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 This study aims to investigate a fractional-order mathematical model of COVID-19 
transmission using the Caputo derivative definition which suitable to 
epidemiological cases by its advantage to explain memory effects. The model 
incorporates compartments for asymptomatic infections and includes a 
vaccination strategy aimed at mitigating the spread of COVID-19. We derived the 
disease-free and endemic equilibrium points for the fractional model and 
computed the basic reproduction number (𝑅0) using the Next-generation Matrix 
method. Additionally, we conducted sensitivity analyses of parameters affecting 𝑅0. 
The stability of the fractional model requires specific conditions to be met by the 
model parameters. To approximate active COVID-19 cases in Indonesia, we utilized 
the Explicit Grunwald-Letnikov method which well fit with Caputo fractional 
differential system. Simulation results demonstrate that the fractional-order model 
offers a flexible approach for modelling active COVID-19 cases in these regions. We 

found that fractional order for active cases COVID-19 in Indonesia is 𝛼 = 0.9856. 
The simulation showed that decreasing the vaccination rate and the efficacy of the 
vaccine would affect the reduction of COVID-19 transmission. 

Keywords: 
SEIAR-V Model;  
COVID-19 Model;  
Basic Reproduction 
Number;  
Fractional Model;  
Grunwald-Letnikov 
Method. 
 

 

 
 

 
https://doi.org/10.31764/jtam.v8i4.24711  

 
This is an open access article under the CC–BY-SA license 
 

 
——————————      —————————— 

 
 

A. INTRODUCTION  

Mathematical models of COVID-19 have garnered significant interest from researchers 

aiming to understand the mechanisms of its spread among people (Aldila et al., 2020; Annas et 

al., 2020; Iboi et al., 2020; Mwalili et al., 2020). Essentially, the mathematical models used to 

describe the dynamics of disease transmission are extensions of the basic SIR (Susceptible, 

Infected, and Recovered) and SEIR (Susceptible, Exposed, Infected, and Recovered) model. In 

some disease cases, the model is further developed by expanding the subpopulation categories 

considered. One such development involves incorporating the asymptomatic (A) 

subpopulation, resulting in the SEIAR model. Additionally, the inclusion of parameters such as 

quarantine, social distancing, and vaccination is applied to examine the effects of these 

parameter changes on the spread of a disease within a population.  

Chávez et al. (2017) employed the SIR model and investigated Dengue transmission due to 

seasonal effects. Moreover, Aldila et al. (2020), the authors focused on social distancing and 
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rapid testing. They employed the SEIAR model and modified the asymptomatic compartment 

into two subclasses: asymptomatic undetected and asymptomatic detected.  

Most models employ classical approaches to describe the dynamics of disease transmission. 

Classical models operate using differential and integral operators as defined in calculus studies. 

Numerous studies have demonstrated that classical models effectively explain the behaviour 

and spread of various types of diseases. However, in some cases, classical models have 

limitations that prevent them from capturing phenomena occurring in the dynamics of disease 

spread within a population. This phenomenon is referred to as the memory effect (Barros et al., 

2021; Rihan, 2013). The memory effect is a phenomenon where a current outcome is influenced 

not only by present events but also by past events (memory). One common type of memory 

effect in epidemiology is hysteresis. In the case of hysteresis, the current events within a system 

are influenced not only by the present conditions but also by the conditions that occurred in 

the past. 

The hysteresis occurs within an individual's self-defence mechanism when attacked by a 

disease. The self-defence mechanism is a critical factor in disease spread. The hysteresis effect 

provides the body with a memory of information related to the disease, enabling the body to 

recognize and combat the pathogen more effectively upon re-infection. Studies have shown that 

the memory effect observed in epidemiological issues can be explained using fractional 

mathematical models (Pimenov et al., 2012). As is well known, fractional calculus and fractional 

differential equations have recently been studied in various fields, including mathematics, 

physics, engineering, epidemiology, and other applied sciences(Bas et al., 2019; Gómez-Aguilar 

et al., 2013; Müller et al., 2011; Ndaïrou et al., 2021; Ozalp & Demirci, 2011; Saad, 2021; Tang, 

2020). In line with the focus of this work, fractional mathematical models have been effectively 

used to describe the spread of COVID-19 cases in Wuhan, Spain, and Portugal, as proposed in 

(Ndaïrou et al., 2021). For each country, the fractional model provided a better approximation 

to real data with different values of the fractional order in Spain 𝛼 = 0.85, Portugal 𝛼 = 0.75. 

We propose a modified SEIAR mathematical model of COVID-19 by incorporating 

vaccination and the fractional order in the Caputo derivative. We compute the disease-free 

equilibrium and endemic equilibrium. Additionally, we study the local stability of the 

equilibrium points and determine the basic reproduction number (𝑅0). We provide parameter 

estimation using ‘fmincon’ optimization tools in MATLAB which based on real data of COVID-

19 cases in Indonesia. 

 

B. METHODS  

In this section, we present the formulation of a COVID-19 spread model. The model 

development incorporates a vaccination scheme to account for active immunity in individuals, 

aiming to reduce the spread of COVID-19. This study also aims to develop a mathematical model 

using fractional calculus to analyse the effects of fractional order and vaccination on the spread 

of COVID-19. To achieve these objectives, we construct a model dividing the total population 

into six compartments: 𝑆𝑢(𝑡) represents the number of unvaccinated susceptible individuals at 

time 𝑡 ; 𝑆𝑣(𝑡)  denotes the number of vaccinated individuals at time 𝑡 ; 𝐸(𝑡)  represents the 

number of exposed individuals at time 𝑡; 𝐴(𝑡) represents the number of asymptomatic infected 

individuals at time 𝑡; 𝐼(𝑡) represents the number of symptomatic infected individuals at time 𝑡; 
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and 𝑅(𝑡) represents the number of recovered individuals at time 𝑡. The interactions between 

these compartments are illustrated in Figure 1. It is assumed that everyone in the system has 

the same probability of being infected by COVID-19 and that there is no migration into or out 

of the system, keeping the total population constant. 

The number of unvaccinated susceptible 𝑆𝑢 naturally increase by natural recruitment with 

the rate Λ individual/time unit. Number of unvaccinated susceptible decrease through some 

factors as follows. After vaccination, individual who get vaccinated moves out from this 

compartment to susceptible vaccinated 𝑆𝑣  with the rate 𝜃  per time unit. The decrease of 

unvaccinated susceptible is also caused from natural death process with rate 𝜇 per time unit. 

As we know, the COVID-19 can infect by human-to-human transmission. It assumed that the 

susceptible human can be infected by COVID-19 when they are in contact with individual who 

is being infected with symptoms or without symptoms. After it occurs, the susceptible 

unvaccinated will move to the exposed compartment with rate 𝛽𝜙𝑆𝑢
𝐼

𝑁
  and 𝛽𝑆𝑢

𝐴

𝑁
 where 𝛽 per 

individual time unit is human to human transmission rate. 𝜙 is proportion of infected individual 

can spread the COVID-19 to susceptible humans. 

Number of vaccinated susceptible 𝑆𝑣  increase when unvaccinated individual being 

vaccinated. When someone gets a vaccination, it assumed that they may be still infected COVID-

19 but the risk of human-to human transmission decrease by (1 − 𝜀), where 𝜀 is efficacy of 

vaccine. The high efficacy of vaccine will decrease the transmission of infected people to 

susceptible.  So that, the number of vaccinated susceptible decrease when it moves out into 

exposed compartment after having a contact to infected people with rate 𝛽𝜙(1 − 𝜀)𝑆𝑢
𝐼

𝑁
 and 

𝛽(1 − 𝜀)𝑆𝑢
𝐴

𝑁
. Vaccinated susceptible also decrease by natural death with rate 𝜇 per time unit.  

Number of exposed people (𝐸) increase when people with infectious have a contact with 

unvaccinated susceptible and vaccinated susceptible. In this phase, it assumed that individual 

is in incubation period. The virus is in progress to infect human before it shows the symptoms 

or not. So that, exposed individual cannot infect others yet. Number of exposed people decrease 

by death rate 𝜇  and individual who move into symptomatic infectious 𝐼  when they have 

symptoms of COVID-19 and into asymptomatic infectious 𝐴 when they get no symptom after 

the incubation period with rate �̃� per time unit.   

The infectious compartment is divided into two subclasses, symptomatic (𝐼)  and 

asymptomatic infectious (𝐴). When exposed people complete the incubation period and show 

the symptoms of COVID-19 such as fever, cough, or other mild symptoms then they move to 

symptomatic infectious (𝐼), but when they have no symptoms then they move to asymptomatic 

infectious (𝐴). Symptomatic or asymptomatic individual increase by people that move from 

exposed to infectious with rate �̃�  but in different proportion. 𝑝 is denoted as proportion of 

exposed individuals who have progressed into Asymptomatic individual and (1 − 𝑝)  is 

proportion of exposed individuals who have progressed into symptomatic individual. These 

two compartments decrease by natural death 𝜇 , �̃� is the death rate caused by COVID-19 and 

movement to recovered population by recovery rate 𝛾1̃ and 𝛾2̃  respectively per time unit.  

Recovered individual 𝑅 is people who test negative COVID-19 after being infectious. Recovered 

individual increase by recovered individual from asymptomatic infectious and symptomatic 

infectious. Recovered population decrease by natural death with rate 𝜇, as shown in Figure 1. 
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Figure 1. Transmission diagram of COVID-19 spread considering vaccination 

 

Using diagram in Figure 1 and the assumption, the model of COVID-19 spread considering 

vaccination is expressed as the following equation. 

  
𝑑𝑆𝑢

𝑑𝑡
= 𝜇𝑁 − 𝜇𝑆𝑢 − 𝜃𝑆𝑢 − 𝛽𝑆𝑢

𝜙𝐼

𝑁
− 𝛽𝑆𝑢

𝐴

𝑁
, 

𝑑𝑆𝑣

𝑑𝑡
= �̃�𝑆𝑢 − 𝜇𝑆𝑣 − 𝛽(1 − 𝜀)𝑆𝑣

𝜙𝐼

𝑁
− 𝛽(1 − 𝜀)𝑆𝑣

𝐴

𝑁
, 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝑢

𝜙𝐼

𝑁
+ 𝛽𝑆𝑢

𝐴

𝑁
+ 𝛽(1 − 𝜀)𝑆𝑣

𝜙𝐼

𝑁
+ 𝛽(1 − 𝜀)𝑆𝑣

𝐴

𝑁
− 𝜇𝐸 − �̃�𝐸, 

𝑑𝐴

𝑑𝑡
= 𝑝�̃�𝐸 − (𝜇 + �̃�)𝐴 − 𝛾1̃𝐴, 

𝑑𝐼

𝑑𝑡
= (1 − 𝑝)�̃�𝐸 − (𝜇 + �̃�)𝐼 − 𝛾2̃𝐼, 

𝑑𝑅

𝑑𝑡
= 𝛾2̃𝐼 + 𝛾1̃𝐴 − �̃�𝑅. 

(1) 

 

Here 𝑁 is total human population. Initial value for each variable is assumed as follow: 

  

𝑆 𝑢
(0) = 𝑆𝑢0, 𝑆𝑣(0) = 𝑆𝑣0, 𝐸(0) = 𝐸0, 𝐴(0) = 𝐴0, 𝐼(0) = 𝐼0, 𝑅(0) = 𝑅0, 

 

where 𝑆𝑢0, 𝑆𝑣0, 𝐸0, 𝐴0, 𝐼0, 𝑅0 ≥ 0. We assume that all parameters are positive. The parameters in 

model (1) are described in Table 1.   
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Table 1. Parameter in Model 𝑆𝑢𝑆𝑣𝐸𝐼𝐴𝑅 COVID-19 in model (1). 

Parameters Description 

𝜃 Vaccination Rate 

𝛽 Contact transmission rate  

𝜙 The proportion of symptomatic individuals transmitting the disease to susceptible 
individuals (0 ≤ 𝜙 ≤ 1) 

𝜇 Natural birth rate/natural death rate 

𝜀 Vaccine efficacy COVID-19 (0 ≤ 𝜀 ≤ 1) 

�̃� Incubation period from E to I 

�̃� Death rate caused by COVID-19 

𝑝 The proportion of exposed individuals who are asymptomatically infected (0 ≤
𝑝 ≤ 1) 

𝛾1̃ Recovery rate of asymptomatic 

𝛾2̃ Recovery rate of symptomatic 

 

System (1) is expressed by first order ordinary differential equation system. In our purpose, 

the derivative of (1) will be defined as fractional derivative of fractional order 𝛼 . We use a 

Caputo fractional derivative. Let us recall the definition of Caputo derivative: For an absolute 

continuous function 𝑓: [0,∞) → ℝ the Caputo fractional derivative for order 𝛼 > 0 is given by 

(Petráš, 2011). 

  

𝐷𝑡
𝛼

0
𝐶 𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝑥)𝑛−𝛼−1

𝑡

0

𝑓(𝑛)(𝑥) 𝑑𝑥, 

 

where 𝛼 ∈ (𝑛 − 1, 𝑛), 𝑛 ∈ ℕ.  System with integer order (1) is generalized using Caputo 

fractional order system. Since the left side of (1) use the fractional derivative which have 

dimension 𝑡𝑖𝑚𝑒−𝛼(Bernal et al. , 2012;  Carvalho & Moreira-Pinto, 2021) , it may cause the 

dimensional inconsistency. Thus, we define adjustments for several parameters to provide the 

consistency of dimension as follow: 

 

𝜇 = 𝜇𝛼;  𝜃 = �̃�𝛼; 𝛽 = 𝛽𝛼;  𝜎 = �̃�𝛼;  𝑑 = �̃�𝛼; 𝛾1 = 𝛾1̃
𝛼; 𝛾2 = 𝛾2̃

𝛼 

 

Therefore, we get Caputo fractional order systems 

  

𝐷𝑡
𝛼

0
𝐶 𝑆𝑢(𝑡) = Λ − 𝜇𝑆𝑢 − 𝜃𝑆𝑢 − 𝛽𝑆𝑢

𝜙𝐼

𝑁
− 𝛽𝑆𝑢

𝐴

𝑁
,  

𝐷𝑡
𝛼

0
𝐶 𝑆𝑣(𝑡) = 𝜃𝑆𝑢 − 𝜇𝑆𝑣 − 𝛽(1 − 𝜀)𝑆𝑣

𝜙𝐼

𝑁
− 𝛽(1 − 𝜀)𝑆𝑣

𝐴

𝑁
, 

𝐷𝑡
𝛼

0
𝐶 𝐸(𝑡) = 𝛽𝑆𝑢

𝜙𝐼

𝑁
+ 𝛽𝑆𝑢

𝐴

𝑁
+ 𝛽(1 − 𝜀)𝑆𝑣

𝜙𝐼

𝑁
+ 𝛽(1 − 𝜀)𝑆𝑣

𝐴

𝑁
− 𝜇𝐸 − 𝜎𝐸, 

𝐷𝑡
𝛼

0
𝐶 𝐴(𝑡) = 𝑝𝜎𝐸 − (𝜇 + 𝑑)𝐴 − 𝛾1𝐴, 

𝐷𝑡
𝛼

0
𝐶 𝐼(𝑡) = (1 − 𝑝)𝜎𝐸 − (𝜇 + 𝑑)𝐼 − 𝛾2𝐼 

𝐷𝑡
𝛼

0
𝐶 𝑅(𝑡) = 𝛾2𝐼 + 𝛾1𝐴 − 𝜇𝑅. 

 

(2) 
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Theorem 1. All solution of fractional order system (2), which belong to ℝ+
6  are uniformly 

bounded and non-negative.   

 

Proof:  By following the approach of (Belgaid et al., 2021), we define 𝑁(𝑡) = 𝑆𝑢(𝑡) + 𝑆𝑣(𝑡) +

𝐸(𝑡) + 𝐼(𝑡) + 𝐴(𝑡) + 𝑅(𝑡). Thus, we get 

 

𝐷𝑡
𝛼

0
𝐶 𝑁(𝑡) = 𝐷𝑡

𝛼
0
𝐶 𝑆𝑢(𝑡) + 𝐷𝑡

𝛼
0
𝐶 𝑆𝑣(𝑡) + 𝐷𝑡

𝛼
0
𝐶 𝐸(𝑡) + 𝐷𝑡

𝛼
0
𝐶 𝐴(𝑡) + 𝐷𝑡

𝛼
0
𝐶 𝐼(𝑡) + 𝐷𝑡

𝛼
0
𝐶 𝑅(𝑡), 

= Λ − 𝜇𝑁 − 𝑑(𝐼 + 𝐴) 

≤ Λ − 𝜇𝑁 

 

Using standard comparison theorem for fractional system [23] we achieve that 

 

𝑁(𝑡) ≤ (𝑁(0) −
Λ

𝜇
)𝐸𝛼(−𝜇𝑡𝛼) +

Λ

𝜇
 

 

where 𝐸𝛼  is Mittag-Leffler function. Since 𝐸𝛼(−𝜇𝑡𝛼) → 0  for 𝑡 → ∞  (Choi et al., 2014), then 

𝑁(𝑡) ≤
Λ

𝜇
. Therefore, all solution of fractional system (2) that belong in ℝ+

6  are still in region Κ, 

where  

Κ = {(𝑆𝑢, 𝑆𝑣 , 𝐸, 𝐴, 𝐼, 𝑅) ∈ ℝ+
6 : 𝑁(𝑡) ≤

Λ

𝜇
}. 

 

Additionally, we show that solutions of systems (2) are non-negative. From the first equation 

of system (2) we have 

 

𝐷𝑡
𝛼

0
𝐶 𝑆𝑢(𝑡) = Λ − 𝜇𝑆𝑢 − 𝜃𝑆𝑢 − 𝛽𝑆𝑢

𝜙𝐼

𝑁
− 𝛽𝑆𝑢

𝐴

𝑁
 

≥ − [𝜇 + 𝜃 + 𝛽
𝜙𝐼

𝑁
+ 𝛽

𝐴

𝑁
] 𝑆𝑢 

≥ −[𝜇 + 𝜃 + 𝛽(1 + 𝜙)]𝑆𝑢 

≥ −𝐶1𝑆𝑢 

 

with 𝐶1 = 𝜇 + 𝜃 + 𝛽(1 + 𝜙). According to standard comparison theorem for fractional order 

(Askar et al., 2021) and positivity properties of Mittag Leffler function (Belgaid et al., 2021). 

   

𝑆𝑢 ≥ 𝑆𝑢(0)𝐸𝛼(−𝐶1𝑡
𝛼) ⇒ 𝑆𝑢 ≥ 0.  

 

Furthermore, we can prove all equations in System (2) are non-negative in the same way 

 

𝑆𝑣 ≥ 𝑆𝑣(0)𝐸𝛼(−𝐶2𝑡
𝛼) ⇒ 𝑆𝑣 ≥ 0 

𝐸 ≥ 𝐸(0)𝐸𝛼(−𝐶3𝑡
𝛼) ⇒ 𝐸 ≥ 0. 

𝐴 ≥ 𝐴(0)𝐸𝛼(−𝐶4𝑡
𝛼) ⇒ 𝐴 ≥ 0. 

𝐼 ≥ 𝐼(0)𝐸𝛼(−𝐶5𝑡
𝛼) ⇒ 𝐼 ≥ 0. 

𝑅 ≥ 𝑅(0)𝐸𝛼(−𝜇𝑡𝛼) ⇒ 𝑅 ≥ 0. 
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Where 𝐶2, 𝐶3, 𝐶4, 𝐶5 ≥ 0. It has been proved the solution of systems (2) are non-negative. ∎ 

To simplify the model, we introduce some new dimensionless variables, i.e. 

 

𝑠𝑢(𝑡) =
𝑆𝑢(𝑡)

𝑁
, 𝑠𝑣(𝑡) =

𝑆𝑣(𝑡)

𝑁
, 𝑒(𝑡) =

𝐸(𝑡)

𝑁
, 𝑖(𝑡) =

𝐼(𝑡)

𝑁
, 𝑎(𝑡) =

𝐴(𝑡)

𝑁
, 𝑟(𝑡) =

𝑅(𝑡)

𝑁
 

(3) 

 

The variables (3) provide proportion of human population. If dimensionless variables (3) are 

substituted to (2) then we formulate a new model with dimensionless variable 

  

𝐷𝑡
𝛼

0
𝐶 𝑠𝑢(𝑡) = 𝜇 − 𝜇𝑠𝑢 − 𝜃𝑠𝑢 − 𝛽𝜙𝑠𝑢𝑖 − 𝛽𝑠𝑢𝑎, 

𝐷𝑡
𝛼

0
𝐶 𝑠𝑣(𝑡) = 𝜃𝑠𝑢 − 𝜇𝑠𝑣 − 𝛽𝜙(1 − 𝜀)𝑠𝑣𝑖 − 𝛽(1 − 𝜀)𝑠𝑣𝑎, 

𝐷𝑡
𝛼

0
𝐶 𝑒(𝑡) = 𝛽𝜙𝑠𝑢𝑖 + 𝛽𝑠𝑢𝑎 + 𝛽𝜙(1 − 𝜀)𝑠𝑣𝑖 + 𝛽(1 − 𝜀)𝑠𝑣𝑎 − 𝜇𝑒 − 𝜎𝑒, 

𝐷𝑡
𝛼

0
𝐶 𝑎(𝑡) = 𝑝𝜎𝑒 − (𝜇 + 𝑑)𝑎 − 𝛾1𝑎, 

𝐷𝑡
𝛼

0
𝐶 𝑖(𝑡) = (1 − 𝑝)𝜎𝑒 − (𝜇 + 𝑑)𝑖 − 𝛾2𝑖, 

𝐷𝑡
𝛼

0
𝐶 𝑟(𝑡) = 𝛾2𝑖 + 𝛾1𝑎 − 𝜇𝑟, 

(4) 

 

where 𝑠𝑢(0) = 𝑠𝑢0, 𝑠𝑣(0) = 𝑠𝑣0, 𝑒(0) = 𝑒0, 𝑎(0) = 𝑎0, 𝑖(0) = 𝑖0, 𝑟(0) = 𝑟0. 

 

C. RESULT AND DISCUSSION 

1. Disease free and Endemic Equilibrium Point 

The equilibrium of fractional model is obtained when (Choi et al., 2014; Keshtkar et al., 

2014). 

   

 𝐷𝑡
𝛼

0
𝐶 (𝑠𝑢) = 0, 𝐷𝑡

𝛼
0
𝐶 (𝑠𝑣) = 0, 𝐷𝑡

𝛼
0
𝐶 (𝑒) = 0, 𝐷𝑡

𝛼
0
𝐶 (𝑎) = 0, 𝐷𝑡

𝛼
0
𝐶 (𝑖) = 0, 𝐷𝑡

𝛼
0
𝐶 (𝑟) = 0. 

  

We obtained the disease free-equilibrium point of the model, i.e. 

 

 𝑋0 = (𝑠𝑢, 𝑠𝑣 , 𝑒, 𝑖, 𝑎, 𝑟) = (
𝜇

𝜇+𝜃
,

𝜃

𝜇+𝜃
, 0,0,0,0). 

  

The Endemic equilibrium point occurs when 𝑎 ≠ 0  and 𝑖 ≠ 0 . It means that there are 

infected individuals who can spread COVID-19 to others. Endemic point for systems (4) is 

expressed as: 

  

 𝑋1 = (𝑠𝑢
∗, 𝑠𝑣

∗, 𝑒∗, 𝑎∗, 𝑖∗, 𝑟∗) 

with 

 𝑠𝑢
∗ =

𝜇

𝜇+𝜃+𝑐0𝑖∗
, 

𝑠𝑣
∗ =

𝜃𝜇

(𝜇+(1−𝜀)𝑐0𝑖∗)(𝜇+𝜃+𝑐0𝑖∗)
, 

 𝑒∗ =
(𝜇+𝑑+𝛾2)

(1−𝑝)𝜎
𝑖∗, 

 𝑎∗ =
𝑝(𝜇+𝑑+𝛾2)

(1−𝑝)(𝜇+𝑑+𝛾1)
𝑖∗, 

 𝑟∗ = (
𝑝𝛾1(𝜇+𝑑+𝛾2)+(1−𝑝)𝛾2(𝜇+𝑑+𝛾1)

𝜇(1−𝑝)(𝜇+𝑑+𝛾1)
) 𝑖∗. 
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𝑠𝑢
∗, 𝑠𝑣

∗, 𝑒∗, 𝑎∗, 𝑖∗, 𝑟∗ expressed as a function of 𝑖∗, whereas 𝑖∗ is taken from positive roots of the 

polynomial:  

 

 𝑃(𝐼) = 𝐴𝑖∗3 + 𝐵𝑖∗2 + 𝐶𝑖∗ + 𝐷 = 0, 

with 

 𝐴 = −𝑣𝛿𝑐0
2, 

 𝐵 = 𝜇𝛿𝑐0
2 − 𝑣(𝜇𝛿 + 𝜃𝛿 + 𝜇)𝑐0, 

 𝐶 = 𝜇2𝑐0 − 𝑣(𝜇2 + 𝜇𝜃), 

 𝐷 = 𝛿𝜇𝜃𝑐0. 

  

here  𝑣 =
(𝜇+𝜎)(𝜇+𝑑+𝛾2)

(1−𝑝)𝜎
, 𝛿 = (1 − 𝜀), 𝑐0 = 

𝛽((1−𝑝)𝜙(𝜇+𝑑+𝛾1)+𝑝(𝜇+𝑑+𝛾2))

(1−𝑝)(𝜇+𝑑+𝛾1)
. 

  

2. Basic Reproduction Number and Sensitivity Analysis 

Basic reproduction number (𝑅0)  can be determined using the next-generation matrix 

approach (Keshtkar et al., 2014). Let 

 

𝐹 = (
0 𝛽𝑠𝑢 + 𝛽(1 − 𝜀)𝑠𝑣 𝛽𝜙𝑠𝑢 + 𝛽𝜙(1 − 𝜀)𝑠𝑣

0 0 0
0 0 0

), 

and  

𝑉 = (

𝜇 + 𝜎 0 0
−𝑝𝜎 𝜇 + 𝑑 + 𝛾1 0

−(1 − 𝑝)𝜎 0 𝜇 + 𝑑 + 𝛾2

). 

Then we obtained 

𝑉−1 =

(

 
 
 
 

1

𝜇 + 𝜎
0 0

𝑝𝜎

(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1)

1

𝜇 + 𝑑 + 𝛾1
0

(1 − 𝑝)𝜎

(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾2)
0

1

𝜇 + 𝑑 + 𝛾2)

 
 
 
 

, 

and then,  

𝐹𝑉−1 =

[
 
 
 
 𝛽𝜌𝜎 (

𝜇 + 𝜃𝛿
𝜇 + 𝜃 )

(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1)
+

𝛽(1 − 𝑝)𝜙𝜎 (
𝜇 + 𝜃𝛿
𝜇 + 𝜃 )

(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾2)

𝛽𝜌𝜎 (
𝜇 + 𝜃𝛿
𝜇 + 𝜃 )

(𝜇 + 𝑑 + 𝛾1)

𝛽𝜙𝜌𝜎 (
𝜇 + 𝜃𝛿
𝜇 + 𝜃 )

(𝜇 + 𝑑 + 𝛾2)
0 0 0
0 0 0 ]

 
 
 
 

. 

 

Thus, using matrix generation method, we found: 

 

𝑅0 =
𝛽𝜎(𝜇 + 𝜃𝛿)

(𝜇 + 𝜃)(𝜇 + 𝜎)
(

𝑝

𝜇 + 𝑑 + 𝛾1
+

(1 − 𝑝)𝜙

𝜇 + 𝑑 + 𝛾2
). (5) 

 

The objective of conducting sensitivity analysis on the basic reproduction number is to 

assess the significance of each parameter in disease transmission. This analysis employs the 
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normalized sensitivity index of a variable with respect to a particular parameter, defined as the 

ratio of the relative change in the variable to the relative change in the parameter. When the 

variable is differentiable with respect to the parameter, the sensitivity index can be formally 

defined as follows. 

a. The sensitivity analysis 𝑅0 with respect to 𝜃 

 

𝐶𝜃 
𝑅0 =

𝜕𝑅0

𝜕𝜃
×

𝜃

𝑅0
=

−𝜀𝜃𝑑

(𝑑 + 𝜎)(𝑑 + 𝜃)(𝑑 + (1 − 𝜀)𝜃)
< 0 

 

The sensitivity analysis of 𝑅0 with respect to 𝜃 illustrates the relationship between the 

vaccination rate of susceptible and the change in the basic reproduction number. Since 

all parameters are positive, the analysis indicates a negative value, signifying an inverse 

relationship. Thus, as the parameter 𝜃, representing the vaccination rate, increases, the 

value of 𝑅0 decreases. For details, see Appendix A.1. 

b. The sensitivity analysis 𝑅0 with respect to 𝜀 

 

𝐶𝜀 
𝑅0 =

𝜕𝑅0

𝜕𝜀
×

𝜀

𝑅0
=

−𝜃𝜀

𝑑 + 𝜃(1 − 𝜀)
< 0 

 

Similarly, to the previous finding, the sensitivity analysis of 𝑅0 with respect to 𝜀 yields a 

negative value. This indicates that a higher efficacy rate of the vaccine results in a 

decrease in 𝑅0. Therefore, 𝑅0 is contingent upon the effectiveness of the vaccine. For 

details, see Appendix A.2. 

 

3. Local Stability of Equilibrium Point 

a. Local Stability of COVID-19 Free Equilibrium Point 

The stability of DFE point can be analysed by linearization involving Jacobian matrix. 

From the system (4) we obtain the Jacobian matrix and evaluate it in DFE point. Thus, 

we get  

 

𝐽(𝑋0) =

(

 
 
 

−𝜓 0 0 −𝜅1 −𝜅1𝜙 0
𝜃 −𝜇 0 −𝜅2 −𝜅2𝜙 0
0 0 −𝜅3 𝜅1 + 𝜅2 (𝜅1 + 𝜅2)𝜙 0
0 0 𝑝𝜎 −𝜅4 0 0
0 0 (1 − 𝑝)𝜎 0 −𝜅5 0
0 0 0 𝛾1 𝛾2 −𝜇)

 
 
 

 (6) 

with  

𝜓 = 𝜇 + 𝜃, 𝜅1 =
𝛽𝜇

𝜓
, 𝜅2 = 𝛽𝛿

𝜃

𝜓
. 𝜅3 = 𝜇 + 𝜎, 𝜅4 = 𝜇 + 𝑑 + 𝛾1, 𝜅5 = 𝜇 + 𝑑 + 𝛾2 

 

We can obtain the eigen value by evaluating (6)  

 

det(𝜆𝐼 − 𝐽(𝑋0)) = 0 
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𝑑𝑒𝑡

(

 
 
 

𝜆 + 𝜓 0 0 −𝜅1 −𝜅1𝜙 0
𝜃 𝜆 + 𝜇 0 −𝜅2 −𝜅2𝜙 0
0 0 𝜆 + 𝜅3 𝜅1 + 𝜅2 (𝜅1 + 𝜅2)𝜙 0
0 0 𝑝𝜎 𝜆 + 𝜅4 0 0
0 0 (1 − 𝑝)𝜎 0 𝜆 + 𝜅5 0
0 0 0 𝛾1 𝛾2 𝜆 + 𝜇)

 
 
 

= 0 

(7) 

or 

 

(𝜆 + 𝜇)2(𝜆 + 𝜓)(𝜆3 + (𝜅3 + 𝜅4 + 𝜅5)𝜆
2

+ (𝜅3𝜅4 + 𝜅3𝜅5 + 𝜅4𝜅5 + ((−1 + 𝑝)𝜑 − 𝑝)(𝜅1 + 𝜅2)𝜎)𝜆 + 𝜅3𝜅4𝜅5 + (𝜅1

+ 𝜅2)(𝑝𝜅5 + (1 − 𝑝)𝜑𝜅4)𝜎) = 0 

 

From characteristic polynomial, we obtain the eigen value 𝜆1,2 = −𝜇, 𝜆3 = −(𝜇 + 𝜃). 

Because 𝜇, 𝜃 > 0, so that 𝜆1,2,,3 < 0 or in the other hand |arg (𝜆𝑖)| = 𝜋. Thus for 0 ≤ 𝛼 <

1 , |arg(𝜆1,2,,3)| >
𝛼𝜋

2
. The stability of equilibrium point depends on the third order 

polynomial 

 

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0 (8) 

Where  

𝑎1 = 𝜅3 + 𝜅4 + 𝜅5, 

𝑎2 = 𝜅3𝜅4 + 𝜅3𝜅5 + 𝜅4𝜅5 + ((−1 + 𝑝)𝜑 − 𝑝)(𝜅1 + 𝜅2)𝜎 

𝑎3 = 𝜅3𝜅4𝜅5 + (𝜅1 + 𝜅2)(𝑝𝜅5 + (1 − 𝑝)𝜑𝜅4)𝜎 = 𝜅3𝜅4𝜅5(1 − 𝑅0). 

 

The equation (8) will satisfy |arg (𝜆𝑖)| >
𝛼𝜋

2
 if one of these conditions hold 

 

 For 𝐷(𝑝) > 0 will be satisfied if 18𝑎1𝑎2𝑎3 + (𝑎1𝑎2)
2 > 4𝑎3𝑎2

3 + 27𝑎3
2,  

 𝑎1 > 0  

 𝑎3 > 0  

 𝑎1𝑎2 > 𝑎3.  

(9) 

 

Because all parameters assumed positive, we have 𝑎1 = 𝜅3 + 𝜅4 + 𝜅5 > 0  and 𝑎3 =

𝜅3𝜅4𝜅5(1 − 𝑅0) > 0 if 𝑅0 < 1. Hence, we need to satisfy the condition 𝑎1𝑎2 > 𝑎3 so that 

based on (Ahmed et al., 2006) this following inequality |arg (𝜆𝑖)| >
𝛼𝜋

2
 is guaranteed for 

all 0 ≤ 𝛼 < 1 . Therefore, disease free equilibrium 𝑋0  is locally asymptotically stable 

near 𝑋0 point. 

 For 𝐷(𝑝) < 0 will be satisfied that condition if  

 18𝑎1𝑎2𝑎3 + (𝑎1𝑎2)
2 < 4𝑎3𝑎2

3 + 27𝑎3
2,  
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Stability of 𝑋0 when 𝐷(𝑝) < 0 can be obtained if one of these conditions hold 

First stability condition (C-1) 

 𝑎1 ≥ 0,  

 𝑎2 ≥ 0,  

 𝑎3 > 0.  

 

Because all parameters assumed positive, we have 𝑎1 = 𝜅3 + 𝜅4 + 𝜅5 > 0  and 𝑎3 =

𝜅3𝜅4𝜅5(1 − 𝑅0) > 0 if 𝑅0 < 1 . Hence, we need to satisfy the condition 𝜅3𝜅4 + 𝜅3𝜅5 +

𝜅4𝜅5 ≥ ((1 − 𝑝)𝜑 + 𝑝)(𝜅1 + 𝜅2)𝜎 to claim 𝑎2 ≥ 0. Based on (Ahmed et al., 2006) this 

following inequality |arg (𝜆𝑖)| >
𝛼𝜋

2
 is guaranteed for all  𝛼 <

2

3
. Therefore, disease free 

equilibrium 𝑋0 is locally asymptotically stable near 𝑋0 point. 

Second stability condition (C-2)  

 𝑎1 > 0  

 𝑎2 > 0 and  

 𝑎1𝑎2 = 𝑎3. 

 

We have 𝑎1 = 𝜅3 + 𝜅4 + 𝜅5 > 0  and 𝑎2 ≥ 0  if 𝜅3𝜅4 + 𝜅3𝜅5 + 𝜅4𝜅5 ≥ ((1 − 𝑝)𝜑 +

𝑝)(𝜅1 + 𝜅2)𝜎 . Hence, we need to satisfy  (𝜅3 + 𝜅4 + 𝜅5)(𝜅3𝜅4 + 𝜅3𝜅5 + 𝜅4𝜅5 − ((1 −

𝑝)𝜑 + 𝑝)(𝜅1 + 𝜅2)𝜎 ) − 𝜅3𝜅4𝜅5(1 − 𝑅0) = 0  to claim 𝑎1𝑎2 = 𝑎3.   this following 

inequality |arg (𝜆𝑖)| >
𝛼𝜋

2
 is guaranteed for all  0 ≤ 𝛼 < 1  s. Therefore, disease free 

equilibrium 𝑋0 is locally asymptotically stable near 𝑋0 point. 

b. Local Stability of COVID-19 Endemic Equilibrium Point 

The stability of endemic point can be analysed by linearization involving Jacobian matrix. 

From the system (4) we obtain the Jacobian matrix and evaluate it in endemic point. 

Thus, we get  

 

𝐽(𝑋1) =

(

 
 
 

−𝜅1 − 𝜓1 0 0 −𝜓3 −𝜑𝜓3 0
𝜃 −𝜇 − 𝜓2 0 −𝜓4 −𝜑𝜓4 0
𝜓1 𝜓2 −𝜅2 𝜓3 + 𝜓4 𝜓3 + 𝜓4 0
0 0 𝑝𝜎 −𝜅3 0 0
0 0 (1 − 𝑝)𝜎 0 −𝜅4 0
0 0 0 𝛾1 𝛾2 −𝜇)

 
 
 

 (10) 

 

where  

 

𝜓1 = 𝛽(𝜑𝑖∗ + 𝑎∗), 𝜓2 = (1 − 𝜀)𝜓1, 𝜓3 = 𝛽𝑠𝑢
∗ , 𝜓4 = 𝛽(1 − 𝜀)𝑠𝑣

∗
, 𝜅1 = 𝜇 + 𝜃, 𝜅2

= 𝜇 + 𝜎, 𝜅3 = 𝜇 + 𝑑 + 𝛾1, 𝜅4 = 𝜇 + 𝑑 + 𝛾2.  

 

We can obtain the eigen value by evaluating (10)  

 

det(𝜆𝐼 − 𝐽(𝑋1)) = 0 
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𝑑𝑒𝑡

(

 
 
 

𝜆 + (𝜅1 + 𝜓1) 0 0 −𝜓3 −𝜓3 0

𝜃 𝜆 + (𝜇 + 𝜓2) 0 −𝜓4 −𝜓4 0
𝜓1 𝜓2 𝜆 + 𝜅2 𝜓3 + 𝜓4 𝜓3 + 𝜓4 0
0 0 𝑝𝜎 𝜆 + 𝜅3 0 0
0 0 (1 − 𝑝)𝜎 0 𝜆 + 𝜅4 0
0 0 0 𝛾1 𝛾2 𝜆 + 𝜇)

 
 
 

= 0 (11) 

 

or 

(𝜆 + 𝜇)(𝜆5 + 𝑏1𝜆
4 + 𝑏2𝜆

3 + 𝑏3𝜆
2 + 𝑏4𝜆 + 𝑏5) = 0, 

 

with 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5  are coefficient of the fifth order polynomial. From characteristic 

polynomial, we obtain the eigen value 𝜆1 = −𝜇. Because 𝜇 > 0, so that 𝜆1 < 0 or in the 

other hand |arg (𝜆𝑖)| = 𝜋. Thus for 0 ≤ 𝛼 < 1, |arg(𝜆1,2,,3)| >
𝛼𝜋

2
. The stability of endemic 

point depends on the fifth order polynomial 

 

𝜆5 + 𝑏1𝜆
4 + 𝑏2𝜆

3 + 𝑏3𝜆
2 + 𝑏4𝜆 + 𝑏5 = 0 (12) 

 

Based on Theorem 2, The sufficient condition for 𝑛 > 3 is  

 Δ1 = 𝑏1 > 0, 

 Δ2 = 𝑏1𝑏2 − 𝑏3 > 0 if 𝑏1𝑏2 > 𝑏3,  

 Δ3 = 𝑏1𝑏2𝑏3 + 𝑏1𝑏5 − 𝑏1
2𝑏4 + 𝑏3

2 > 0, jika 𝑏1𝑏2𝑏3 + 𝑏1𝑏5 > 𝑏1
2𝑏4 − 𝑏3

2, 

 Δ4 = 0. 

 

If all condition is satisfied, then it can be claimed that |arg(𝜆𝑖)| >
𝛼𝜋

2
  for all 𝛼 ∈ [0,1). 

 

4. Parameter Estimation: Case study of COVID-19 cases in Indonesia 

We estimated the model parameters using real data. COVID-19 data from Indonesia, 

spanning August 14, 2021, to September 25, 2021, was used for this purpose. By utilizing 

optimization tools ‘fmincon’ in MATLAB software that find minimum of constrained nonlinear 

multivariabe function. The estimated parameters were obtained from the active COVID-19 

cases in Indonesia, as shown in Figure 2. The results of the parameter estimation, presented in 

Table 2, will be used in the numerical simulation of model (4). 
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Figure 2. The number of active cases COVID-19 in Indonesia using real data  

and model for obtaining some parameters. 

 

Table 2. Some parameters value based on real data  

of COVID-19 in South Sulawesi and Indonesia 

Parameter Value 
𝜃 0.09155 
𝛽 0.3079 
𝜎 0.2021 
𝑑 0.0870 
𝛾 0.1196 
𝛼∗ 0.9856 

 

Comparing the approximation using 𝛼∗  with other values to the real data reveals a smaller 

relative error than other orders, as shown in Figure 3. Additionally, an error analysis between 

the fractional model and the real data of active COVID-19 cases in Indonesia is provided in Table 

5. 
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Figure 3. Total active cases of COVID-19 in Indonesia comparing between real data,  

approximation of estimated order α (green line) and other order. 
 

Table 3. Error Analysis between Fractional Model and Real Data of Active Cases COVID-19 Indonesia 

Orde Fraksional 
Mean 

Absolut 
Deviation 

Mean 
Squared 

Deviation 

Root Mean 
Square 
Error 

Mean Error 
Relatif 

Mean Absolute 
Percentage 

Error 
Alpha = 0.95 4.837E-05 2.964E-09 5.444E-05 0.084596487 0.255671528 
Alpha = 0.9856 1.685E-05 3.689E-10 1.920E-05 0.042606043 0.159557071 
Alpha = 1 2.497E-05 9.097E-10 3.016E-05 0.052266608 0.161091401 

 

When comparing our reult with those of Ndairou et al., (2021), we find that different value 

of 𝛼  provide better approximation for the real data. The approximation for Indonesia using 

fractional model yields better results than integer-order model, similar to the findings for Spain 

(𝛼 = 0.85) and Portugal (𝛼 = 0.75), with Indonesia having 𝛼 = 0.9856. Using the estimated 

parameters, we calculated the basic reproduction number for COVID-19 cases in Indonesia as 

𝑅0 = 0.3925 . This indicates that the spread of COVID-19 has low level in Indonesia and can 

potentially be reduced within the population. 

 

5. Numerical Simulation and Discussion 

Based on the estimated parameters of COVID-19 spread model in Indonesia, the basic 

reproduction number (𝑅0) is 0.3925. We consider varying some parameter values to observe 

their effects on the number of infected cases and the 𝑅0 value. 

a. Scenario the change of vaccination rate 

From estimated parameter using real data in Indonesia, we obtained a vaccination rate 

(𝜃) = 0.0915. Assuming that other parameters remain constant, the following scenarios 

will occur when value of 𝜃 is altered. 
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Table 4. Scenario of change vaccination rate for model of COVID-19  

spread using fractional order in Indonesia 

Parameter Scenario 1 Scenario 2 Scenario 3 
𝜃 = 0.0915 0.0915 0.183 0.4575 

 

 
Figure 4. Number of infected cases in Indonesia by performing  

the change of vaccination rate with α=0.9856 

 

Figure 4 illustrates three different scenarios with various values of the vaccination rate 

𝜃. The first scenario shows the number of infected cases using the estimated value. In 

the second scenario, the vaccination rate is increased by 50%, resulting in a faster 

decrease in the number of infected cases compared to the first scenario. The increase in 

the vaccination rate for this scenario has a slight impact on the number of infected cases 

compared to the first scenario. In the final scenario, the vaccination rate is 90% higher, 

leading to the lowest number of infected cases. Overall, all scenarios have 𝑅0 < 1 , 

indicating that the number of infected cases may eventually disappear from the 

population. Based on the simulation results, an increase in the vaccination rate can be 

practically interpreted as a rise in the number of individuals receiving the vaccine within 

the same time period. The higher the vaccination rate, the more significant the impact of 

this strategy in reducing the number of COVID-19 cases within the population.  

b. Scenario the change of vaccine efficacy  

Based on the estimated parameters using real data in Indonesia, we assume the efficacy 

vaccine 𝜀 = 0.65 . Considering that other parameters remain constant; the following 

scenarios will occur when value of 𝜀 is altered. 
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Table 5. Scenario of change vaccine efficacy for model of COVID-19  

spread using fractional order in Indonesia 

Parameter Scenario 1 Scenario 2 Scenario 3 

𝜀 = 0.65 0.65 0.7 0.8 

 

 
Figure 5. Number of infected cases in Indonesia by performing 

 the change of efficacy vaccine with α=0.9856 

 

Figure 5 show the number of infected cases with three scenarios with various value of 

efficacy 𝜀. In general, if efficacy vaccine is decreased then number of infected cases may 

increase. All scenarios almost have the same trends each other. In this simulation, we get 

a slightly different from first to third scenario. Referring to the simulation results, an 

increase in efficacy can be practically interpreted as the vaccine's ability to provide 

protection against a specific disease infection. According to these findings, higher 

efficacy is associated with a reduction in the number of COVID-19 infection cases. 

 

D. CONCLUSION AND SUGGESTIONS 

The fractional model gives different value of 𝛼 to real data of Indonesia. We obtain that 𝛼 =

0.9856 which are well fitted to real data for Indonesia then classical order, according to the 

result of Error Analysis. The results indicate that the error value in the fractional model is 

smaller compared to the estimation results for the integer-order model. The simulation also 

shows that changes of vaccination rate and the efficacy of vaccine give the effect to reduces 𝑅0. 

In this study, the researchers assumed that age, infection severity, and population density do 

not affect disease transmission. Future researchers interested in this topic could conduct 

studies on COVID-19 that consider age, population density, and infection severity. Further 

developments can also be achieved by utilizing other numerical methods, such as the Adam-
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Bashford Predictor-Corrector Method or the Adomian Laplace Decomposition Method, to 

obtain more accurate numerical approximations and shorter computational times. 
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Appendix A. Derivation of Sensitivity Analysis 

1. Sensitivity Analysis of 𝑅0 with respect to 𝜃 

𝐶𝜃 
𝑅0 =

𝜕𝑅0

𝜕𝜃
×

𝜃

𝑅0
 

𝐶𝜃 
𝑅0 = [

−𝛽𝑝𝜎(𝑏𝑑 − 𝑏𝑑(1 − 𝜀))

𝑑(𝑑 + 𝛾1)(𝑑 + 𝜎)(𝑑 + 𝜃)2
+

−𝛽(1 − 𝑝)𝜎(𝑏𝑑 − 𝑏𝑑(1 − 𝜀))

𝑑(𝑑 + 𝛾2)(𝑑 + 𝜎)(𝑑 + 𝜃)2
]

×
𝜃

𝛽𝑝𝜎(𝑏𝑑 + (1 − 𝜀)𝑏𝜃)
𝑑(𝑑 + 𝜎)(𝑑 + 𝛾1)(𝑑 + 𝜃) +

𝛽(1 − 𝑝)𝜎(𝑏𝑑 + (1 − 𝜀)𝑏𝜃)
𝑑(𝑑 + 𝜎)(𝑑 + 𝛾2)(𝑑 + 𝜃)

 

 

𝐶𝜃 
𝑅0 = [

−𝛽𝑝𝜎𝑏𝑑𝜀

𝑑(𝑑 + 𝛾1)(𝑑 + 𝜎)(𝑑 + 𝜃)2
+

−𝛽(1 − 𝑝)𝜎𝑏𝑑𝜀

𝑑(𝑑 + 𝛾2)(𝑑 + 𝜎)(𝑑 + 𝜃)2
]

×
𝜃

𝛽𝑝𝜎(𝑏𝑑 + (1 − 𝜀)𝑏𝜃)
𝑑(𝑑 + 𝜎)(𝑑 + 𝛾1)(𝑑 + 𝜃) +

𝛽(1 − 𝑝)𝜎(𝑏𝑑 + (1 − 𝜀)𝑏𝜃)
𝑑(𝑑 + 𝜎)(𝑑 + 𝛾2)(𝑑 + 𝜃)

 

𝐶𝜃 
𝑅0 = [

−(𝑑 + 𝛾2)𝛽𝑝𝜎𝑏𝑑𝜀 − (𝑑 + 𝛾1)𝛽(1 − 𝑝)𝜎𝑏𝑑𝜀

𝑑(𝑑 + 𝛾1)(𝑑 + 𝛾2)(𝑑 + 𝜎)(𝑑 + 𝜃)2
]

×
𝜃𝑑(𝑑 + 𝜎)(𝑑 + 𝛾2)(𝑑 + 𝛾1)(𝑑 + 𝜃)

𝛽𝑝𝜎(𝑑 + 𝛾2)(𝑏𝑑 + (1 − 𝜀)𝑏𝜃) + 𝛽(1 − 𝑝)𝜎(𝑑 + 𝛾1)(𝑏𝑑 + (1 − 𝜀)𝑏𝜃)
 

𝐶𝜃 
𝑅0 =

−𝛽𝜎𝑏𝜀[(𝑑 + 𝛾2)𝑝 + (𝑑 + 𝛾1)(1 − 𝑝)]

(𝑑 + 𝜎)(𝑑 + 𝜃)

×
𝜃𝑑

𝛽𝜎𝑏[𝑝(𝑑 + 𝛾2)(𝑑 + (1 − 𝜀)𝜃) + (1 − 𝑝)(𝑑 + 𝛾1)(𝑑 + (1 − 𝜀)𝜃)]
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𝐶𝜃 
𝑅0 = [

−𝜀((𝑑 + 𝛾2)𝑝 + (𝑑 + 𝛾1)(1 − 𝑝))

(𝑑 + 𝜎)(𝑑 + 𝜃)
]

×
𝜃𝑑

((𝑑 + (1 − 𝜀)𝜃)[((𝑑 + 𝛾2)𝑝 + (𝑑 + 𝛾1)(1 − 𝑝))])
 

𝐶𝜃 
𝑅0 =

−𝜀𝜃𝑑

(𝑑 + 𝜎)(𝑑 + 𝜃)(𝑑 + (1 − 𝜀)𝜃)
< 0 

 

2. Sensitivity Analysis of 𝑅0 with respect to 𝜀 

𝐶𝜀 
𝑅0 =

𝜕𝑅0

𝜕𝜀
×

𝜀

𝑅0
. 

𝐶𝜀 
𝑅0 =

−𝛽𝑝𝜎𝑏𝜃

𝑑(𝑑 + 𝜎)(𝑑 + 𝛾1)(𝑑 + 𝜃)
+

−𝛽(1 − 𝑝)𝜎𝑏𝜃

𝑑(𝑑 + 𝜎)(𝑑 + 𝛾2)(𝑑 + 𝜃)

×
𝜀

𝛽𝑝𝜎(𝑏𝑑 + (1 − 𝜀)𝑏𝜃)
𝑑(𝑑 + 𝜎)(𝑑 + 𝛾1)(𝑑 + 𝜃) +

𝛽(1 − 𝑝)𝜎(𝑏𝑑 + (1 − 𝜀)𝑏𝜃)
𝑑(𝑑 + 𝜎)(𝑑 + 𝛾2)(𝑑 + 𝜃)

 

𝐶𝜀 
𝑅0 =

−𝜃𝜀

𝑑 + 𝜃(1 − 𝜀)
< 0 

 


