

𝑖𝜉𝑗

𝑡1
(𝜔𝜆 − 𝑡1)𝛽𝑁 +

𝑖𝜉𝑗

𝑡2
(𝜔𝜆 − 𝑡2)𝛾𝑁) , 𝑗 = 1,… ,𝑁 − 1 

         

𝛽𝑁 =
1

𝑠2 − 𝑠1
(−�̂�(0) + 𝑠2𝜇𝜆

−1𝑖𝜉′ℎ̂′(0)). 

 

Furthermore, the formula of �̂� is writing in the following 

  

�̂� = −
�̂�

𝜆
= −

𝜎𝑒−𝑡1𝑥𝑁 + 𝜏𝑒−𝑡2𝑥𝑁

𝜆
. 

By using the same technique in (Kobayashi et al., 2022) and applying inverse partial 

Fourier transform , we complete the proof of Theorem 1.∎ 

 

D. CONCLUSION AND SUGGESTIONS 

The velocity and density of the model Korteweg in equation (2) by using the partial Fourier 

transform and inverse partial Fourier transform contains multipliers. For the future research, 

we can consider the estimation of these multiplier by using Weis’s Multipliers Theorem for the 

same problem with surface tension.  Multipliers are used to build the solution formula for the 

model problem velocity and density. Solution operator families are the name given to these 

multipliers. The boundedness of the model problem's solution operator families. The 

boundedness of the solutions operator with surface tension will be a topic for future research, 

as was indicated at the conclusion of this paper. Be aware that the proofs and the entire result 

can be applied to fluid dynamics research in the future. The regularity of the model problem's 

solution is a crucial consideration from a purely mathematical standpoint. Additionally, this 

discovery serves as a crucial first step in demonstrating boundlessness in bent-half space and 

the general domain. 
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