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 This article explains the interaction of the prey-predator model in the presence of 
wild harvesting and competition intra-specific predator populations and prey 
protection zones.  Model construction is based on literature studies related to the 
basic theory of the model and the biological properties between predator and prey 
populations. This study aims to look at the dynamic conditions of the predator-prey 
model in the form of the existence of prey and predator populations and the impact 
that occurs in the long term for both populations due to changes in parameter 
values. The model analysis begins with the formulation of the solution conditions 
and boundaries model, and next with the determination of the equilibrium point. 
Every equilibrium point is analyzed by the characteristic of its stability is neither 
local or global. The model owns three equilibrium points, namely the equilibrium 
point of population extinction (𝐸0), the equilibrium point of predator extinction 
(𝐸1), and the equilibrium point of persistence of the two populations (𝐸2). These 
equilibrium points are stable locally or globally if certain conditions are met. Next, 
it is shown that bifurcation proceeds Which describes the changing of characteristic 
stability point equilibrium Which depends on the threshold parameter values ℎ1, 
Ω∗, and 𝜌∗. In the end, numerical simulations are presented in the form of phase, 
time-series, and bifurcation diagrams to support the analytical results of the model, 
as well as to visually show the dynamic behaviour of the interaction between the 
two populations based on changes in predation levels, illegal harvesting, prey 
refuge zones, and intra-specific competition. 
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A. INTRODUCTION  

The predator-prey model was first introduced by Lotka (1910) and Volterra (1926), and is 

widely known as the Lotka-Volterra model. The Lotka-Volterra model introduced the concept 

of oscillation in predator-prey dynamics. Since then, model development has continued in 

various considerations to adapt to more realistic biological phenomena in cases related to 

predator-prey interactions. Predator and prey interactions describe the dynamic relationship 

between individuals who act as predators and individuals who act as prey (Cresswell, 2019; 

Schmidt, 2019). This is an important part of the food chain and ecosystem. One of the most 

interesting factors to consider in developing predator-prey models is the presence of 

intraspecific competition between individuals. Intraspecific competition is a form of 

competition between individuals of the same species for important resources such as food, 

water, space, sunlight, or mates. Intraspecific competition occurs due to limited resources. 

Some papers on intraspecific competition can be found in (Gilad, 2008; Los Huertos, 2020; 
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Vanni et al., 2009). Predator-prey models that consider intraspecific competition are 

interesting to discuss because they represent the reality of many individuals, such as dee (Stone 

et al., 2019), birds (Tarjuelo et al., 2017), fish (Pelage et al., 2022), various types of Insects 

(Pekas et al., 2023), primate animals such as baboons (Patterson et al., 2021), and others. Some 

models have been worked out by considering intraspecific competition (Anggriani et al., 2023; 

Panigoro et al., 2023; Pratama et al., 2023). 

Pratama et al. (2023) built a predator-prey model considering intraspecific competition 

using the Holling type IV response function. The model also considers the Fear and Group 

Defense Effect on the population dynamics of Predator and Prey. Furthermore, (Panigoro et al., 

2023) built a Predator-Prey model with intraspecific competition but considering the age 

structure of the predator. The model discussed divides the population into 3, namely the prey 

population, the immature predator population, and the adult predator population. Meanwhile,  

Anggriani et al. (2023) built a predator-prey model with intraspecific competition and also 

considered the alle effect: 

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) − 𝑎𝑥𝑦      (1)  

𝑑𝑦

𝑑𝑡
= 𝑏𝑥𝑦 − 𝑑𝑦 −

𝑚𝑦

𝑦 + 𝑛
− 𝛽𝑦2 

 

with 𝑟, 𝐾, 𝑎, 𝑏, 𝑑, 𝛽 are positive constants representing intrinsic growth rate, environmental 

carrying capacity, predation rate, predator birth rate due to predation process, predator natural 

mortality rate, intraspecific competition between predators, and 𝑚 and 𝑛 is the Allee effect 

constant. In addition to intraspecific competition, the phenomenon of protecting prey from 

predator attacks is also interesting to study. This phenomenon is called Prey Protection. The 

phenomenon of prey protection in predator-prey interactions can also be carried out by 

intervention in various cases such as the creation of conservation forests, wildlife sanctuaries, 

or some simple protections (Abraham et al., 2023). Predator-prey models with prey protection 

interventions have also been discussed in several studie (Djakaria et al., 2021; Panigoro et al., 

2021; Rayungsari et al., 2022; Wang & Fan, 2023; Yang, 2023). So far, the consideration of the 

natural behavior of individuals in the model such as intraspecific competition and human 

intervention in the form of prey harvesting and protection has mostly been done on predators 

and prey separately. 

In this study, a predator-prey interaction model is proposed by combining natural 

phenomena such as interspecific competition and human intervention phenomena such as prey 

harvesting and protection. The aim is to determine the dynamic nature of the predator-prey 

model such as the existence of prey and predator populations and the possibility that occurs in 

both populations if there is a change in parameter values. The proposed model is a development 

of the model Panigoro et al. (2023) by ignoring the alle effect. In addition, the model is 

developed by involving human intervention in the form of harvesting in both populations along 

with protection of prey. Furthermore, the model is analysed which consists of the formulation 

of the boundary solution of the model, the existence of the equilibrium point, the nature of local 

and global stability of the equilibrium point. In addition, numerical simulations were carried 

out using the 4th order runge-kutta method Islam (2015) to show some phenomena related to 
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the existence of each equilibrium point in accordance with the theoretical results presented in 

the model analysis. Changes in parameter values were applied to the numerical simulation to 

see the occurrence of bifurcation and how to maintain the existence of both populations. 

 

B. MODEL DEVELOPMENT 

If in the model (1) the alle effect in the predator population is considered, then in this model, 

it is assumed that there is no alle effect in both populations, so model (1) is modified into 

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) − 𝑎𝑥𝑦                                                             (2) 

𝑑𝑦

𝑑𝑡
= 𝑏𝑥𝑦 − 𝑑𝑦 − 𝛽𝑦2 

 

Furthermore, harvesting assumptions are given for both populations. Harvesting for 

human needs is commonly done on wildlife or various types of fish. There are three types of 

harvesting functions commonly used in predator-prey models, namely constant harvesting 

(Chow et al., 2018), linear harvesting (M. Xiao & Cao, 2009), and non-linear harvesting (Zhang 

et al., 2018). Three common types of harvesting functions used in these models are constant 

harvesting, linear harvesting, and nonlinear harvesting. Constant harvesting involves a fixed 

rate of harvesting prey over time (Ruan, 2009). Linear harvesting, on the other hand, implies 

that the rate of harvesting prey increases linearly with prey density (D. Xiao et al., 2006). 

Nonlinear harvesting refers to more complex harvesting functions that do not follow a linear 

pattern, potentially involving time delays or other nonlinear dynamics (Li et al., 2016). In model 

(2), linear harvesting is used in both populations, respectively with parameters ℎ1 and ℎ2 so 

that the model becomes 

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) − 𝑎𝑥𝑦 − ℎ1𝑥                                                   (3) 

𝑑𝑦

𝑑𝑡
= 𝑏𝑥𝑦 − 𝑑𝑦 − 𝛽𝑦2 − ℎ2𝑦 

 

Linear harvesting is often used to model scenarios where predator feeding rates increase 

proportionally with prey abundance, influencing the stability and oscillatory behavior of the 

system (Chakraborty et al., 2011). Furthermore, it is assumed that there is a protection zone on 

the prey with parameters 𝜌. Thus, model (3) changes to 

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) − 𝑎(1 − 𝜌)𝑥𝑦 − ℎ1𝑥                                               (4) 

𝑑𝑦

𝑑𝑡
= 𝑏(1 − 𝜌)𝑥𝑦 − 𝑑𝑦 − 𝛽𝑦2 − ℎ2𝑦 

 

Predator-prey interactions with the phenomenon described in the model (4) can be found 

in the interaction between Orca Whales as predators and Penguins as prey (Jordaan et al., 2021). 

Penguins get human protection to ensure the survival of this species in its natural habitat. On 
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the other hand, penguins are also sometimes the target of hunting carried out by humans 

traditionally and illegally in certain areas (BioExpedition, 2017). Meanwhile, intraspecific 

competition occurs in Orca Whales in several situations such as the struggle for food, social 

hierarchy, and the search for mating partners (Taylor, 2021). Furthermore, although Orca 

Whales are natural predators in the ocean, some Orca species have also been targeted by 

humans for hunting, either for entertainment purposes (such as the capture of live killer whales 

for shows in marine parks) or in some cases as a threat to fish hunted by humans (Simmonds 

& Fisher, 2010). 

 

C. RESULT AND DISCUSSION 

1. Positivity 

 

Theorem 1. The solution of the system of equations (4) is positive as long as       𝑥(0), 𝑦(0) ∈

ℝ+
2 . 

 

Proof. 

It will be proved that if 𝑥(0) ≥ 0 and 𝑦(0) ≥ 0, then 𝑥(𝑡) ≥ 0 and 𝑦(𝑡) ≥ 0 for every 𝑡 > 0. The 

condition 𝑥(0) = 0 will result in  
𝑑𝑥

𝑑𝑡
= 0 which indicates that there is no change in population 

size 𝑥. Next review the condition 𝑥(0) > 0. Suppose there exists 𝑡𝑇 with          0 < 𝑡 < 𝑡𝑇 such 

that 𝑥(𝑡) ≥ 0 , 𝑥(𝑡𝑇) = 0  and 𝑥(𝑡) < 0  for 𝑡 > 𝑡𝑇 . Based on the system of equation (4) the 

condition 𝑥(𝑡𝑇) = 0 result in 
𝑑𝑥

𝑑𝑡
= 0. This contradicts the statement   𝑥(𝑡) < 0 for 𝑡 > 𝑡𝑇 . So the 

supposition is false, so 𝑥(𝑡) ≥ 0 for every t. In the same way, it can be shown that the condition 

𝑦(0) ≥ 0 will result 𝑦(𝑡) ≥ 0 for every 𝑡 > 0. 

  

2. Existence of Equilibrium Point 

The equilibrium point of system (3) is obtained by setting 
𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
= 0, i.e. 

 

𝑟𝑥 (1 −
𝑥

𝐾
) − 𝑎(1 − 𝜌)𝑥𝑦 − ℎ1𝑥 = 0                                               (6) 

𝑏(1 − 𝜌)𝑥𝑦 − 𝑑𝑦 − 𝛽𝑦2 − ℎ2𝑦 = 0 

 

By solving equation (6), 3 biological equilibrium points are obtained, namely: 

(i) Extinction points of both populations, 𝐸0 = (0,0), always exist in 𝑅2. 

(ii) Predator extinction point, 𝐸1 = (
𝐾(𝑟−ℎ1)

𝑟
, 0).  𝐸1  exists if the condition 𝑟 > ℎ1.  This 

condition shows that prey will always exist if 𝑟 > ℎ1, meaning that the intrinsic growth 

rate of prey must be greater than the harvesting rate. 

(iii) Existence point of both populations 𝐸2 = (𝑥∗, 𝑦∗), where: 

 

𝑥∗ =
𝐾[𝛽(𝑟 − ℎ1) + 𝑎(𝑑 + ℎ2)(1 − 𝜌)]

𝐾𝑎𝑏(1 − 𝜌)(1 − 𝜌) + 𝛽𝑟
 

𝑦∗ =
𝐾𝑏(𝑟 − ℎ1)(1 − 𝜌) − 𝑟(𝑑 + ℎ2)

𝐾𝑎𝑏(1 − 𝜌)(1 − 𝜌) + 𝛽𝑟
. 
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𝐸2 exists if it satisfies the condition: 

 

𝐾𝑏(𝑟 − ℎ1)(1 − 𝜌) − 𝑟(𝑑 + ℎ2) > 0 ⟺ 𝑏 >
𝑟(𝑑 + ℎ2)

𝐾(𝑟 − ℎ1)(1 − 𝜌)
 

 

3. Equilibrium Point Stability 

a. Local Stability 

Linearization around the equilibrium point of system (4) results in the following 

Jacobian matrix: 

 

𝐽(𝐸) = [
𝑟 (1 −

2𝑥

𝐾
) − 𝑎(1 − 𝜌)𝑦 − ℎ1 −𝑎(1 − 𝜌)𝑥

𝑏(1 − 𝜌)𝑦 𝑏(1 − 𝜌)𝑥 − 𝑑 − 2𝛽𝑦 − ℎ2

]                           (7) 

 

The stability of the equilibrium point of system (4) refers to the eigenvalues of the 

Jacobian matrix (7) summarized in Theorem 2. 

 

Theorem 2. Given Ω∗ =
𝑟(𝑑+ℎ2)

𝐾(1−𝜌)(𝑟−ℎ1)
, the local stability of the equilibrium point of system 

(4) is described below: 

(i) The population extinction equilibrium point, 𝐸0 = (0,0)  is locally asymptotically 

stable if 𝑟 < ℎ1 and unstable otherwise. 

(ii) The point of extinction equilibrium of the predator population, 𝐸1 = (
𝐾(𝑟−ℎ1)

𝑟
, 0) 

locally asymptotically stable if 𝑟 > ℎ1 and 𝑏 < Ω∗. 

(iii) The equilibrium point of the existence of the two populations, 𝐸2 = (𝑥∗, 𝑦∗) is locally 

asymptotically stable if 𝑟 > ℎ1 and 𝑏 > Ω∗. 

 

Proof 

1) By substituting 𝐸0 = (0,0) to equation (7), we get 

 

𝐽(𝐸1) = [
𝑟 − ℎ1 0

0 −𝑑 − ℎ2
] 

 

which results in eigenvalues, 𝜆1 = 𝑟 − ℎ1  and 𝜆2 = −(𝑑 + ℎ2). Since 𝜆2 < 0, then 𝐸0 

is stable 𝜆1 < 0 ⇔ 𝑟 < ℎ1 and unstable if 𝜆1 > 0 ⇔ 𝑟 > ℎ1. 

2) By substituting 𝐸1 = (
𝐾(𝑟−ℎ1)

𝑟
, 0) to equation (7), the Jacobian matrix is obtained 

 

𝐽(𝐸1) = [
ℎ1 − 𝑟 −

𝐾𝑎(1 − 𝜌)(𝑟 − ℎ1)

𝑟

0
𝐾𝑏(1 − 𝜌)(𝑟 − ℎ1) − 𝑟(𝑑 + ℎ2)

𝑟

] 

 

which results in eigenvalues, 
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𝜆1 = ℎ1 − 𝑟 

𝜆2 =
𝐾𝑏(1 − 𝜌)(𝑟 − ℎ1) − 𝑟(𝑑 + ℎ2)

𝑟
 

 

Based on the existence condition 𝐸1,  𝑟 > ℎ1,  then 𝜆1 < 0.  Thus 𝐸1  will be locally 

asymptotically stable if and only if: 

 

𝐾𝑏(1 − 𝜌)(𝑟 − ℎ1) − 𝑟(𝑑 + ℎ2)

𝑟
< 0 ⟺ 𝐾𝑏(1 − 𝜌)(𝑟 − ℎ1) < 𝑟(𝑑 + ℎ2) 

⟺ 𝑏 <
𝑟(𝑑 + ℎ2)

𝐾(1 − 𝜌)(𝑟 − ℎ1)
 

 

3) By subtitusing 𝐸2 = (𝑥∗, 𝑦∗) to equation (7), the Jacobian matrix is obtained 

 

𝐽(𝐸2) = [
𝑎11 𝑎12

𝑎21 𝑎22
] 

 

where 

 

𝑎11 = −
(𝑟 − ℎ1)𝑟𝛽 + 𝑎𝑟(𝑑 + ℎ2)(1 − 𝜌)

𝑟𝛽 + 𝑎𝑏𝐾(1 − 𝜌)2
 

𝑎12 = −
(𝑟 − ℎ1)(1 − 𝜌)𝛽𝑎𝐾 + 𝑎2𝑘(𝑑 + ℎ2)(1 − 𝜌)2

𝑟𝛽 + 𝑎𝑏𝐾(1 − 𝜌)2
 

𝑎21 =
𝐾𝑏2(𝑟 − ℎ1)(1 − 𝜌)2 − 𝑏𝑟(𝑑 + ℎ2)(1 − 𝜌)

𝑟𝛽 + 𝑎𝑏𝐾(1 − 𝜌)2
 

𝑎22 =
𝛽𝑟(𝑑 + ℎ2) − 𝛽𝑏𝐾(𝑟 − ℎ1)(1 − 𝜌)

𝑟𝛽 + 𝑎𝑏𝐾(1 − 𝜌)2
 

 

Furthermore, it is obtained 

 

det(𝐽(𝐸2)) = 𝑎11𝑎22 − 𝑎12𝑎21 

=
[𝑏𝐾(𝑟 − ℎ1)(1 − 𝜌) − 𝑟(𝑑 + ℎ2)][(𝑟 − ℎ1)𝛽 + 𝑎(𝑑 + ℎ2)(1 − 𝜌)]

𝑟𝛽 + 𝑎𝑏𝐾(1 − 𝜌)2
 

 

and 

 

trace(𝐽(𝐸2)) = 𝑎11 + 𝑎22 

= −𝛽 (
𝑏𝐾(𝑟−ℎ1)(1−𝜌)−𝑟(𝑑+ℎ2)

𝑟𝛽+𝑎𝑏𝐾(1−𝜌)2 ) −
(𝑟−ℎ1)𝑟𝛽+𝑎𝑟(𝑑+ℎ2)(1−𝜌)

𝑟𝛽+𝑎𝑏𝐾(1−𝜌)2   

 

Because 𝑟 > ℎ1  and 𝑏 >
𝑟(𝑑+ℎ2)

𝐾(1−𝜌)(𝑟−ℎ1)
, it is obtained det(𝐽(𝐸2)) > 0  and 

𝑡𝑟𝑎𝑐𝑒(𝐽(𝐸2)) < 0, which means that the point 𝐸2 is locally asymptotically stable. 
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b. Global Stability 

Theorem 3. If 0 < ℎ1 < 𝑟 <
𝑏ℎ1𝐾(1−𝜌)

𝑏𝐾(1−𝜌)−(𝑑+ℎ2+𝑦𝛽)
, then the extinction equilibrium point of 

the predator population 𝐸1 = (
𝐾(𝑟−ℎ1)

𝑟
, 0) is globally asymptotically stable. 

 

Proof. Define the Lyapunov function 

 

𝑉1(𝑥, 𝑦) =
𝑏

𝑎
(𝑥 − 𝑥1 − 𝑥1 ln

𝑥

𝑥1
) + 𝑦 

 

where 𝑥1 =
𝐾(𝑟−ℎ1)

𝑟
. 

 

The first derivative of 𝑉1 is 

 
𝑑𝑉1

𝑑𝑡
=

𝜕𝑉1

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑉1

𝜕𝑦

𝑑𝑦

𝑑𝑡
  

=
𝑏

𝑎
(

𝑥 − 𝑥1

𝑥
) [𝑟𝑥 (1 −

𝑥

𝐾
) − 𝑎(1 − 𝜌)𝑥𝑦 − ℎ1𝑥] + 𝑏(1 − 𝜌)𝑥𝑦 − 𝑑𝑦 − 𝛽𝑦2 − ℎ2𝑦 

=
𝑏

𝑎
(𝑥 − 𝑥1) [𝑟 (1 −

𝑥

𝐾
) − 𝑎(1 − 𝜌)𝑦 − ℎ1] + 𝑏(1 − 𝜌)𝑥𝑦 − 𝑑𝑦 − 𝛽𝑦2 − ℎ2𝑦 

= −
𝑏

𝑎𝐾
[(ℎ1𝐾 + 𝑟(𝑥 − 𝐾))(𝑥 − 𝑥1)] + 𝑦(𝑏𝑥1(1 − 𝜌) − 𝑑 − ℎ2 − 𝑦𝛽) 

= −
𝑏

𝑎𝐾

(ℎ1𝐾 + 𝑟(𝑥 − 𝐾))
2

𝑟
+ 𝑦 [

𝑏𝐾(𝑟 − ℎ1)(1 − 𝜌)

𝑟
− (𝑑 + ℎ2 + 𝑦𝛽)] 

< 𝑦 [
𝑏𝐾(𝑟 − ℎ1)(1 − 𝜌)

𝑟
− (𝑑 + ℎ2 + 𝑦𝛽)] 

≤ 𝑦 [
𝑏𝐾(𝑟 − ℎ1)(1 − 𝜌)

𝑟
− 𝑑 − ℎ2] 

 

If 0 < ℎ1 < 𝑟 <
𝑏ℎ1𝐾(1−𝜌)

𝑏𝐾(1−𝜌)−(𝑑+ℎ2)
 obtained 

𝑑𝑉1

𝑑𝑡
< 0 . In addition 

𝑑𝑉1

𝑑𝑡
= 0  if 𝑥 =

𝐾(𝑟−ℎ1)

𝑟
 and   

𝑦 = 0. Based on LaSalle's invariance principle, 𝐸1 is globally asymptotically stable. 

 

Theorem 4. The equilibrium point of the existence of the two populations, 𝐸2 = (𝑥∗, 𝑦∗) 

is locally asymptotically stable if 
𝑥

𝑥∗
>

𝑦

𝑦∗
> 1. 

 

Proof. Define Lyapunov function 

 

𝑉2(𝑥, 𝑦) = 𝑥 − 𝑥∗ − 𝑥∗ ln
𝑥

𝑥∗
+

𝑎

𝑏
(𝑦 − 𝑦∗ − 𝑦∗ ln

𝑦

𝑦∗
) 

 

where 𝑥∗, 𝑦∗ ∈ 𝐸2. The first derivative of 𝑉2 is 
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𝑑𝑉2

𝑑𝑡
=

𝜕𝑉2

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑉2

𝜕𝑦

𝑑𝑦

𝑑𝑡
 

= (1 −
𝑥∗

𝑥
) [𝑟𝑥 (1 −

𝑥

𝐾
) − 𝑎(1 − 𝜌)𝑥𝑦 − ℎ1𝑥] +

𝑎(𝑦 − 𝑦∗)

𝑏
[𝑏(1 − 𝜌)𝑥 − 𝑑 − 𝛽𝑦 − ℎ2] 

= (𝑥 − 𝑥∗) [𝑟 (1 −
𝑥

𝐾
) − 𝑎(1 − 𝜌)𝑦 − ℎ1] +

𝑎

𝑏
(𝑦 − 𝑦∗)[𝑏(1 − 𝜌)𝑥 − 𝑑 − 𝛽𝑦 − ℎ2] 

= (𝑥 − 𝑥∗) [𝑟 (1 −
𝑥

𝐾
) − 𝑎(1 − 𝜌)𝑦 − ℎ1 − (𝑟 (1 −

𝑥∗

𝐾
) − 𝑎(1 − 𝜌)𝑦∗ − ℎ1)] 

+
𝑎

𝑏
(𝑦 − 𝑦∗)[𝑏(1 − 𝜌)𝑥 − 𝑑 − 𝛽𝑦 − ℎ2 − (𝑏(1 − 𝜌)𝑥∗ − 𝑑 − 𝛽𝑦∗ − ℎ2)] 

= (𝑥 − 𝑥∗) [−
𝑟(𝑥 − 𝑥∗)

𝐾
− 𝑎(𝑦 − 𝑦∗)(1 − 𝜌)] 

+
𝑎

𝑏
(𝑦 − 𝑦∗)[−(𝑦 − 𝑦∗)𝛽 + 𝑏(𝑥 − 𝑥∗)(1 − 𝜌)] 

= −
𝑟

𝐾
(𝑥 − 𝑥∗)2 − 𝑎(𝑥 − 𝑥∗)(𝑦 − 𝑦∗)(1 − 𝜌) 

+
𝑎

𝑏
[𝑏(𝑥 − 𝑥∗)(𝑦 − 𝑦∗)(1 − 𝜌) − (𝑦 − 𝑦∗)2𝛽] 

= −
𝑟

𝐾
(𝑥 − 𝑥∗)2 − 𝑎(𝑥 − 𝑥∗)(𝑥∗𝑦 − 𝑥𝑦∗)(1 − 𝜌) −

𝑎

𝑏
(𝑦 − 𝑦∗)2 

 

Conditions 
𝑦

𝑦∗ >
𝑥

𝑥∗ > 1  is equivalent to 
𝑑𝑉2

𝑑𝑡
≤ 0 , consequently 𝐸2  is globally 

asymptotically stable. 

 

Teorema 5. Suppose 𝑟 > ℎ1 + 𝑑 + ℎ2 , the model in the system of equations (4) 

experiences forward bifurcation at the equilibrium point 𝐸1 when 𝜌 moves through 𝜌∗. 

 

Proof. Suppose 𝜌∗ =
𝑏ℎ1𝐾+𝑑 𝑟+ℎ2𝑟−𝑏𝑟𝐾

𝑏𝐾(ℎ1−𝑟)
 is the bifurcation parameter and 𝑧1 = 𝑥, and 𝑧2 =

𝑦. The system of equations (4) becomes: 

 

𝑓1(𝑧1, 𝑧2) = 𝑟𝑧1 (1 −
𝑧1

𝐾
) − 𝑎(1 − 𝜌)𝑧1𝑧2 − ℎ1𝑧1                                      (8) 

𝑓2(𝑧1, 𝑧2) = 𝑏(1 − 𝜌)𝑧1𝑧2 − 𝑑𝑧2 − 𝛽𝑧2
2 − ℎ2𝑧2 

 

Parameter 𝑏∗ =
𝑟(𝑑+ℎ2)

𝐾(1−𝜌)(𝑟−ℎ1)
 results in the jacobian matrix at the equilibrium point 𝐸1 

having one eigenvalue of zero. Based on the zero eigenvalues, the right eigenvector is 

obtained (𝑢1, 𝑢2) and left eigenvector (𝑣1, 𝑣2) as follows: 

 

𝑢1 = −
𝑎(𝑑 + ℎ2) 

𝑏(𝑟 − ℎ1)
 

𝑢2 = 1 

and 

 



714  |  JTAM (Journal of Mathematics Theory and Applications) | Vol. 8, No. 3, July 2024, pp. 706-723 

 

 

𝑣1 =
𝑏(𝑟 − ℎ1)

𝑎(𝑑 + ℎ2)
 

𝑣2 = 1 

 

By applying the theorem (Castillo-chavez & Song, 2004) defined 

 

𝜓 = ∑ 𝑣𝑘𝑢𝑖𝑢𝑗

𝜕2𝑓𝑘

𝜕𝑧𝑖𝜕𝑧𝑗

(𝐸1, 𝜌∗)

2

𝑘,𝑖,𝑗=1

                                                   (9) 

𝜒 = ∑ 𝑣𝑘𝑢𝑖

𝜕2𝑓𝑘

𝜕𝑧𝑖𝜕𝑏
(𝐸1, 𝜌∗)

2

𝑘,𝑖,𝑗=1

 

 

Based on the system (8) obtained 

 

𝜕2𝑓1

𝜕𝑧1𝜕𝑧1

(𝐸1, 𝜌∗) = −
2𝑟

𝐾
 

𝜕2𝑓1

𝜕𝑧1𝜕𝑧2

(𝐸1, 𝜌∗) =
𝜕2𝑓1

𝜕𝑧2𝜕𝑧1

(𝐸1, 𝜌∗) =
𝑎(𝑑 + ℎ2)𝑟

𝑏𝐾(ℎ1 − 𝑟)
 

𝜕2𝑓2

𝜕𝑧1𝜕𝑧2

(𝐸1, 𝜌∗) =
𝜕2𝑓2

𝜕𝑧2𝜕𝑧1

(𝐸1, 𝜌∗) = −
(𝑑 + ℎ2)𝑟

𝑘(ℎ1 − 𝑟)
 

𝜕2𝑓2

𝜕𝑧2𝜕𝑧2

(𝐸1, 𝜌∗) = −2𝛽 

𝜕2𝑓1

𝜕𝑧2𝜕𝜌
(𝐸1, 𝜌∗) = 𝑎 (𝐾 −

ℎ1𝐾

𝑟
) 

𝜕2𝑓2

𝜕𝑧2𝜕𝜌
(𝐸1, 𝜌∗) =

𝑏𝐾(ℎ1 − 𝑟)

𝑟
 

 

By using system (9), it is obtained 

 

𝜓 = 𝑣1𝑢1𝑢1

𝜕2𝑓1

𝜕𝑧1𝜕𝑧1

(𝐸1, 𝜌∗) + 2𝑣1𝑢1𝑢2

𝜕2𝑓1

𝜕𝑧1𝜕𝑧2

(𝐸1, 𝜌∗) + 2𝑣2𝑢1𝑢2

𝜕2𝑓2

𝜕𝑧1𝜕𝑧2

(𝐸1, 𝜌∗) 

+𝑣2𝑢2𝑢2

𝜕2𝑓2

𝜕𝑧2𝜕𝑧2

(𝐸1, 𝜌∗) 

= −
2𝑎(𝑑 + ℎ2)2𝑟

𝑏𝐾(𝑟 − ℎ1)2
− 2𝛽 

𝜒 = 𝑣1𝑢2

𝜕2𝑓1

𝜕𝑧2𝜕𝜌
(𝐸1, 𝜌∗) + 𝑣2𝑢2

𝜕2𝑓2

𝜕𝑧2𝜕𝜌
(𝐸1, 𝜌∗) =

𝑏𝐾(𝑟 − ℎ1)(𝑟 − (ℎ1 + 𝑑 + ℎ2))

𝑟(𝑑 + ℎ2)
 

 

Because 𝑟 > ℎ1 + 𝑑 + ℎ2  obtained  𝜓 < 0  and 𝜒 > 0 , according to (Castillo-chavez & 

Song, 2004) the system of equations (4) experiences forward bifurcation at 𝜌 = 𝜌∗. 
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3. Numerical Simulation 

Numerical simulations are carried out to strengthen the results of the analysis in obtaining 

the dynamic behavior of the interaction between the prey and predator populations contained 

in the system. In addition, the 4th Order Runge-Kutta Method is used to obtain simulation 

results or numerical calculations of equation (4). Parameter values are given based on the 

stability conditions of each equilibrium point which can be seen in Table 1. 

 

Table 1. Parameter Model 

No Parameter Nilai No Parameter Nilai 
1 𝑟 1 6 𝛽 0,4 
2 𝑎 0,3 7 ℎ2 0,2 
3 ℎ1 0,1 8 𝑘 1 
4 𝑏 0,4 9 𝜌 0,08 
5 𝑑 0,1    

 

The values given in Table 1 satisfy the condition 𝑟 > ℎ1 which indicates that the system will 

be stable at the equilibrium point 𝐸1 or 𝐸2. 

a. Effect of Predation Rate 

Calculations by increasing the level of predation while keeping other parameters 

constant can be seen in Figure 1. To see the dynamics of the system at this stage, three 

different conditions on the predation level were set. The calculation results on the three 

conditions obtained the value Ω∗ = 0,36  which results in the system experiencing 

stability at the equilibrium point 𝐸2. However, it can be seen that, as the predation rate 

increases, there is a decrease in the number of individuals in the prey and predator 

populations. As time goes by, the number of individuals in the prey population with 𝑎 =

0,3  stabilizes at the value 0,88 . As for the two conditions 𝑎 = 0,6  and 𝑎 = 0,9 , the 

number of individuals in the prey population stabilizes at 0,87 and 0,86, respectively. 

The number of individuals in the predator population for the three conditions of 

predation level is stable at 0,06, 0,05, and 0,04, respectively. 

 

  
(i) (ii) 
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(iii) (iv) 

Figure 1.  Population dynamics for (i) 𝑎 = 0,3, (ii) 𝑎 = 0,6, (iii) 𝑎 = 0,9, and (iv) time series 

 

b. Effects of Illegal Harvesting  

The existence of illegal harvesting has a significant impact on the dynamics of both 

populations. This can be seen based on the calculation results in Figure 2, where an 

increase in illegal harvesting for the prey population can result in a decrease in the 

number of individuals in the prey population and the predator population. In the 

calculation using ℎ1 = 0,15  the value Ω∗ = 0,38  which results in the system 

experiencing stability at the equilibrium point 𝐸2 with the number of individuals in the 

predator population and prey population of 0,84 and 0,03, respectively. When the wild 

harvesting rate is increased from the previous value, namely ℎ1 = 0,3, the value of Ω∗ =

0,46  causes the system to stabilize at the equilibrium point 𝐸1  with the number of 

individuals in the prey population is 0.7. If the harvesting rate is increased again, the 

system will always be stable at the equilibrium point of the prey population 𝐸1, as shown 

in Figure 5 using      ℎ1 = 0,6. 

In addition, the calculation results show that increasing the wild harvest for the predator 

population can increase the number of individuals in the predator population as shown 

in Figure 3. On condition ℎ2 = 0,15 the value of Ω∗ = 0,3 so that the system is stable at 

the equilibrium point 𝐸2. While for the condition ℎ2 = 0,3 obtained value        Ω∗ = 0,48 

which results in the system experiencing stability at the equilibrium point 𝐸1 with the 

number of prey 0,9 (increased from the previous condition) and the predator population 

is extinct ℎ2 and the predator population is extinct. The same thing also happens in the 

condition ℎ2 = 0,6 where the system is stable at the equilibrium point 𝐸1.  
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(i)                                                                          (ii) 

 
(iii)                                                                          (iv) 

Figure 2.  Population dynamics for (i) ℎ1 = 0,15, (ii) ℎ1 = 0,3, (iii) ℎ1 = 0,6, and (iv) time series 

 

 
(i)                                                                          (ii) 



718  |  JTAM (Journal of Mathematics Theory and Applications) | Vol. 8, No. 3, July 2024, pp. 706-723 

 

 

 
(iv)                                                                          (iv) 

Figure 3.  Population dynamics for (i) ℎ2 = 0,15, (ii) ℎ2 = 0,3, (iii) 𝑏 = 0,95, and (iv) time series 

 

c. Effect of Protection Zone on Prey 

As previously described, the model assumes the existence of a protection zone on the 

prey to limit the interaction between prey and predators. Simulation on the change in 

the value of the protection zone can be seen in Figure 4. Calculation results used 𝜌 = 0,1 

obtained the value Ω∗ = 0,37 which results in a stable system at the equilibrium point 

𝐸2 with the number of individuals in the prey and predator populations of 0,88 and 0,05, 

respectively. However, when the protection zone is increased, where this calculation is 

used 𝜌 = 0,4 a value of Ω∗ = 0,55 causes the system to stabilize at the equilibrium point 

𝐸1  which is the extinction level of the predator. The same thing also happens in the 

condition of 𝜌 = 0,7 obtained value Ω∗ = 1,11 so that the number of individuals in the 

prey population stabilizes at 0,9 while the predator population experiences extinction, 

as shown in Figure 4. 

 

 
(i)                                                                          (ii) 
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(iii)                                                                          (iv) 

Figure 4.  Population dynamics for (i) 𝜌 = 0,1, (ii) 𝜌 = 0,4, (iii) 𝜌 = 0,7, and (iv) time series 

 

d. Effect of Predator Intra-specific Competition 

In this calculation, there are three parameters whose values are changed, namely 𝑎 = 2, 

𝑏 = 1, and 𝑘 = 3. The results in Figure 5 show that an increase in the level of predator 

intra-specific competition results in an increase in the number of individuals in the prey 

population and a simultaneous decrease in the number of individuals in the predator 

population. In addition, three conditions y are given, namely 𝛽 = 0,1, 𝛽 = 0,45 and 𝛽 =

0,95  values are obtained 𝑏 > Ω∗  for all three conditions. As a result, the system 

fluctuates until finally, each stabilizes at the equilibrium point of 𝐸2, as shown in Figure 

5. 

 
(i)                  (ii) 

 
(iii)              (iv) 

Figure 5.  Population dynamics for (i) 𝛽 = 0,1, (ii) 𝛽 = 0,45, (iii) 𝛽 = 0,95, and (iv) time series 
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e. Influence of Stability Thershold  

In this section, calculations are carried out to measure how fast the bifurcation or change 

in system stability is caused by changes in parameter values.  Based on Theorem 2 and 

Theorem 5, there is a stability threshold that causes the equilibrium point to be stable 

or unstable, namely ℎ1, Ω∗, and 𝜌∗. Thus, the calculation of system bifurcation is carried 

out by considering the value of the three thresholds. The calculation results can be seen 

in Figure 6, Figure 7, and Figure 8. 

 

 
Figure 6.  System Bifurcation Based on Change ℎ1 

 

 
Figure 7.  System Bifurcation Based on Change 𝑏 

 

Figure 6 shows that increasing the value of ℎ1  causes the system to bifurcate twice. 

Initially, the system stabilizes at the equilibrium point 𝐸2 until finally there is a shift in 

stability to the equilibrium point 𝐸1  when ℎ1 = 0,186  which is equivalent to Ω∗ =

0,4007. If the value of ℎ1 is increased again, the stability of the system will shift to the 

equilibrium point 𝐸0 when ℎ1 > 1 or ℎ1 > 𝑟. This shows that a continuous increase in 

wild harvesting of the prey population can lead to the extinction of both the prey 

population and the predator population.  

The increase in the predator birth rate due to the predation process causes the system 

to change stability from the equilibrium point 𝐸1 to the equilibrium point 𝐸2 as can be 

seen in Figure 7. The system is stable at the equilibrium point 𝐸2 when the value 𝑏 >
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Ω∗ = 0,362. In addition, it can be seen that when the predator birth rate due to the 

predation process increases, the number of individuals in the predator population also 

increases but simultaneously reduces the number of individuals in the prey population, 

as shown in Figure 8.  

 

 
Figure 8.  System Bifurcation Based on Change 𝜌 

 

Changes in the stability properties of the system also occur when there is a change in the 

value of the prey protection zone as found in Figure 8. When the prey protection zone is 

minimized, the system will experience stability at the equilibrium point 𝐸2. Conversely, 

if the prey protection zone is enlarged until it passes through 𝜌∗ = 0,167, the system will 

experience stability at the equilibrium point 𝐸1. This shows that if the prey protection 

zone is enlarged, then individuals in the predator population will experience extinction. 

 

D. CONCLUSION AND SUGGESTIONS 

The model discussed in this article is a predator-prey model involving scenarios of illegal 

harvesting in prey and predator populations, intra-specific competition in predator 

populations, and prey protection zones. Analysis of the model resulted in three equilibrium 

points, namely the extinction point of both populations (𝐸0) , the extinction point of the 

predator population (𝐸1), and the point of existence of both populations (𝐸2).  The results of 

the analysis show that the prey and predator populations will experience extinction if 𝑟 < ℎ1. 

On the other hand, both populations will exist if 𝑟 > ℎ1 provided that 𝑏 > Ω∗. Furthermore, it is 

shown that there is a forward bifurcation at the extinction point of the predator population (𝐸1) 

which depends on the change in the value of the protection rate of the prey (𝜌). Numerical 

simulations show that an increase in illegal harvesting could lead to the extinction of both 

populations. In addition, the prey protection zone needs to be minimised to maintain the 

existence of both populations. 
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