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 Volatility is a key indicator in assessing risk when making investment decisions. In 
the world of financial markets, volatility reflects the degree to which the value of a 
financial asset fluctuates over a given period. The most common way to measure 
the future loss potential of an investment is through volatility. Focusing on the 
Realized GJR (RealGJR) volatility model, which consists of return, conditional 
volatility, and measurement equations, this study proposes the RealGJR-CJ model 
developed by decomposing the exogenous variable in the volatility equation of 
RealGJR into continuous C and discontinuous (jump) J variables. The 
decomposition of exogenous variables makes the RealGJR-CJ model follow realistic 
financial markets, where the asset volatility is a continuous process with some 
jump components. As an empirical illustration, the models are applied to an index 
in the Japanese stock market, namely Tokyo Stock Price Index, covering from 
January 2004 to December 2011. The observed exogenous variable in the volatility 
equation of RealGJR models is Realized Volatility (RV), which is calculated using 
intraday data with time intervals of 1 and 5 minutes. Adaptive Random Walk 
Metropolis method was employed in Markov Chain Monte Carlo algorithm to 
estimate the model parameters by updating the parameters during sampling based 
on previous samples from the chain. From the results of running the MCMC 
algorithm 20 times, the mean of the information criteria of competing models is 
significantly different based on standard deviation and the result suggests that the 
model with continuous and jump variables can improve the model without jump. 
The best fit model is provided by RealGJR-CJ with the adoption of 1-minute RV data. 
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A. INTRODUCTION  

Volatility in the financial market world has become a major concern for market players and 

investment observers. It reflects the fluctuation level or change in financial asset values during 

a certain period and is a key indicator of risk assessment when making investment decisions 

(Nugroho et al., 2018; Wang et al., 2022). Volatility is statistically the standard deviation of 

return (Sheraz & Nasir, 2021). Risk involves the possibility of losing money, whereas volatility 

describes how much and how quickly prices change. A higher volatility indicates that the asset 

value can vary drastically within a short period of time. An increase in price changes that also 

raises the probability of loss carries an increase in risk. In other words, the higher the volatility, 

the riskier the asset. 

http://journal.ummat.ac.id/index.php/jtam
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One of the popular and widely used models to understand and model volatility is the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, introduced by 

Bollerslev (1986). This model is the main basis for analyzing financial asset volatility and allows 

volatility to change over time, depending on past returns and volatility. With the availability of 

intra-daily data, the GARCH model has been developed into the GARCH-X model by Engle 

(2002), by incorporating realized measures (computed from high-frequency data) as 

exogenous variables. This model was further developed by Hansen et al. (2012) into the 

Realized GARCH (RealGARCH) model by by adding a measurement equation (for exogenous 

variable) that relates the observed realized measure to latent volatility. 

Meanwhile, Glosten et al. (1993) introduced the Glosten-Jagannathan-Runkle (GJR) model, 

a development of the GARCH model. Unlike the GARCH model, the GJR model allows volatility 

variance to have different responses to previous returns (Chen et al., 2019). Due to this 

capability, the GJR model becomes widely applied in analyzing financial asset volatility. As an 

example, Chen et al. (2019), Mostafa et al. (2021), and Nugroho et al. (2019, 2022) proved that 

the GJR model is superior to the GARCH model. Most recently, the GJR model was developed by 

Nugroho et al. (2024) into the Realized GJR (RealGJR) model. The model’s development follows 

the RealGARCH model from Hansen et al. (2012). Both models have been empirically proven to 

have better data matching than their constituent models. A different development for the GJR 

model was carried out by Zhang & Lan (2014) by decomposing the exogenous variable X in the 

GJR-X model (similar to GARCH-X) into continuous component C and jump component 𝐽, 

subsequently called GJR-CJ model. This model has improved the model's ability to measure and 

predict future volatility in the financial market compared to the GJR-X model. 

In this study, a new RealGJR model is developed by decomposing the exogenous variables 

into continuous and jump components, which is then called the RealGJR-CJ model. This model 

is more flexible and can be adapted to various types of financial data and different market 

characteristics. Additionally, the model is also capable of providing a clear interpretation of the 

mechanisms behind volatility formation, particularly the roles of continuous components and 

jumps that accommodate realistic financial markets. Therefore, this study contributes to extend 

the model of Zhang & Lan (2014) in the context of adding measurement equation and to extend 

the model of Nugroho et al. (2024) in the context of decomposing the exogenous variable into 

continuous and jump components. By combining the advantages of its constituent models, this 

study provides a deeper understanding of market volatility, providing a more powerful tool for 

risk management in the investment world. By analyzing the comparison between the GJR, GJR-

X, GJR-CJ, RealGJR, and RealGJR-CJ models, this study provides new insights about a more 

suitable model for practical applications in the real world. 

For the purpose of analysis, this study tests the models during the financial crisis period, 

causing the asset prices to jump sharply. Analyzing the stock market during a crisis period is a 

significant challenge for any open economy. Japan, as the country with the third-largest 

economy based on nominal GDP, has experienced significant impacts from the global financial 

crisis of 2008–2009 and the earthquake and tsunami on March 11, 2011, which caused the 

stock market to fluctuate more. Therefore, as an illustration, the observed data is the Tokyo 

Stock Price Index (known as TOPIX) of Japan for the period from January 2004 to December 

2011 during trading days. TOPIX is a stock index that measures the performance of large 
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companies listed on the Tokyo Stock Exchange. Since the aim of this study is to get an overview 

of volatility dynamics, the empirical study considers a simple Realized Volatiliy (RV) measure 

estimator, which is the square root of the sum of squared returns, with a reasonable choice of 

sampling frequency, i.e. 5-minute or 10-minute RV, following recent literature (see Floros et al. 

(2020); Gkillas et al. (2020)). 

Based on the model application on real data, the model parameters are estimated using the 

Adaptive Random Walk Metropolis (ARWM) method in the Markov Chain Monte Carlo (MCMC) 

algorithm. The practical implemetation of this method can be very simple, efficient, and 

computationally fast. The method can be said to be simple because it is able to generate samples 

of model parameters from complex posterior probability distributions such as in the context of 

the Realized GJR model. Nugroho et al. (2024) proved the efficiency of the method in estimating 

RealGJR models in terms of autocorrelation time. Meanwhile, Nugroho (2018) showed that the 

method is much faster than the other two MCMC methods. 

 

B. METHODOLOGY 

This study aims to describe the volatility characteristics of the financial time series by 

accounting for jump effects in intra-day data. A quantitative approach is taken through an 

empirical study by examining the volatility of stock indices using the GJR and RealGJR models. 

In addition, all calculations is implemented by an own Matlab code. 

1. Volatility Model 

A common thing to study in finance is the return on asset prices. Assuming that an asset is 

modeled as Geometric Brownian Motion (GBM), the return (defined as the profit or loss on an 

investment) is estimated using the difference in natural logarithms of the prices within 

successive periods. Under these assumptions, suppose 𝑃𝑡  and 𝑃𝑡−1 are the asset prices within 

successive periods, then the return at time period t is (Sinha, 2021): 

 

 𝑅𝑡 = ln𝑃𝑡 − ln𝑃𝑡−1. (1) 

 

The terms “log return” and “return” are often used interchangeably in the financial literature to 

refer to the same quantity. This study simply uses the term “return”. The return distribution for 

GBM can be expressed as: 

 

 𝑅𝑡~𝑁(0, 𝜎𝑡
2), (2) 

 

where 𝜎𝑡 is the return volatility. The GJR volatility model is one of the asymmetric model types 

of GARCH. The asymmetric nature indicates that positive or negative values of past returns 

(with the same absolute value) have different effects on current volatility (Caporin & Costola, 

2019). Meanwhile, the GJR-X(1,1) model was developed from the GJR(1,1) model by adding 

exogenous variable 𝑋 to the volatility dynamics equation: 

 

 𝜎𝑡
2 = 𝜔 + (𝛼1 + 𝛼2𝐼[𝑅𝑡−1<0])𝑅𝑡−1

2 + 𝛽𝜎𝑡−1
2 + 𝛾𝑋𝑡−1, (3) 
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where 𝐼[𝑦] is an indicator function that has the value of 1 when y is true and 0 otherwise. Note 

that if 𝛼2 = 0, it means that positive and negative returns, with the same absolute value, have 

the same effect on volatility, and the model is being reduced back to the GARCH model. By 

decomposing the exogenous variable X into continuous component 𝐶 and jump component 𝐽, a 

GJR-CJ(1,1) model was obtained, expressed as follows: 

 

 𝜎𝑡
2 = 𝜔 + (𝛼1 + 𝛼2𝐼[𝑅𝑡−1<0])𝑅𝑡−1

2 + 𝛽𝜎𝑡−1
2 + 𝛾1𝐶𝑡−1 + 𝛾2 𝐽𝑡−1 , (4) 

 

The continuous component 𝐶𝑡 and jump component 𝐽𝑡  were calculated using the following 

formulas (Degiannakis et al., 2022): 

 

 𝐶𝑡 = 𝐼[𝑍𝑡>∅𝑎](𝑋𝑡 − 𝑀𝑡),  (5) 

 

 𝐽𝑡 = 𝐼[𝑍𝑡≤∅𝑎]𝑋𝑡 + 𝐼[𝑍𝑡>∅𝑎]𝑀𝑡 , (6) 

 

where ∅𝛼 represents the quantile of the standard normal distribution function with confidence 

level 𝛼, and 𝑀𝑡 represents the Median Realized Volatility. The 𝑍𝑡  statistic is expressed by: 

 

 𝑍𝑡 = √𝑛
1−𝑀𝑡𝑋𝑡

−1

√((
𝜋

2
)
2
+𝜋−5)maks{1,𝑄𝑡𝑀𝑡

−2} 

, (7) 

 

where n represents the number of intra-daily observations and 𝑄𝑡 represents the Median 

Realized Tri-power Quarticity. For the exogenous variable X as a measure of Realized Volatility, 

the realized measures were calculated using the formula: 

 

 𝑋𝑡
2 = ∑ 𝑅𝑡,𝑖

2𝑚
𝑖=1 , (8) 

 

 𝑀𝑒𝑑𝑅𝑉𝑡 = 
𝜋

6−4√3+𝜋
(

𝑛

𝑛−2
) × ∑ 𝑀𝑒𝑑(|𝑅𝑡,𝑖−1||𝑅𝑡,𝑖||𝑅𝑡,𝑖+1|)

2𝑚−1
𝑖=2 ,  (9) 

 

 𝑀𝑒𝑑𝑅𝑇𝑄𝑡 =
3𝜋𝑛

9𝜋+72−52√3
(

𝑛

𝑛−2
) × ∑ 𝑀𝑒𝑑(|𝑅𝑡,𝑖−1||𝑅𝑡,𝑖||𝑅𝑡,𝑖+1|)

4𝑚−1
𝑖=2 , (10) 

 

where 𝑅𝑡,𝑖 is the return on day 𝑡 for the 𝑖-th observation. Similar to the RealGARCH model 

proposed by Hansen et al. (2012), which expresses the exogenous variable X as a normal 

process, the RealGJR(1,1) volatility equation is then obtained as follows (Nugroho et al., 2024): 

 

 𝜎𝑡
2 = 𝜔 + (𝛼1 + 𝛼2𝐼[𝑅𝑡−1<0])𝑅𝑡−1

2 + 𝛽𝜎𝑡−1
2 + γ𝑋𝑡−1, (11) 

 

 𝑋𝑡 = 𝜉 + 𝜑𝜎𝑡
2 + 𝜏1

𝑅𝑡

𝜎𝑡
+ 𝜏2 (

𝑅𝑡
2

𝜎𝑡
2 − 1) + 𝑢𝑡 ,   𝑢𝑡~𝑁(0, 𝑠𝑢

2). (12) 
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To ensure that 𝜎𝑡
2 is positive, the model requires sufficient conditions that 𝜔, 𝛼1, 𝛼1 + 𝛼2, 

𝛽, and 𝛾 are positive. Meanwhile, to ensure that the variance is stationary, the conditions are as 

follows (see Gerlach & Wang (2016)): 

 

 0 < 𝛼1 + 0.5𝛼2 + 𝛽 + 𝛾𝜑 < 1 dan 𝜔 + 𝛾𝜉 > 0. (13) 

 

By decomposing the exogenous variable X into continuous component 𝐶 and jump 

component 𝐽, this study proposes the RealGJR-CJ(1,1) model, expressed as follows: 

 

 𝜎𝑡
2 = 𝜔 + (𝛼1 + 𝛼2𝐼[𝑅𝑡−1<0])𝑅𝑡−1

2 + 𝛽𝜎𝑡−1
2 + 𝛾1𝐶𝑡−1 + 𝛾2 𝐽𝑡−1 , (14) 

 

𝐶𝑡 = 𝜉 + 𝜑𝜎𝑡
2 + 𝜏1

𝑅𝑡

𝜎𝑡
+ 𝜏2 (

𝑅𝑡
2

𝜎𝑡
2 − 1) + 𝑢𝑡 ,   𝑢𝑡~𝑁(0, 𝑠𝑢

2).   (15) 

 

2. Estimation Method 

The MCMC algorithm is a popular algorithm for dealing with simulations of varying 

distributions with high levels of complexity (Robert et al., 2018). The algorithm consists of two 

steps, namely the Markov chain generation and the Monte Carlo-based distribution properties 

approach. The Markov chain generation for parameter 𝜃 is based on the Bayes' rule: 

 

 𝑓(𝜃│data) = 𝐿(data│𝜃) × 𝑝(𝜃), (16) 

 

where 𝑓 represents the posterior distribution, 𝐿 represents the likelihood function, and 𝑝 

represents the prior distribution. One of the Markov chain generation methods for a model 

parameter is ARWM, introduced by Atchade & Rosenthal (2005). The algorithm of this method 

can be seen in detail in (Nugroho et al., 2023, 2024). Consider the RealGJR-CJ(1,1) model again. 

The total log-likelihood function for the data of return {𝑅𝑡}𝑡=1
𝑇  with conditional parameters 𝜃1 =

(𝜔, 𝛼1, 𝛼2, 𝛽, 𝛾1, 𝛾2) can be expressed in the form of: 

 

 ℒ(𝑅1, … , 𝑅𝑇 |𝜃1) = −
1

2
 ∑ [ln(2𝜋𝜎𝑡

2) +
𝑅𝑡

2

𝜎𝑡
2 
 ]𝑇

𝑡=1 .  (17) 

 

Meanwhile, the exogenous data {𝐶𝑡}𝑡=1
𝑇  with conditional parameters 𝜃2 = (𝜉, 𝜑, 𝜏1, 𝜏2, 𝜂) 

has a total log-likelihood function as follows: 

 

 ℒ(𝐶1, … , 𝐶𝑇 |𝜃2) = −
1

2
 ∑

[
 
 
 
ln(2𝜋𝜂2) +

(𝑋𝑡−𝜉−𝜑𝜎𝑡
2−𝜏1

𝑅𝑡
𝜎𝑡

−𝜏2(
𝑅𝑡

2

𝜎𝑡
2−1))

2

𝜂 
 

]
 
 
 

𝑇
𝑡=1 . (18) 

 

Thus, the total log-likelihood function of the RealGJR-CJ(1,1) model with parameter 𝜃 =

(𝜃1, 𝜃2) is expressed as follows: 

 

 ℒ(data|𝜃) = ℒ(𝑅1, … , 𝑅𝑇 |𝜃1) + ℒ(𝐶1, … , 𝐶𝑇 |𝜃2). (19) 
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To measure the efficiency of the estimation method, this study used Integrated 

Autocorrelation Time (IACT), defined as the number of MCMC iterations of the Markov chain 

required to obtain one independent sample. Smaller IACT values indicate that the method is 

more efficient and the convergence is faster, so the estimation is more accurate. See Nugroho 

et al. (2021) for the IACT value estimation procedure. Furthermore, to describe and summarize 

the uncertainty associated with the estimated parameters, it is important to find a confidence 

interval. This study used the Highest Posterior Density (HPD) interval, and the estimation 

procedure (Le et al. (2020)(Nugroho et al. (2023, 2024). 

 

3. Model Selection Criteria 

In selecting models involving data matching, this study used four criteria based on the log-

likelihood, namely Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), 

Adjusted BIC (ABIC), and Consistent AIC (CAIC). These four criteria are formulated as follows 

(Dziak et al., 2020): 

 

 𝐴𝐼𝐶 = −2ℒ + 2𝑘, (20) 

 

 𝐶𝐴𝐼𝐶 = −2ℒ + 𝑘(1 + ln𝑇), (21) 

 

 𝐵𝐼𝐶 = −2ℒ + 𝑘 ln 𝑇, (22) 

 

 𝐴𝐵𝐼𝐶 = −2ℒ + 𝑘 ln (
𝑇+2

24
), (23) 

 

where 𝑘 represents the number of parameters. In a set of models being compared, the best 

model is indicated by the criteria that have the smallest values compared to the other models. 

In the case of comparing two models, when more criteria of a model have lower values, it 

generally concludes that the model provides better fit. Meanwhile, when the number of criteria 

favoring each model is the same, both models are said to be competitive. 

 

C. RESULTS AND DISCUSSION 

1. Data Description 

The observational data used in this study are secondary data, namely the intra-daily data 

of the Japanese Tokyo Stock Price Index (TOPIX) from January 2004 to December 2011. The 

data consists of daily returns and daily exogenous data for 1-minute and 5-minute time 

intervals. Specifically, Figure 1 displays the plot of absolute returns as well as continuous and 

jump components for 1-minute time intervals. The plot shows high (extreme) fluctuation 

movements in certain periods, where the continuous and jump components follow the return 

movements. Even though the Ljung–Box normality test indicates rejection of the normal 

distribution for the data of returns and continuous components, this study assumed a normal 

distribution for both data as a simple framework. In addition, the main objective of this study 

is not to propose the best distribution, but rather to investigate whether decomposing the 

realized measure into continuous and jump components is going to improve the existing GJR-X 

and RealGJR models in terms of data fit, as shown in Figure 1. 
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Figure 1. Plot of Return |𝑅𝑡|, Continuous Component 𝐶𝑡, and Jump Component 𝐽𝑡  

in Daily TOPIX Data from 2004 to 2011 

 

2. Estimation Results 

First, the efficiency of the ARWM method was assessed, as indicated by the convergence of 

the Markov chain. The simplest way to examine the convergence is visually through a trace plot. 

A trace plot is a time series plot that shows the results of parameter estimation (Markov chain) 

at each iteration. According to Roy (2020), if the Markov chain is stuck at several consecutive 

iterations, meaning that too many estimation proposals are rejected sequentially, then the trace 

plot shows very slow convergence. 

This study ran the MCMC for 6000 iterations, of which the first 1000 iterations were not 

used in the Monte Carlo calculations to reduce non-stationarity caused by initial values. The 

initial values of the parameters were 𝜔 = 0.005, 𝛼1 = 0.05, 𝛼2 = 0.1, 𝛽 = 0.45, 𝛾1 = 1.5, 𝛾2 =

0.05, 𝜉 = 0.01, 𝜑 = 0.2, 𝜏1 = 0.15, 𝜏2 = 0.5,  and 𝜂2 = 0.2. To complement the Bayesian method, 

the common prior distribution for the model parameters was the normal distribution. The 

mean 0 and variance 1000 were used to provide estimated values over a wide range. 

Figure 2 presents the trace plot of specific estimated values for key parameters of the 

RealGJR-CJ model with the intra-daily data application with 1-minute time intervals. Visually, 

the trace plot shows that the estimated values of each parameter can be considered to be 

convergent or stationary. The estimated values fluctuate around the mean (red line). In other 

words, it indicates that the ARWM method is efficient in estimating the model. Fast convergence 

occurs in the estimation of all parameters, where the trace plot shows a dense visual during the 

iteration. The only exception is for the parameter 𝛾1, where there is a movement that is not 

dense around the mean during the iteration. This result is similar to Nugroho et al. (2024) that 

found a slow convergence for the parameters of the exogenous components of RV. This slow 

convergence is caused by the very low acceptance rate of sample proposals 𝛾1
∗ (generated by 

ARWM) in the MCMC algorithm. The parameter 𝛾1 may be highly correlated, so the ARWM 

method slow to explore the entire posterior distribution, as shown in Figure 2. 
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Figure 2. Trace Plot of Estimations for Key Parameters from the RealGJR-CJ  

Model that Applies High-frequency Data with 1-minute Time Intervals. 

 

Next, Figure 2 presents several summary statistics for key parameters, such as mean, 

Standard Deviation (SD), Lower Bound (LB), and Upper Bound (UB) values of the 95% HPD 

intervals, of the GJR-CJ and RealGJR-CJ models. In all cases, the LB and UB values for the 

parameter 𝛼2 are positive, meaning that 95% of the HPD intervals do not contain the value of 

0. It indicates that the asymmetric effect between returns and volatility is significantly positive, 

meaning that negative returns cause greater volatility compared to positive returns (of the 

same value). Similarly, 95% of the HPD intervals for parameters 𝜏1 do not contain the value of 

0. It indicates that there is an asymmetric effect between returns and continuous components. 

In the case of intra-daily data application with 1-minute intervals, the estimated values of 𝜏1 are 

negative, meaning that negative returns cause a larger continuous variable size. However, the 

estimated values of 𝜏1 in the intra-daily data application with 5-minute time intervals are 

positive. This means that the larger effect for the continuous variable size is caused by positive 

returns. Specifically, the effects caused by negative returns are called leverage (according to 

Black (1976) in Caporin & Costola (2019)).  

One important economic issue in daily stock return data is the degree to which conditional 

volatility is persistent or permanent. In essence, volatility persistence is the propensity for 

extended periods of high or low volatility to continue occurring. This implies that a market is 

likely to be volatile in the future if it goes through a period of high volatility, and vice versa. The 

persistence phenomenon in the GJR-CJ and RealGJR-CJ model is measured by the coefficient, 

respectively, 
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 𝛼1 + 0.5𝛼2 + 𝛽 (24) 

and 

 𝛼1 + 0.5𝛼2 + 𝛽 + 𝛾1𝜑. (25) 

 

In the case of TOPIX data, the GJR-CJ estimates reveal persistence coefficients of 0.8572 and 

0.8325 for 1-minute and 5-minute, respectively. Meanwhile, the estimated persistence 

coefficient in the RealGJR-CJ models is 0.8633 dan 0.8187 for 1-minute and 5-minute, 

respectively. The values close to 1 indicate a quite strong volatility persistence of the TOPIX 

index, although this is lower than the finding of Nugroho & Morimoto (2019) in the context of 

stochastic volatility. The implication is that investors must be prepared to face the possibility 

of high volatility periods, especially if the market has recently experienced such times. Trading 

strategies that rely on volatility, such as options, may be highly sensitive to the persistence of 

volatility in the TOPIX market. High persistence suggests that historical volatility data may 

serve as a good predictor for future volatility. In particular, 1-minute TOPIX data has higher 

persistence compared to 5-minute TOPIX data. This means that volatility shocks on 1-minute 

data tend to have a longer impact. This suggests investors and traders who use 1-minute data 

to be more cautious about volatility risk. 

Considering the continuous and jump coefficients, for instance, for the 1-minute data 

estimated by the RealGJR-CJ model, a unit increase in the RV comes from the continuous 

component implies an average increase in volatility on the following day of 1.6838 for days 

when there was no jump on the previous day. Meanwhile, for days in which part of the RV comes 

from the jump component, the increase in volatility on the following day is only 0.0206 times 

the jump component. In other words, if volatility is entirely caused by jumps, then this only 

leads to a slight increase for the following day’s volatility. This indicates that although there are 

events that cause jumps in volatility, the impact is relatively short-lived and quickly subsides 

within a 1-minute timeframe. Similary result is found for the 5-minute-based GJR-CJ. In this 

case, market participants for TOPIX should be more aware of the rapid and frequent changes in 

volatility, but the impact tends to be temporary. In contrast, the 1-minute-based GJR-CJ and 5-

minute-based RealGJR-CJ models result the large relative increase about 0.4. In this case, 

market participants for TOPIX need to increase their awareness of events that could potentially 

trigger jumps in volatility, as shown in Table 1. 

 

Table 1. Estimation Results for Key Parameters  

Statistics 
 Parameter 

𝜶𝟏 𝜶𝟐 𝜷 𝜸𝟏 𝜸𝟐 𝝉𝟏 𝝉𝟐 
GJR-CJ with data is sampled at a 1-minute frequency 

Mean 0.0169 0.2369 0.7219 0.1278 0.4564 - - 
SD 0.0132 0.0386 0.0376 0.0814 0.1686 - - 
LB 0.0000 0.1650 0.6440 0.000 0.1151 - - 
UB 0.0411 0.3097 0.7969 0.2821 0.7992 - - 

GJR-CJ with data is sampled at a 5-minute frequency 
Mean 0.0127 0.2460 0.6968 0.3733 0.0838 - - 

SD 0.0108 0.0392 0.0470 0.0942 0.0756 - - 
LB 0.0000 0.1721 0.6043 0.1966 0.0001 - - 
UB 0.0358 0.3185 0.8010 0.5512 0.2362 - - 

RealGJR-CJ with data is sampled at a 1-minute frequency 
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Statistics 
 Parameter 

𝜶𝟏 𝜶𝟐 𝜷 𝜸𝟏 𝜸𝟐 𝝉𝟏 𝝉𝟐 
Mean 0.0027 0.0291 0.4087 1.6838 0.0206 −0.0438 0.0184 

SD 0.0020 0.0032 0.0257 0.0807 0.0180 0.0030 0.0018 
LB 0.0000 0.0235 0.3548 1.5073 0.0000 −0.0498 0.0150 
UB 0.0064 0.0358 0.4544 1.8210 0.0564 −0.0378 0.0218 

RealGJR-CJ with data is sampled at a 5-minute frequency 
Rata-rata 0.0007 0.0346 0.4580 1.0976 0.3836 −0.0583 0.0533 

SB 0.0007 0.0034 0.0240 0.0631 0.0780 0.0048 0.0032 
BB 0.0000 0.0278 0.4124 0.9775 0.2432 −0.0683 0.0477 
BA 0.0019 0.0415 0.5037 1.2154 0.5442 −0.0498 0.0601 

 

3. Model Selection 

Table 2 presents the log-likelihood estimates (means and standard deviations in brackets) 

along with the four criteria for the GJR-X, GJR-CJ, RealGJR, and RealGJR-CJ models for three intra-

daily cases. For each case the value of the log-likelihood is evaluated by averaging 20 runs of 

the MCMC. The standard deviations of the log-likelihood and information criteria estimates are 

smaller than 0.9 in all cases. The relatively small standard errors in all models indicate that the 

estimation results from 20 runs of the MCMC are quite stable. This means that the models are 

quite consistent in providing similar results. It can be seen that, in each data case, the four 

models have significantly different information criteria. This is convincing because there is no 

overlap of the confidence intervals between the criterion values of the different models. 

The results of the four criteria in all cases show that the models with continuous and jump 

components outperform the models without decomposition, as indicated by the smaller criteria 

values. These results are consistent with the results of by Zhang & Lan (2014) in the context of 

the GJR and EGARCH models. In addition, in all data cases, the models that treat the exogenous 

component as a dynamic process have a better fit. These results demonstrate the ability of 

models with more complex structures to capture more complex data features. In the case of 

intra-daily data application, all four criteria support the intra-daily data with 1-minute time 

intervals to provide a better model. Therefore, overall, the RealGJR-CJ model that applies 1-

minute RV data provides the best fit model for the TOPIX data. As an implication, the application 

of RealGJR-CJ model with 1-minute intra-day data is more reasonable in measuring volatility in 

financial practices such as financial risk measures, financial contract pricing, and asset 

allocation, as shown in Table 2. 

 

Tabel 2. Average log-likelihood and criteria values with standard deviations (in brackets) 

Model LL AIC ABIC BIC CAIC 
Data is sampled at a 1-minute frequency 

GJR-X 
−3147.7 

(0.23) 
6305.5 
(0.46) 

6322.4 
(0.46) 

6333.2 
(0.46) 

6338.2 
(0.46) 

GJR-CJ 
−3136.9 

(0.22) 
6285.8 
(0.44) 

6306.3 
(0.44) 

6319.3 
(0.44) 

6325.3 
(0.44) 

RealGJR 
−2499.2 

(0.22) 
5018,5 
(0.43) 

5052.5 
(0.43) 

5074.3 
(0.43) 

5084.3 
(0.43) 

RealGJR-CJ 
−1908.3 

(0.29) 
3838.7 
(0.58) 

3876.1 
(0.58) 

3900.1 
(0.58) 

3911.1 
(0.58) 

Data is sampled at a 5-minute frequency 
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Model LL AIC ABIC BIC CAIC 

GJR-X 
−3144.0 

(0.21) 
6298.1 
(0.41) 

6315.1 
(0.41) 

6326.0 
(0.41) 

6331.0 
(0.41) 

GJR-CJ 
−3129.4 

(0.14) 
6270.9 
(0.27) 

6291.3 
(0.27) 

6304.3 
(0.27) 

6310.3 
(0.27) 

RealGJR 
−2904.3 

(0.42) 
5828.6 
(0.85) 

5862.7 
(0.85) 

5884.4 
(0.85) 

5894.4 
(0.85) 

RealGJR-CJ 
−2792.2 

(0.26) 
5606.4 
(0.51) 

5643.9 
(0.51) 

5667.8 
(0.51) 

5678.8 
(0.51) 

 

Finally, notice that since the objective of this study is not to propose the best volatility 

model, but rather to investigate whether decomposing the exogenous variable RV in the 

conditional volatility process into continuous and jump components will improve on the 

existing GJR models in terms of data fit, inclusion of a non-Normal distribution is not necessary 

to answer the question. However, in addition, the assumption of non-normality in models can 

certainly have a significant impact on the estimation results and validity of the model. A 

misspecified distribution can lead to a poor fit, even if the volatility structure is correct. If the 

true distribution of the return errors is known or can be estimated, an alternative distribution 

can be used in the model to improve the accuracy of the fit and forecast.  However, this study 

will not provide any empirical results of any non-Normal assumption because it is believed that 

the purpose of this study can be carried out without the empirical results of non-Normal 

assumption for return errors. 

 

D. CONCLUSION AND SUGGESTION 

This study proposes the RealGJR-CJ model constructed from the Realized GJR model by 

decomposing the exogenous components into continuous and jump components. As an 

empirical study, the model was applied to the TOPIX stock index data from 2004 to 2011 with 

1 and 5-minute time intervals. The ARWM method was applied in the MCMC algorithm to 

estimate the model. The results show the efficiency of the ARWM method visually through a 

trace plot. Based on the empirical results from the comparison between the GJR-X, GJR-CJ, and 

RealGJR models, the four selection criteria indicate the superiority of models with continuous 

and jump components. In addition, in some cases, the jump component coefficient show a 

significant effect on volatility due to jumps in the previous time period. Therefore, this study 

recommends the decomposition of the exogenous data into continuous and jump components. 

In particular, the use of intra-daily data with 1-minute time intervals is more recommended 

than intra-daily data with 5-minute time intervals. 

It would be interesting to investigate whether the empirical performance of the proposed 

model can be improved by incorporating recent (return) information in the volatility process, 

such as the Real-Time GARCH model which has better fitting and forecasting than GARCH 

models. In addition, decomposition in recent models, such as the GARCH@CARR model which 

has better forecasting than the Realized GARCH model, would affirm the power of continuous 

and jump components. These suggestions can be used for further research. 
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