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 In research, we often encounter problems of multicollinearity and outliers, which 
can cause coefficients to become unstable and reduce model performance. Robust 
Continuum Regression (RCR) overcomes the problem of multicollinearity by 
reducing the number of independent variables, namely compressing the data into 
new variables (latent variables) that are independent of each other and whose 
dimensions are much smaller and applying robust regression techniques so that 
the complexity of the regression model can be reduced without losing essential 
information from data and provide more stable parameter estimates. However, it 
is hampered in the computational aspect if the data has very high dimensions (𝑝 >
> 𝑛). In the initial stage, it is necessary to reduce dimensions by selecting variables. 
The Least Absolute Shrinkage and Selection Operator (LASSO) can overcome this 
but is sensitive to the presence of outliers, which can result in errors in selecting 
significant variables. Therefore, we need a method that is robust to outliers in 
selecting explanatory variables such as Weighted Least Absolute Deviations with 
LASSO penalty (WLAD LASSO) in selecting variables by considering the absolute 
deviation of the residuals. This method aims to overcome the problem of 
multicollinearity and model instability in high-dimensional data by paying 
attention to resistance to outliers. Leverages the outlier resistant RCR and variable 
selection capabilities of LASSO and WLAD LASSO to provide a more reliable and 
efficient solution for complex data analysis. Measure the performance of RKR-
LASSO and RKR-WLAD LASSO; simulations were carried out using low-dimensional 
data and high-dimensional data with two scenarios, namely without outliers (δ= 
0%) and with outliers (δ= 10%, 20%, 30%) with a level of correlation (ρ = 
0.1,0.5,0.9). The analysis stage uses RStudio version 4.1.3 software using the 
"MASS" package to generate data that has a multivariate normal distribution, the 
"glmnet" package for LASSO variable selection, the "MTE" package for WLAD LASSO 
variable selection. The simulation results show the performance of RKR-LASSO 
tends to be superior in terms of model goodness of fit compared to RKR-WLAD 
LASSO. However, the performance of RKR-LASSO tends to decrease as outliers and 
correlations increase. RKR-LASSO tends to be looser in selecting relevant variables, 
resulting in a simpler model, but the variables chosen by LASSO are only marginally 
significant. RKR-WLAD LASSO is stricter in variable selection and only selects 
significant variables but ignores several variables that have a small but significant 
impact on the model. 
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A. INTRODUCTION  

In regression analysis, the Ordinary Least Square (OLS) method is one of the approaches 

commonly used to model the relationship between independent variables and response 

variables. However, we often need to work on multicollinearity and outliers when applying OLS 

(Lakshmi et al., 2021). Multicollinearity occurs when two or more independent variables in the 
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model have a high correlation, leading to unstable and challenging to interpret estimates of the 

regression coefficients (Tsagris & Pandis, 2021). Outliers refer to observations that are far from 

the general pattern in the data and can significantly affect the analysis results if not 

appropriately handled (Leys et al., 2018). Both of these phenomena can cause distortions in 

estimation and interpretation and reduce the reliability of the regression model. Therefore, 

paying attention to the estimation method used is necessary so that the analysis results are 

more reliable and accurate. 

Continuum Regression (CR) is a development of the Least Squares Regression (LSR), Partial 

Least Squares Regression (PLSR) and Principal Component Regression (PCR) methods to 

overcome multicollinearity problems by reducing the number of independent variables, 

namely compressing the data into new variables (latent variables), which are independent of 

each other and have much smaller dimensions (Chen & Zhu, 2015). New variables in CR by 

maximizing the variance of independent variables and the covariance between the independent 

variable and the response variable. CR is introduced and used to complete the calibration model 

in several case examples using cross-validation index criteria compared with various levels of 

adjustment parameters 𝛿; the conclusion is that CR is better compared to the results of LSR, 

PLSR, and PCR (Stone & Brooks, 1990). Setiawan et al. (2007) researched calibration models 

using the CR approach, concluding that CR has advantages over PCR and PLSR in solving 

multicollinearity problems in various independent variable matrix structures (setiawan & 

Notodiputro, 2007). Sometimes, huge independent variables (𝑝 ≫ 𝑛) cause the matrix 

structure of the independent variables to experience singularities, which will cause problems 

in the computational aspect (Ajeel & Hashem, 2020) . So, at the initial stage, it is necessary to 

reduce the dimensions from the original high dimension (𝑛𝑥𝑝)to a lower dimensional space, 

for example (𝑛𝑥ℎ) where  ℎ < (𝑛 − 1) < 𝑝 but still retains most of the relevant information 

from the original data, this process is called preprocessing  (Velliangiri et al., 2019). 

One of the preprocessing methods with variable selection is the Least Absolute Shrinkage 

and Selection Operator (LASSO) (Lima et al., 2020). The LASSO method selection reduces the 

regression coefficient of variables that have a high correlation with error. This reduction aims 

to make the regression coefficient close to zero or even equal to zero (Cui & Wang, 2016). LASSO 

parameter estimation is known to have stable regression coefficients, reduces the number of 

parameters and has good consistency in parameter convergence (ChunRong et al., 2017). The 

results of Arwini's (2020) study on modelling using CR with variable selection pre-processing 

using the LASSO method can increase precision and provide reasonably accurate prediction 

results compared to the CR model with Principal Component Analyst (PCA) preprocessing 

(Arisandi et al., 2020). The results of LASSO selection will be new variables modelled with CR. 

Still, LASSO selection is sensitive to outliers, which can result in errors when selecting 

significant variables. 

The WLAD LASSO method was introduced by Arslan (2012) as a combination of WLAD and 

LASSO penalties. This method is robust against outliers in the response variable and against 

outliers in the independent variable. It is better at dealing with outliers and variable selection 

than LASSO and LAD LASSO in selecting variables by considering the absolute deviation of the 

residuals (Arslan, 2012; Yang & Li, 2018). Septa (2022) studied the performance of the LAD 

LASSO and WLAD LASSO methods on high-dimensional data containing outliers. Based on the 
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study, WLAD LASSO can overcome the weaknesses of LAD LASSO, which selects few significant 

variables and LASSO, which selects many variables which are not significant in variable 

selection, with a higher prediction error compared to LASSO but lower than LAD LASSO (Cahya 

et al., 2022). 

In CR analysis, calculations are based on variance and covariance matrices, which may 

contain outlier data. To deal with data that contains outliers the Robust Continuum Regression 

(RCR) method is an effective choice. This method combines the advantages of CR with 

resistance to outliers so it can provide more stable and consistent parameter estimates in the 

presence of outliers (Serneels et al., 2005). Sereneels et al. (2005) research examined the 

performance of the RCR estimates of the Hubert estimator on simulated and observational data 

with RCR results superior to Classical Continuum Regression (CCR). Khotimah et al (2020) In a 

robust regression simulation study of MM and Least Median Square (LMS) estimation with data 

containing outliers (s =  0%, 5%, 10%, 15%, 20%, and 30%) and dimensions (n =

 50, 200, 1000). The Root Mean Square Error (RMSE) results in MM and LMS estimation are 

superior to using LSR (Khotimah et al., 2020). 

In this research, we compare the Robust Continuum Regression method with LASSO 

selection (RCR-LASSO) with the Robust Continuum Regression method with WLAD LASSO 

selection (RCR-WLAD LASSO) on low-dimensional data and high-dimensional data containing 

several levels of outliers (𝛿) and levels of correlation (𝜌). The performance comparison of these 

two methods aims to assess how efficient the technique is in overcoming multicollinearity and 

outlier problems and selecting the most relevant variables in forming the regression model. 

Variable selection with LASSO and WLAD LASSO selection can help simplify the model by 

identifying the variables that contribute most to the research, especially in high-dimensional 

data. More efficient methods help improve the quality of analysis and interpretation of results. 

Further analysis to see the method's performance will be discussed by comparing the Root 

Mean Squared Error of Prediction (RMSEP) and coefficient of determination (𝑅^2) values to 

measure how well the regression model fits the research data. 

 

B. METHODS 

This research uses simulation data analyzed by RStudio 4.1.3 software. The simulation 

generates multivariate normal distribution data with several outlier levels (𝛿) and correlation 

levels (𝜌). This simulation refers to research by Serneel et al. (2005), but there is an additional 

modification of the correlation level (𝜌 =  0.1, 0.5, 0.9) and additional outlier levels in the 

response variable (𝛿 =  10%, 20%, 30%). This study's optimal δ* value in Robust Continuum 

Regression between (0<δ*<1) is δ* =0.3. A small δ*, such as 0.3, reaches the optimal value faster 

than a larger δ* value and can extract more relevant information from the independent 

variables (the results of the experiment δ* between the values 0 to 1) (Xie et al., 2020). when 

δ*=0 Robust Continuum Regression includes Least Squares Regression, δ*=0.5 includes Partial 

Least Squares Regression, and δ=1 includes Principal Component Regression. This simulation 

was conducted on low dimensional data (𝑛 = 75, 𝑝 = 25) and high dimensional data (𝑛 =

75, 𝑝 = 100). The following are the stages and studies in the simulation: 
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1. Determining the number of observations in the low dimension 𝑛 = 75, the number of 

independent variables 𝑝 = 25 and high dimension observations 𝑛 = 75, the number of 

independent variables 𝑝 = 100; 

2. Generating a vector of p-dimensional independent variables at the ith 

observation−𝑖  𝑥𝑖 = (𝑥1𝑖,  𝑥2𝑖, … , 𝑥𝑝𝑖)
𝑇   through the Multivariate Normal distribution  

  𝑥𝑖~𝑁𝑝 (0, ∑) where the covariance matrix ∑ =  𝑟𝑖𝑗𝑝𝑥𝑝
 ;  𝑟𝑗 =  𝜌|𝑗−𝑖|;   𝜌 = 0,1 ; 0,5 ; 0,9 

dan 𝑖 = 1, 2, 3, … , 𝑛 ; 𝑗, 𝑖 = 1, 2, 3, … , 𝑝; 

3. Determine the model to be used, namely:  

 

𝑦𝑖 =  𝑥1𝑖 + 𝑥2 𝑖 + 𝑥3𝑖 +  𝑥4𝑖 + ⋯ + 𝑥25𝑖 +  𝜀𝑖 ; for 𝑝 = 25; 

𝑦𝑖 =  𝑥1𝑖 + 𝑥2 𝑖 + 𝑥3𝑖 +  𝑥4𝑖 + ⋯ + 𝑥100𝑖 +  𝜀𝑖 ; for 𝑝 = 100. 

 

4. Generate response variables with two scenarios as follows: 

a. Scenario 1: Response variable without outliers based on model 𝑦𝑖 =  𝑥𝑖
𝑇𝛽 +

 𝜀𝑖 ;  𝜀𝑖 ~𝑁(0,1); 

b.  Scenario 2: Response variable contains outliers (𝛿 = 10%, 20%, 30% )  in the model 

𝑦𝑖 =  𝑥𝑖
𝑇𝛽 +  𝜀𝑖 ;  𝜀𝑖 ~𝑁(1 − 𝛿) 𝑁(0,1) +  𝛿𝑁 (25,1); 

 

5. Perform preprocessing with LASSO and WLAD LASSO variable selection.  

 

�̂�𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔 𝑚𝑖𝑛{∑ (𝑦𝑖
𝑛
𝑖=1 − 𝑥𝑖

𝑇𝛽)2 +  𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1 }                                       (1) 

 

                �̂�𝑊𝐿𝐴𝐷 𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔 𝑚𝑖𝑛{∑ 𝑤𝑖(𝑦𝑖
𝑛
𝑖=1 − 𝑥𝑖

𝑇𝛽) +  𝜆 ∑ 𝜔𝑗|𝛽𝑗|𝑝
𝑗=1 }                     (2) 

 

Where 𝑦𝑖 is the observed value of the response variable at the 𝑖-th observation, 𝑥𝑖 =

(𝑥1𝑖,  𝑥2𝑖, … , 𝑥𝑝𝑖)𝑇, 𝑥𝑖
𝑇𝛽 is the predicted value for the 𝑖-th observation, obtained by 

multiplying the vectors feature 𝑥𝑖  with regression coefficient vector 𝛽 (Robert 

Tibshirani, 1996). The weights 𝑤𝑖 = min{1,
𝑝

𝑅𝐷(𝑥𝑖)
},  for 𝑖 = 1, 2, 3, … , 𝑛 are obtained 

using Robust Distances (RD) (Wahid et al., 2017). 𝑅𝐷 = (𝑥𝑖 − �̂�)𝑇 �̂� −1(𝑥𝑖 − �̂�); �̂� dan 

𝛴 ̂are obtained from the Minimum Regularized Covariance Determinant (MRCD) 

estimator (Boudt et al., 2020; Bulut, 2020).The selection of independent variables in 

LASSO and WLAD LASSO selection is based on the optimum lambda (𝜆) with a minimum 

value of Mean Squared Error cross-validation (MSE CV) (Lee et al., 2016). The procedure 

for 𝑘-fold cross-validation is as follows (Izenman, 2008): 

a. Randomly divides data into 𝑘 parts or folds into 𝑘 subsamples. 

b. For each 𝑘 subsamples, one subsample will be used as testing data and (𝑘 − 1) 

subsamples as     training data. 

c. The cross-validation process is repeated 𝑘 times, and each subsample is used only 

once as testing data. 

d. The optimum λ is obtained based on the minimum MSE CV value (Emmert-Streib & 

Dehmer, 2019). 
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𝑀𝑆𝐸 𝐶𝑉 =
1

𝑘
 ∑ ∑ (𝑦𝑖(𝑥𝑖,𝑦𝑖 )𝜖𝑇

𝐾
𝑘=1 − �̂�−𝑘 (𝑥𝑖))2                                         (3) 

 

�̂�−𝑘 (𝑥𝑖) is the predicted response value for 𝑥𝑖   when the model is obtained from data 

without involving the 𝑘-th subsample, and𝑦𝑖 is the ith response variable in the testing 

data. 

e. Repeat steps (b) to (d) 𝑘 times to obtain the minimum CV. Selection of predictor 

variables is based on selecting the optimum lambda value with the smallest cross-

validation value. 

 

6. Carry out robust continuum regression modelling using selected variables. Independent 

variables used are the selection results from LASSO and WLAD LASSO. 

 

𝑦 = 𝑇ℎ 𝜉 +  𝜀                                                                            (4) 

 

𝑦 is a vector of response variables of size 𝑛𝑥1, 𝑇ℎ = 𝑋𝑊ℎ  with 𝑊ℎ = (𝑤1 , 𝑤2  , … , 𝑤ℎ ) 

is a weighting matrix of size 𝑝𝑥ℎ. So, the matrix 𝑇ℎ  contains ℎ columns of latent variables 

(Ismah et al., 2024; Zhou, 2019). Where 𝑝 is the number of independent variables, and ℎ 

is the number of new variables from LASSO and WLAD LASSO selection. Weighting 

vector in continuum regression with formula: 

 

𝑤𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝐶𝑜𝑣 (𝑋𝑤 , 𝑦)2  𝑉𝑎𝑟 (𝑋𝑤 )[𝛿∗ /(1−𝛿∗)]−1 }                                 (5) 

 

 with constraints ‖𝑤𝑖 ‖ = 1 and 𝐶𝑜𝑣 ( 𝑋𝑤𝑖, 𝑦𝑤 𝑗 ) = 0  for  𝑖 <  𝑗 = 1, 2, … , ℎ . In the RCR 

concept, calculations are based on robust covariance and variance values. Robust 

estimator by trimming the covariance values Xα, y and trimming the variance value Xα 

(Zhang et al., 2011). 

 

𝐶𝑜𝑣𝛼  (𝑥, 𝑦) =
1

𝑛−2𝑙
 ∑ 𝑧𝑖 

𝑛−1
𝑖=𝑙+1                                                       (6) 

 

With 𝑧𝑖 = (𝑥𝑖 − �̅�𝛼)(𝑦𝑖 −  �̅�𝛼), and 𝑙 = [𝑛𝛼] + 1.  

 

7. Calculate the estimated value of RCR with MM estimation as follows: 

 

�̂� 𝑀𝑀 =  (𝑋𝑇𝑊𝑖 𝑋)−1 (𝑋𝑇𝑊𝑖 𝑌)                                                          (7) 

 

�̂�  𝛿,ℎ 

𝑅𝐾𝑅
=  𝑊 𝜉  =    𝑊(𝑇ℎ

𝑇 𝑇 ℎ )−1 𝑇ℎ
𝑇 �̂�𝑀𝑀                                             (8) 

 

8. The simulation in steps 2 to 6 is repeated 1000 times; 

9. Validate the model by looking at the Root Mean Squared Error of prediction (RMSEP) 

value: 

𝑅𝑀𝑆𝐸𝑃 =  √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
                                                                            (9) 
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𝑅2 =  1 −  
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

                                                                          (10) 

 

𝑦𝑖  is the observed value for the 𝑖-th data, and �̂�𝑖 is the predicted value for the ith data 

obtained from the prediction model. �̅�𝑖 is the average of the actual observation values, 

∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1  is the sum of squares of residuals, and ∑ (𝑦𝑖 − �̅�𝑖)2𝑛
𝑖=1  is the total sum of 

squares.  

10. Comparing the evaluation results of RCR-LASSO and RCR-WLAD LASSO modelling via 

RMSEP values. 

 

C. RESULT AND DISCUSSION 

1. Results of Comparative Study of The RCR-LASSO and RCR-WLAD LASSO Methods 

The following are the simulation results of the RCR-LASSO selection and RCR-WLAD LASSO 

selection methods on low-dimensional and high-dimensional data with several levels of 

outliers (δ) and correlation (ρ).  Figure 1 is the simulation result in the low dimensional case 

(n>p) with the remaining normal distribution. It can be seen in the picture that when the outlier 

is 0% at several levels of correlation, the RMSEP value of the RCR- LASSO is lower than the RCR- 

WLAD LASSO. A lower RMSEP value indicates that the average model prediction error is lower. 

Overall, this means the closer the model predictions are to the actual values. The higher the 

outlier level provided by RCR, LASSO selection and WLAD LASSO selection, it tends to increase, 

but LASSO tends to be lower and more stable. When the correlation value becomes greater for 

outliers (δ=10%, 20%, 30%), RCR- WLAD LASSO selection decreases, and the variance becomes 

smaller. If the correlation between variables is higher, more variables can be related to each 

other, eliminating more variables from the model. This can reduce model complexity and 

increase generalization, reducing the RMSEP value of WLAD LASSO selection, as shown in 

Figure 1. 

 

 
Figure 1. Low-dimensional data simulation results(𝑛 = 75 > 𝑝 = 25) 
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Figure 2 is a simulation result of high-dimensional data (n<p) with a residual normal 

distribution. The RMSEP value of the RCR-LASSO selection tends to be lower than the RCR-

WLAD LASSO selection. It can be seen in the picture that when the outlier level is higher, the 

results of the RCR-LASSO selection and the RCR-WLAD LASSO selection tend to have 

increasingly similar RMSEP values. Both approaches, RCR-LASSO and RCR-WLAD LASSO 

selection, use robust estimation techniques for outliers. This allows both models to handle the 

data better and adapt to the presence of outliers. The two models tend not to be too influenced 

by outliers in the modeling process, which can produce almost similar RMSEP values. 

Increasing the correlation value in the RCR-LASSO selection and RCR-WLAD LASSO selection 

influences the decrease in the RMSEP value. Increasing correlation can increase the stability of 

regression models, especially when used in RCR methods. As a result, the model can provide 

more consistent estimates, which have the potential to reduce RMSEP because prediction 

errors are more controlled, as shown in Figure 2. 

 

 
Figure 2. High-dimensional data simulation results(𝑛 = 75 < 𝑝 = 100) 

 

Table 1. RMSEP and Coefficient of Determination (R^2) Values from Simulation Results of Low-

Dimensional Data RCR-LASSO and RCR-WLAD LASSO Selection 

𝜹  
RMSEP R^2 

  ρ = 0,1 ρ = 0,5 ρ =0,9 ρ = 0,1 ρ = 0,5 ρ =0,9 
0% RCR-LASSO 0,861 0,883 0,898 0,877 0,951 0,964 

 RCR-WLAD LASSO 1,068 1,011 1,002 0,892 0,938 0,949 

10% RCR-LASSO 1,688 1,698 1,699 0,769 0,862 0,884 
 RCR-WLAD LASSO 2,101 1,948 1,896 0,756 0,795 0,896 

20% RCR-LASSO 3,085 3,087 3,091 0,643 0,716 0,767 
 RCR-WLAD LASSO 3,327 3,538 3,352 0,547 0,639 0,734 

30% RCR-LASSO 4,546 4,553 4,554 0,563 0,632 0,676 
  RCR-WLAD LASSO 3,411 5,093 4,779 0,463 0,517 0,631 
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Table 2. RMSEP and R^2 Values from Simulation Results of High-Dimensional Data RCR-LASSO and 

RCR-WLAD LASSO Selection  

    RMSEP R^2 

    ρ = 0,1 ρ = 0,5 ρ =0,9 ρ = 0,1 ρ = 0,5 ρ =0,9 

0% RCR-LASSO 1,999 1,014 0,834 0,916 0,969 0,971 

 RCR-WLAD LASSO 1,316 1,188 1,181 0,855 0,919 0,939 

10% RCR-LASSO 1,916 1,803 1,681 0,793 0,809 0,894 

 RCR-WLAD LASSO 2,123 1,995 1,855 0,567 0,766 0,899 

20% RCR-LASSO 3,266 3,204 3,079 0,632 0,706 0,752 

 RCR-WLAD LASSO 3,277 3,203 3,111 0,375 0,634 0,705 

30% RCR-LASSO 4,786 4,725 4,544 0,551 0,607 0,664 

  RCR-WLAD LASSO 4,562 4,525 4,524 0,547 0,609 0,673 

 

Next, a significant test was carried out using the t-test to see whether there were 

fundamental average differences in each RMSEP between the resulting RKR-LASSO and RKR-

WLAD LASSO methods. The results show that in low-dimensional data with several correlations 

and outliers, the p-value is 2.2e-16, smaller than the significance level of 0.05. Therefore, the 

null hypothesis is rejected, indicating a significant difference between the RMSEP of the two 

methods. Meanwhile, in high-dimensional data at outlier levels of 10%, 20%, and 30% with 

several levels of correlation, the results show a p-value of 0.1142, which is greater than the 

significance level of 0.05. Therefore, the null hypothesis is accepted, indicating there is 

insufficient evidence to show that there is a significant difference between the two methods. 

Figure 3 average simulation results of selected variables using the LASSO and WLAD LASSO 

methods. The averages of selected variables tend to be almost the same at different levels of 

correlation. Fewer variables were selected using the WLAD LASSO method on low-dimensional 

and high-dimensional data than LASSO. This is in line with research by Septa (2022) comparing 

variable selection between LASSO, LAD LASSO and WLAD-LASSO with the results that WLAD 

LASSO can overcome the weakness of LASSO which selects many variables that are not 

significant in the research (Cahya et al., 2022).Variables selected using the LASSO method in 

low-dimensional data tend to be fewer than in high-dimensional data. In low-dimensional data, 

LASSO tends to select fewer variables due to various factors, such as the ratio of variables to 

sample, so that LASSO has fewer variables to consider for adjustment and limits the number of 

variables that can be selected, as shown in Figure 3. 
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Figure 3. Average simulation results of selected variables 

 

Description: * High dimensional data 

 

D. CONCLUSION AND SUGGESTIONS 

Based on the research carried out on low-dimensional data, the performance of RKR-LASSO 

tends to be superior in terms of model goodness of fit compared to RKR-WLAD LASSO. The 

combination of LASSO, which tends to be looser in selecting relevant variables, and RKR, which 

provides resistance to outliers and multicollinearity problems, produces a simpler and more 

stable model. However, the performance of RKR-LASSO tends to decrease as outliers and 

correlations increase. In high-dimensional data, the performance of the two methods in 

handling data complexity is the same. RKR-LASSO tends to be looser in selecting relevant 

variables, resulting in a simpler model, but the variables chosen by LASSO are only marginally 

significant. RKR-WLAD LASSO is stricter in variable selection and only selects significant 

variables but ignores several variables that have a small but significant impact on the model. 

For further research, it is necessary to apply other methods, such as combining other variable 

selection methods, such as Least Trimmed Squares (LTS), by minimizing the effect of outliers 

on parameter estimates with Elastic Net, which combines the LASSO method and the Ridge 

method to overcome the weaknesses of OLS and WLAD in dealing with outliers. A genetic 

algorithm is also necessary to find the shrinkage factor for the RKR method. Genetic algorithms 

can help find the optimal combination of factors to increase resistance to overfitting or 

underfitting and can improve model performance. 
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