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 To help insurers determine insurance rates incorporating maternity factors, it is 
crucial to understand the maternity recovery rate, which was a metric used by 
insurance companies to understand how much of the expenses associated with 
maternity care and related medical services are covered by their policies. This 
paper employed Extreme Gradient Boosting (XGBoost), a powerful method for 
handling complex data relationships and preventing overfitting, on North 
American Group Long-Term Disability dataset obtained from the Society of 
Actuaries, which listed maternity as one of its categories, to predict the maternity 
recovery rate. In comparison, other machine learning methods such as Gradient 
Boosting Machine (GBM) and Bayesian Additive Regression Tree (BART) were 
used, with Root Mean Squared Error (RMSE) values calculated the difference 
between predicted and observed maternity recovery rates. Four datasets, 3 
imbalanced and 1 fairly-balanced, were created out of the original dataset to test 
each method’s predictive prowess. The study revealed that XGBoost performed 
exceptionally well on the imbalanced datasets, while BART showed slight 
superiority in fairly-balanced data. Furthermore, the model identified the duration, 
exposures, and age of participants in both predicting maternity recovery rates and 
the underwriting process. 
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A. INTRODUCTION  

Disability insurance is gaining significance on a global scale due to factors, such as an aging 

population, individuals encountering disabilities after a certain event, or having a family 

member requiring medical care and attention due to the disability condition (Haberman, S.; 

Pitacco, 2018). In developed countries such as the US, there has been a notable rise in the 

proportion of working-age group benefiting from the federal Disability Insurance (DI) program 

(Deshpande, M.; Lockwood, 2022). This share has escalated from 2.2% in the late 1970s to 4.6% 

in 2013 (Liebman, 2015). More information is required to compute the necessary premium for 

disability insurance, one of which is decrement rates. However, constructing decrement rates 

of a sample drawn from a certain population are rigorous and time-consuming processes (Fong, 

J. H.; Shao, A. W.; Sherris, 2015; Kopinsky, 2017; London, 1982).  

The Institute for Health Metrics and Evaluation (IHME) and The World Health Organization 

(WHO) had reported that the highest prevalence of disability occurs among individuals aged 20 

to 70 years old. Additionally, women are more vulnerable to disabilities compared to men, 
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partly due to factors such as pregnancy (Budiana et al., (2023). William et al. (2019); William 

et al. (2018) found that adverse births significantly increase the risk of expensive out-of-

hospital expenses related to delivery and postnatal care due to complications for both the baby 

and mother. This risk applies both during childbirth and the postpartum period. Furthermore, 

White et al. (2022) concluded that age is one of the main factors of the US maternal mortality 

economic burden. As a person's age increases, there is a greater economic burden associated 

with maternal complications. This may be the result of older women tend to face more complex 

health issues related to pregnancy and childbirth, or it could be related to factors such as the 

financial burden on the family if the mother dies during or after childbirth. Age, in this context, 

is highlighted as a key factor in understanding the economic implications of maternal mortality. 

The data used for this study is the 2008 Group Long Term Disability (GLTD) recovery data 

from the Society of Actuaries (SOA) website. There are numerous categories of disabilities, such 

as disabilities to the mental and nervous system, back, digestive system, respiratory system, 

and musculoskeletal, as well as cancer, diabetes, and maternity, etc. Kopinsky (2017) did 

exploratory data analysis and found that the pattern shown by the maternity differed from the 

rest of the disability categories. Thus, we dug deeper into the maternal disability category. 

Maternity-related disability can manifest because of illnesses or injuries occurring during 

pregnancy or after childbirth, potentially lasting from several months to a lifetime. The majority 

of such cases are linked to complications like excessive bleeding, infections, organ damage, 

hypertension, and can be linked from depression (AbouZahr, 2003).  

Healthcare datasets commonly exhibit highly imbalanced data, where the majority and 

minority classifiers lack balance, leading to inaccurate predictions when processed by the 

classifiers. Another prevalent characteristic of healthcare datasets is the presence of missing 

values (Jothi et al., 2015). In most statistical software, tree-based methods are preferred due to 

their robustness against unbalanced datasets Hassan et al. (2016); Krawczyk et al. (2014); 

Singhal et al. (2018), such as disease detection and fraud diagnosis which mainly exist in 

classification problems. These methods adapt well to the imbalances by splitting data based on 

features, making them more robust and versatile. Decision trees and random forests were used 

in predicting the maternity recovery rates provided on the SOA GLTD dataset obtained by 

Kopinsky (2017), with random forests resulted in worse prediction by using MSE as its 

evaluation metric. Gradient Boosting Machine (GBM) and Bayesian Additive Regression Tree 

(BART) were also used in Budiana et al. (2023) to the same dataset, with BART being the best 

model to predict the outcome by using RMSE as its evaluation metric as the values of the 

maternity recovery rates are real numbers ranging between 0 and 1. Thus, by incorporating 

RMSE instead of MSE, the error values are more amplified and enlarged. 

Despite being a strong predictor, GBM often suffers from overfitting. As a remedy, Chen et 

al. (2016) introduced a more recent version known as Extreme Gradient Boosting (XGBoost). It 

is a machine learning algorithm that employs an ensemble approach, utilizing decision trees 

within a gradient boosting machine (GBM) framework. This combination allows XGBoost to 

achieve excellent model performance and high-speed processing. Liu et al. (2023) utilized 

XGBoost to enhance the predicted outcomes developed from conventional machine learning 

algorithms and resulted in an increased F1-score of 6.13%. On imbalanced dataset such as 
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personal credit evaluation, XGBoost performed better than the other tree-based models and 

logistic regression (Li et al., 2020).  

In another studies, XGBoost performed classifications better than other machine learning 

models. XGBoost performs better than Support Vector Machines (SVM) in discriminating 

certain diseases in patients from healthy controls, using confusion matrix as its evaluation 

metric (Binson et al., 2021; Ogunleye et al., 2019). On the soil liquefaction prediction, whose 

data are sampled using different techniques, the study found that XGBoost perform better than 

Random Forests and SVM Demir et al. (2022), data undergoing transformation Sahin (2023), 

better than random forest and gradient boosting machine on landslide data using RMSE as the 

evaluation metric Sahin (2020), better than logistic regression, Bayesian Additive Regression 

Tree (BART), random forest, and SVM on tumor classification problem Zhang et al. (2023), 

better than SVM and K-nearest neighbour (KNN) on company bankruptcy classification 

problem Muslim et al. (2021), and on surface water flooding data that stated XGBoost had a 

better generalization ability than SVM to improve prediction accuracy (Wang et al., 2021).  

XGBoost and other tree models were commonly employed for classifying diseases, mapping 

geography, and predicting bankruptcy. However, their usage in solving regression problems, 

especially in insurance-related scenarios, has been limited. This study aims to develop tree-

based models to predict regression outcomes, specifically maternity recovery rates based on 

input data. These recovery rates play a vital role in determining the inclusion of maternity care 

costs in insurance policies and calculating group health insurance premiums. The dataset used 

contains maternity recovery rates ranging from 0 to 1, with "0" indicating no recovery and "1" 

indicating full recovery. The dataset is divided into four parts to analyze the impact of these two 

dominant values. Each section is further split into training and testing data. Training data are 

used to build models for each section, while testing data assesses the models' effectiveness. The 

models used in this research include XGBoost, GBM, and BART. Additionally, due to its 

complicated nature, we identify the significant variables that contribute to the establishment of 

the tree model as shown in (Quan, Z.; Valdez, 2018). These material variables are then used as 

important factors to predict the recovery rates, as well as in ensuring the underwriting process 

performs better in selecting potential groups to insure and to correctly determine premiums of 

the group insurance policies. 

 

B. METHODS 

The methodology of the research conducted in this paper is as shown in the flowchart in 

Figure 1. Initially, we gather and pre-process the dataset. Next, we divide the data into four 

separate subsets. For each of these subsets, we further divide them into training and testing 

sets. We then train each tree-based model on the training data and tune their hyperparameters 

to minimize the RMSE on the testing data. Once we've obtained satisfactory results, we proceed 

to compare the models and select the best-performing tree-based model. Additionally, we 

assess variable importance to identify the key factors that contributed to the construction of 

the most effective model, as shown in Figure 1. 
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Figure 1. Flowchart of the Methodology 

 

1. Data Source 

This paper uses the GTLD recovery data, excerpted from (Kopinsky, 2017). The initial 

dataset, sourced from the 2004 - 2012 North American Group Long Term Disability (GLTD) 

Database and comprising 46 million records across 25 companies, underwent filtration by the 

author. This filtering process reduced the data to 818,941 rows, aimed at improving execution 

times and avoiding inefficiencies associated with processing the entire dataset. The author 

specifically extracted subsets of data that contained the essential variables required for the 

model. The disability categories comprised of “Back”, “Cancer”, “Circulatory”, “Diabetes”, 

“Digestive”, “Ill-defined and Misc Conditions”, “Injury other than back”, “Maternity”, “Mental 

and Nervous”, “Nervous System”, “Other”, “Other Musculoskeletal”, and “Respiratory”. The 

recovery rate of maternity, the yellow-greenish line, shows huge discrepancies from the other 

disabilities, as shown in Figure 2. The recovery rate at ages of 35 to 60 shows significant 

progress. This makes sense since women give birth during their reproductive years, which is 

around 15 years old. Young women tend to not have complications of childbirth, whereas 

women with older ages are more prone to aftereffects of labour. As age increases, the chance of 

recovering decreases. Similarly, other forms of disabilities are more likely to see recovery at 

younger ages. However, the ages are typically between 15 and 23 years old, as shown in Figure 

2. 
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Figure 2. Recovery rates compared to Age (Kopinsky, 2017) 

  

2. Data Preparation 

Initially, we conducted further data cleaning by isolating only maternity-related entries and 

excluding any observation of the “male” gender from the dataset. This dataset is then called 

Dataset 1. Subsequently, we remove the gender and disability category variables from the 

dataset as they each only contain one entry, namely “female” and “maternity”, respectively. The 

variable Actual Deaths is also omitted from the dataset as it is unnecessary to compute the 

mortality probability. The remaining variables descriptions are as follow. 

a. Duration_12_49 signifies the participant’s time to recovery, ranging from 2 to 49 months. 

b. AgeBand which denotes the participant’s age banded into groups of 5, from 20 to 70-

year-old. 

c. OwnOccToAnyTransition_MOD categorizes the type of change from own occupation (the 

initial job before disability occurred) to any occupation (the ongoing work that is being 

undertaken due to the disability occurrence). 

d. Integration_with_STD denotes whether the participant’s current plan includes 

integration with short-term disability insurance (Contreary, K.; Ben-Shalom, Y.; Gifford, 

2018). 

e. Taxability_Benefits include income or financial benefits that may or may not be taxed. 

Some benefits are tax-exempt, reducing the recipient's tax burden, while others are 

taxable and need to be reported as part of the taxable income. 

f. Gross_Indexed_Benefit_Amount is the categorical variable that represents the grouping 

of the original benefit amounts of the insurance policy which gradually increases 

overtime to adjust for the cost of living and inflation. 

g. Exposures refer to the typical actuarial measure of participants in the dataset. The 

values are not whole numbers due to the inclusion of fractional years, and adjustments 
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have been applied to mitigate the overwhelming influence of extremely large 

contributing companies on the data. 

h. Actual_Recoveries represent the number of participants who have recovered within the 

dataset. To prevent the dominance of the results by the largest companies' experiences, 

a dampening factor is applied to their data, leading to non-integer recovery figures. 

 

Additionally, we created a new variable called Actual_Recovery_Rate, which is the rate at 

which participants died, i.e., Actual_Recoveries divided by Exposures, ranging from 0 to 1. In 

this context, when the probability value is "0," it signifies that the participant is unable to 

recover, whereas a probability value of "1" indicates the participant's certain recovery. Dataset 

1 consists of massive amounts of “0” and “1” values, which creates imbalanced in the dataset. 

Therefore, we filter out the 0 values and call it Dataset 2. Dataset 3 is constructed by removing 

the “1” values from Dataset 2. The last dataset is obtained by filtering out the “1” values from 

Dataset 1, called Dataset 4. The datasets are further examined at Table 1. To construct the 

models, the data are split into 70% for training observations and the other 30% for testing 

observations, as shown in Table 1. 

 

Table 1. Datasets for Analysis 

Dataset Value Observations 
1 [0,1] 6,178 
2 (0,1] 2,241 
3 (0,1) 1,957 
4 [0,1) 5,894 

 

3. GBM Model 

Boosting, a technique from machine learning, improves the accuracy of a weak classifier by 

combining multiple instances for better predictions. This approach was applied to statistical 

modeling with models like AdaBoost and GBM. GBM gradually constructs a strong predictive 

model by incrementally adding weak learners, often decision trees. Unlike starting with a small 

"stump" tree, GBM begins with a single leaf as an initial guess for all observations. It then builds 

larger trees based on previous errors, with pruning to prevent overfitting. GBM continues this 

process, scaling and creating trees based on errors, until the desired number of trees is reached, 

or further improvement isn't observed. Additionally, GBM requires a differentiable loss 

function 𝐿(𝑦𝑖, 𝐹(𝑥𝑖)) where 𝑦𝑖 is the actual value and 𝐹(𝑥𝑖) is the predicted value of 𝑥𝑖 , which is 

used to assess how well the model is performing. It can be viewed as a measurement of the total 

error resulted from the model (Friedman, 2001, 2002). The loss function used is least-squares 

function:  

 

𝐿(𝑦𝑖 , 𝐹(𝑥𝑖)) =
1

2
[𝑦𝑖  −  𝐹(𝑥𝑖)]2.    (1) 

 

The loss function is minimized using the gradient descent technique, in which the local 

minimum of a function is calculated using gradients by Algorithm 2.1 as follows. 
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Algorithm 2.1. Gradient Boosting 

 

Input: 

A training dataset 𝐷 = {(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)}, containing 𝑋𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑝)𝑇 which denotes 

the 𝑝 predictors, the responses 𝑌𝑖, the number of iterations 𝑀, and the learning rate 𝜔. 

 

Steps: 

a. Initialize the model with a constant value: 𝐹0(𝑥) = 𝑌̅. 

b. For 𝑚 = 1, . . . , 𝑀 do: 

1) For 𝑖 = 1, . . . , 𝑛, compute:  

𝑟𝑖,𝑚 = − [
𝜕𝐿(𝑌𝑖, 𝐹𝑚−1(𝑋𝑖))

𝜕𝐹𝑚−1(𝑋𝑖)
] = − 

𝜕

𝜕𝐹𝑚−1(𝑋𝑖)
[
1

2
[𝑌𝑖  −  𝐹𝑚−1(𝑥𝑖)]2] = 𝑌𝑖  −  𝐹𝑚−1(𝑥𝑖) 

2) Fit a regression tree to the 𝑟𝑖,𝑚  values and create split regions 𝑅𝑗,𝑚  for 𝑗 =

1, . . . , 𝐽𝑚 

3) For 𝑗 = 1, . . . , 𝐽𝑚, compute  

𝛾𝑗,𝑚 = min
𝛾

∑ 𝐿(𝑌𝑖, 𝐹𝑚−1(𝑋𝑖) + 𝛾)

𝑋𝑖∈𝑅𝑗,𝑚

=
1

𝑛
∑ 𝑌𝑖  −  𝐹𝑚−1(𝑥𝑖)

𝑋𝑖∈𝑅𝑗,𝑚

 

4) Update with learning rate 𝜔: 𝐹𝑚(𝑋) = 𝐹𝑚−1(𝑋) + 𝜔 ∑ 𝛾𝑗,𝑚 ∙ 1{𝑋 ∈ 𝑅𝑗,𝑚}
𝐽𝑚
𝑗=1  

 

Output: 

The values of 𝐹𝑚(𝑋) for every 𝑚 = 1, . . . , 𝑀. 

The outcomes are subsequently fed into the RMSE function. If the outcomes do not meet the 

desired criteria, adjust the parameters by experimenting with various values. 

 

4. XGBoost Model 

As mentioned previously, GBM tends to overfit. To remedy this, (Chen, T., & Guestrin, 2016) 

enhanced the GBM algorithm into a more robust algorithm.  

 

3.1. Tree Ensemble Model 

Given a dataset 𝐷 with 𝑛 rows of observations and 𝑚 features that is denoted by 𝐷 = {(𝒙𝒊, 𝑦𝑖)} 

with 𝒙𝒊 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑚)𝑇  that signifies a predictor variable on 𝑖th row of observation and 𝑣th 

feature with 𝑖 = 1,2, . . . , 𝑛 and 𝑣 = 1,2, . . . , 𝑚, meanwhile 𝑦𝑖  denotes the response variable on 

the 𝑖 th row of observation with 𝑦𝑖 ∈ ℝ. A tree ensemble model uses 𝐾  additive functions to 

predict the model: 

𝑦𝑖̂ = θ(𝒙𝒊) = ∑ 𝑓𝑘(𝒙𝒊)
𝐾
𝑘=1 .   (2) 

with 𝑓 denotes the predictive function on the kth decision tree. 

 

3.2. Regularized Objective Function 

Some of the enhancements include the regularization term, Lasso or Ridge regression 

(Melkumova, L. E.; Shatskikh, 2017), incorporated into the objective function which reduces 

overfitting. L(θ)  is a regularized (ridge regression) objective function that measures the 

performance of the predictive model to assess its accuracy. 
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L(θ) = ∑ 𝑙(𝑦𝑖, 𝑦𝑖̂)
𝑛
𝑖=1 + ∑ Ω(𝑓𝑘(𝒙𝒊))𝐾

𝑘=1 ,   (3) 

Ω(𝑓𝑘(𝒙𝒊)) = 𝛾𝑇 +
𝜆

2
∙ ||𝑓𝑘(𝒙𝒊)||2.    (4) 

 

with 𝑙  denotes the loss function, 𝑇  denotes the set of leaves in a tree, 𝜆  denotes the 

hyperparameter regularization, and 𝛾 denotes the pseudo-regularization hyperparameter or 

minimum split loss reduction.  

 

3.3. Loss Function 

For outcomes ranging between 0 and 1 (Shen, 2005), the logistic loss function is used: 

𝑙(𝑦𝑖, 𝑦𝑖̂) =
1

2
(𝑦𝑖 − 𝑦𝑖̂)

2,    (5) 

 

3.4. Gradient Tree Boosting 

The optimal solution of a tree ensemble model on a regularized objective function is obtained 

using additive model. Assume that the predictive value 𝑦𝑖̂
(𝐾)  is the prediction in the 𝑖 th 

observation and 𝐾th tree, defined as follows: 

 𝑦𝑖̂
(𝐾) = ∑ 𝑓𝑘(𝒙𝒊)

𝐾
𝑘=1 = 𝑦𝑖̂

(𝐾−1) + 𝑓𝐾(𝒙𝒊), with 𝑦𝑖̂
(0) = 0    (6) 

 

Substituting (6) into (3) gives the regularized objective function on the 𝐾th tree: 

𝐿(𝐾) = ∑ 𝑙(𝑦𝑖, 𝑦𝑖̂
(𝐾−1) + 𝑓𝐾(𝒙𝒊))𝑛

𝑖=1 + Ω(𝑓𝐾(𝒙𝒊)).    (7) 

 

Algorithm 2.2. Extreme Gradient Boosting 

 

Input: 

A training dataset 𝐷 = {(𝒙𝟏, 𝑦1), . . . , (𝒙𝒏, 𝑦𝑛)}, containing 𝒙𝒊 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑚)𝑇 which denotes 

the 𝑚  predictors, the responses 𝑦𝑖 , the number of iterations 𝐾 , hyperparameter 

regularization 𝜆, pseudo-regularization hyperparameter 𝛾, and the learning rate 𝜔. 

 

Steps: 

a. Initialize the model with a constant value: 𝑦𝑖̂
(0) = 0.5. The initial value must not be 

the mean value of the data. 

b. For 𝑖 = 1, . . . , 𝑛 do: 

1) Compute the first derivative of the loss function:  

𝑔𝑖 = −(𝑦𝑖  − 𝑦𝑖̂
(𝐾−1) ) 

2) Compute the second derivative of the loss function, ℎ𝑖 = 1. 

3) Determine the best splitting point candidate by splitting the data into percentile 

or quartile. 

4) Construct regression tree that consists of 𝑔𝑖 on each leaf node. 

5) Calculate the value of the loss reduction after splitting for every splitting point 

until the best splitting point is gained, which has the maximum 𝐿𝑠𝑝𝑙𝑖𝑡, the splitting 

process is stopped when 𝐿𝑠𝑝𝑙𝑖𝑡 value is negative or when there remains only one 

𝑔𝑖 on the leaf: 
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𝐿𝑠𝑝𝑙𝑖𝑡 =
1

2
[∑

(∑ 𝑔𝑖𝑖∈𝐼𝑙𝑒𝑓𝑡
)2

𝜆 + ∑ ℎ𝑖𝑖𝜖𝐼𝑙𝑒𝑓𝑡

𝑇

𝑗=1

+ ∑
(∑ 𝑔𝑖𝑖∈𝐼𝑟𝑖𝑔ℎ𝑡

)2

𝜆 + ∑ ℎ𝑖𝑖𝜖𝐼𝑟𝑖𝑔ℎ𝑡

𝑇

𝑗=1

− ∑
(∑ 𝑔𝑖𝑖∈𝐼 )2

𝜆 + ∑ ℎ𝑖𝑖𝜖𝐼

𝑇

𝑗=1

] − 𝛾𝑇 

 

6) Calculate the value of the optimal weight,   

7)  

𝑤𝑗 ∗= −
∑ 𝑔𝑖𝑖∈𝐼𝑗

𝜆 + ∑ ℎ𝑖𝑖𝜖𝐼𝑗

. 

 

8) Update with learning rate 𝜔: 𝑦𝑖
̂(𝐾) = 𝑦𝑖

̂(𝐾−1) + 𝜔 ∙ 𝑤𝑗 ∗. 

 

Output: 

The values of 𝑦𝑖
̂(𝐾) for every 𝑖 = 1, . . . , 𝑛. 

The results are then entered into the RMSE function, and if they fail to meet the desired 

standards, you should tune the parameters by testing different values. 

 

5. Root Mean Squared Error  

The root mean squared error (RMSE) evaluates the performance of a specified predictive 

model, measuring the average differences between the actual and predicted values. The RMSE 

is calculated as follows (Wang, W.; Lu, 2018): 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖  − 𝑦𝑖̂)2𝑛

𝑖=1 .     (8) 

 

with 𝑛 is the number of observations, 𝑦𝑖 is the actual value, and 𝑦𝑖
̂ is the predicted value. A more 

favourable model is indicated by a smaller RMSE value. The RMSE metric is used as the output 

values from our model ranges from 0 to 1, with “0” and “1” values dominating the dataset. 

Initially, we applied MSE to the model, but the results showed very small values. Consequently, 

we opted for RME to magnify the error values, as it is important to understand that taking the 

square root of a fraction ranging from 0 to 1 amplifies the outcome. Mean Percentage Error 

(MPE) and Mean Absolute Percentage Error (MAPE) calculate the difference between actual 

and predicted values divided by the actual value. These metrics are not suitable for evaluation 

as the dataset contains a dominant value of "0." Mean Error (ME) and Mean Absolute Error 

(MAE) are similar in nature with RMSE, thus it is pointless to use these metrics. 

 

C. RESULT AND DISCUSSION  

1. Model Run on the Datasets  

The datasets are run through the XGBoost, GBM, and BART algorithms by the R software. 

After conducting several parameters tuning to obtain the lowest RMSE value, the resulting 

optimal XGBoost tree models are shown in Figures 4, 5, 6, and 7 for each dataset. Branches with 

the symbol (< split value) mean "yes" for the associated splitting criteria, while those without 

it mean "no." There were three components on the leaf node, namely cover, gain, and value. 

Cover is the total of the second derivatives of the loss function on the training dataset classified 
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to the leaf. The deeper the node of the tree, the smaller the value of the cover is. Gain represents 

the metric for loss function reduction by performing a split into the internal node. Value denotes 

the mean of the target variable if the observation ends up in that associated leaf node. To obtain 

the maternity recovery rate, the Value from the leaf node needs to be transformed using the 

sigmoid function to have 𝑦𝑖̂ values ranging from 0 to 1, as in the original dataset.  

For illustration purpose, let's examine the two lowest leaf nodes of the 99th tree of the 

XGBoost model in Figure 3. If the AgeBand is greater than 67.5, the bottom leaf node has Cover 

of 1.86761832 and Value of −0.0592818633. On the other hand, if the AgeBand falls between 

62.5 and 67.5, the second lowest leaf node has Cover of 1.84421849 and Value of −0.103858821. 

Consequently, if an observation lands on the bottom leaf node, the predicted maternity 

recovery rate is approximately 
1

1+𝑒−0.0592818633 
= 0.514816127. If it’s assigned to the second 

lowest leaf node, the resulting maternity recovery rate is roughly 
1

1+𝑒−0.103858821 
=

0.525941391, as shown in Figure 3, Figure 4, Figure 5,  and Figure 6. 

 

 
Figure 3. Non-optimal XGBoost model for Dataset 1 
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Figure 4. Optimal XGBoost tree model for Dataset 1 

 

 
Figure 5. Optimal XGBoost model of Dataset 2 
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Figure 6. Optimal XGBoost model of Dataset 3 

 

RMSE of the models are shown in Table 2, with RMSE for GBM and BART are explained in 

(Budiana, S.; Kusnadi, F.; Irawan, 2023). RMSE values shown by the four datasets indicate that 

XGBoost outperforms both models, except in the third dataset. Dataset 1 contains many 

observations with both "0" and "1" values. Dataset 2 is predominantly comprised of "1" values, 

while Dataset 4 mainly consists of "0" values. XGBoost performs exceptionally well on 

imbalanced data, whereas BART is most effective on Dataset 3 which comprises of fairly-

balanced data, in which the all the majority values of “0” and “1” had been eliminated, leaving 

behind values between 0 and 1, as shown in Figure 7 and Table 2. 
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Figure 7. Optimal XGBoost model of Dataset 4 

 

Table 2. RMSE comparison of the three models 

RMSE Dataset 1 Dataset 2 Dataset 3 Dataset 4 
XGBoost 0.2113 0.1386 0.1349 0.1208 

GBM 0.2199 0.2150 0.1394 0.1318 
BART 0.2167 0.1906 0.1266 0.1263 

  

2. Variable Importance of the XGBoost Model 

As XGBoost is a model with high predictive capability, it sacrifices its interpretability 

capacity due to its complexity nature. To overcome this model opacity, one of the most renown 

methods is by analysing variable importance (Wei, P.; Lu, Z.; Song, 2015). By using this, it 

analyses the model structure and ranks the information gain by each feature. From Figure 2, 

the gain metric is the information gained for each split which denotes the significance of a 

certain node. Cover is as described before. Frequency, also known as the weight, signifies the 

percentage indicating the proportion of occurrences of a specific feature among all the trees in 

the model. 
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In practical terms, we are applying Dataset 1 for observation. Duration becomes the biggest 

influencer in the model with 44% information gain, while Exposures and AgeBand are the other 

contributing factors for the model. All the other features are considered insignificant to the 

contributing factor of the model. The three variables are entirely logical as the participant’s 

recovery time, the number of participants being observed, and each of the participant’s age all 

significantly contribute to the prediction of maternity recovery rate. In particular, the age 

variable is in line with the study by White et al. (2022), although not necessarily the most 

important, as shown in Figure 8. 

 

 
Figure 8. Variable importance of the Dataset 1 model 

 

D. CONCLUSION AND SUGGESTIONS 

This paper examines the pre-processing of maternity recovery data before applying three 

machine learning techniques to the dataset. Among the three methods, XGBoost demonstrates 

superior performance, particularly in handling imbalanced data commonly found in health data, 

as indicated by its lowest RMSE values. Moreover, variables such as duration, exposures, and 

age are considered crucial factors in addressing product innovation and the underwriting 

process. To develop this research further, one can prepare the data better by applying a 

combination of oversampling and undersampling to remedy the imbalance nature of the data, 

i.e. by using ROSE and SMOTE (Selamat, N.A.; Abdullah, A.; Diah, 2022). One can also improve 

the prediction rate by using deep learning methods. 
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