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 It has been studied that fear plays a significant role in establishing ecological 
communities, influencing biodiversity, and preserving ecological balance in 
predator-prey interactions. In this study, it is proposed a discrete-time predator-
prey model that takes the fear effect into account that is derived by using Euler 
method. Objective of this study is analyzing the model by linearization. Similar to 
the continuous model properties, the trivial fixed point and the predator-free fixed 
point are both unstable. The discrete model differs from the continuous model in 
that the stability of the interior fixed point and the free prey fixed point is affected 
by the time step size. Using numerical methods, we examine period-doubling 
bifurcations related to interior fixed point and prey-free point that are impacted by 
time step size.  
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A. INTRODUCTION  

In the last few decades, numerous scientists from various backgrounds have conducted in-

depth research on the dynamics of the predator-prey interaction, a key topic in ecology and 

evolutionary biology. Developing hypotheses and learning more about the dynamics, 

persistence, and structure of biological communities are the main goals of population ecology. 

A population model that is both mathematically tractable and physiologically relevant must be 

carefully studied (Beretta & Kuang, 2002). The predator-prey model, which forecasts the rate 

of prey consumption depending on the number (density) of predator and prey groups, is a 

crucial part of such a model (Alaoui & Okiye, 2003). Lotka (1920) presented a fundamental 

model for this phenomenon in the early twentieth century. This model accurately depicted the 

fluctuating behaviour of the size predator-prey communities. Recently, this Lotka-Volterra 

model has been development by many researchers. In 2022, the dynamical of discrete two-

predators one-prey Lotka–Volterra model has been studied (Khaliq et al., 2022). By involving 

fear effect and linear harvesting, Panigoro et al. (2023) developed the basic Lotka-Volterra 

model. 
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Leslie proposed a proportionate relationship between the predator’s carrying capacity and 

the number of prey (Leslie, 1958). Leslie emphasized that the thriving ability of predators and 

prey is limited. The Lotka-Volterra model did not reflect this reality. The main disadvantage of 

this model is that the predator cannot alter to another food source if the prey population is at 

low concentrations (Huang et al., 2014). This model was corrected by Aziz-Alaoui & Daher 

Okiye (2003) including a temporary alternate food supply parameter. This last model has 

undergone extensive development, as can be seen in (Junior & Maidana, 2021; Chen et al., 2021; 

Rahmi et al., 2021; Singh & Malik, 2021) and the references therein. 

Several pieces of research have studied dynamics modified Leslie-Gower in the discrete 

model. Sun et al. (2023) studied the dynamics of the discrete modified Leslie-Gower predator-

prey model with a Holling type II functional response. In that work, they investigated the fold, 

1:1 strong resonance, fold-flip, and 1:2 strong resonance bifurcation. In 2021, Singh et al. 

(2023) applied Michaelis Menten-type functional response and prey harvesting in a modified 

Leslie-Gower model. By using center manifold and bifurcation theory, Singh and Malik show 

multiple bifurcations of codimension 1, including transcritical bifurcation in the discrete-time 

model, Neimark-Sacker bifurcation, flip bifurcation, fold bifurcation, and fold-flip bifurcation.  

The majority of discrete models discussed previously only took into consideration a case in 

which the predator kills the prey directly. Recently, researchers have increasingly observed 

that, in addition to actual hunting, the mere sight of predators may fear prey which has an 

impact on various aspects of the prey, such as habitat, pace of reproduction, how they forage, 

etc. A predator-prey model with a fear effect was proposed by Wang et al. (2016) using the 

Holling type II functional response. Wang and Zou examined a prey-predator model with 

adaptive predator avoidance by incorporating age-stage structure (Wang & Zou, 2017). Mondal, 

et al. examined a prey-predator model that took the fear effect and extra food into account 

(Mondal et al., 2018). Furthermore, several researchers have shown that the fear effect has an 

even greater impact on prey populations than does direct hunting. Pal et al. (2019) consider a 

modified Leslie-Gower predator-prey model in which prey population exhibit anti-predator 

behavior out of dread of potential predation and predators cooperate while hunting. It is known 

that the fear factor might stabilize the predator-prey system (Pal et al., 2019). In 2021, Chen et 

al. (2021) studied a discrete-time predator-prey system that included the fear effect of the 

predator on the prey with other food resources for the predator. Their research shows that, 

whereas predator species tend to be stable since there are alternative sources of food available, 

prey species will be pushed to fade away due to fear of predators and under specific conditions, 

the prey-free equilibrium may even be globally stable.  

Some research of the fear effect on the discrete predator predator-prey model has been 

established. Santra has studied the impact of the effect of fear on the discrete predator-prey 

model with square root functional and the step size. The suitable conditions for the existence 

of Neimark-Sacker, flip, and fold bifurcation have also been obtained analytically (Santra, 

2021). Pal et al. (2023) studied dynamics of a predator–prey system with fear and memory in 

the presence of two discrete delays. It is found that the dynamics of the system are found to be 

destabilized by the fear parameter and the predation rate, whereas the system is stabilized by 

the parameter that represents the strength of fading memory. In 2024, Din et al. (2024) 

conducted the stability and bifurcation dynamics analysis on logistic-type discrete-time model 
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for two species' competitive interactions with fear effect. Li et al. (2024) and Mondal et al. 

(2024) proposed the discrete predator-prey model with fear effects and refuges. According to 

their research, the existence of bifurcation is driven by the fear effect and prey refuge, which 

both influence solution behavior.  Pal et al. (2019) has considered a continuous modified Leslie–

Gower model with fear effect and hunting cooperation. We obtain the following model by 

eliminating hunting cooperation.  

 
𝑑𝑥

𝑑𝑡
 = (

𝑟1
1 + 𝑘𝑦

− 𝑒 − 𝛽𝑥 −
𝑐1𝑦

𝑥 + 𝐾1
) 𝑥, 

(1) 
𝑑𝑦

𝑑𝑡
 = (𝑟2 −

𝑐2𝑦

𝑥 + 𝐾2
)𝑦, 

 

where predator and prey population sizes are represented by the variables 𝑥 and 𝑦, 

respectively. The initial condition is 𝑥(0) ≥  0 and 𝑦(0) ≥  0. The parameters 

𝑟1, 𝑘, 𝑒, 𝛽, 𝑐1, 𝐾1, 𝑟2, 𝑐2, and 𝐾2 represent the intrinsic growth rate of the prey population, the 

degree of fear inhibiting the growth of the prey population, the prey mortality rate, the degree 

of rivalry between members of the same prey, the highest value that an 𝑥 per capita decrease 

rate may achieve, the extent to which environment protects prey, the intrinsic growth rate of 

the predator population, the competition rate among individuals of predator, and the extent to 

which environment protects predator. In this article, we discretize model (1) using the Euler 

scheme, i.e. 

 

𝑥𝑛+1 = 𝑥𝑛 + ℎ (
𝑟1

1 + 𝑘𝑦𝑛
− 𝑒 − 𝛽𝑥𝑛 −

𝑐1𝑦𝑛

𝑥𝑛 + 𝐾1
) 𝑥𝑛 = 𝑓1(𝑥𝑛, 𝑦𝑛), 

(2) 
𝑦𝑛+1 = 𝑦𝑛 + ℎ (𝑟2 −

𝑐2𝑦𝑛

𝑥𝑛 + 𝐾2
) 𝑦𝑛 = 𝑓2(𝑥𝑛, 𝑦𝑛), 

 

where ℎ is time step size. The objective of this research is to analyze the dynamics of the 

discrete model (2), then we determine the fixed point of model (2) and their local stability. The 

numerical simulations are also excited to demonstrate the stability and the effect of time step 

size (ℎ) on the dynamics of solutions behaviour, especially on the existence of period-doubling 

bifurcations. 

 

B. METHODS 

This research is a analysis dynamics of the discrete modified Leslie-Gower predator-prey 

model. The steps involved in conducting the research are as follows. 

1. Review the Dynamics Properties of Model (1) 

There are four equilibrium points for model (1), i.e. 𝐸0 (0,0), 𝐸1  (
𝑟1−𝑒

𝛽
, 0) , 𝐸2  (0,

𝑟2𝐾2

𝑐2
), and 

𝐸3 (𝑥
∗, 𝑦∗ ), where 𝑥∗  are (is) the root(s) of the following cubic equation 

 

𝜂3(𝑥
∗)3 + 𝜂2(𝑥

∗)2 + 𝜂1(𝑥
∗) + 𝜂0 = 0, (3) 

       

 



 Anna Silvia Purnomo, Dynamical Analysis of Discrete-Time...    27 

 

 

 with 

𝜂3 = 𝑘𝑟2𝛽𝑐2 

𝜂2 = 𝑒𝑘𝑟2𝑐2 + 𝛽(𝑐2
2 + 𝑘𝑟2𝑐2(𝐾1 + 𝐾2)) + 𝑐1𝑘𝑟2

2 

𝜂1 = 𝑒(𝑐2
2 + 𝑘𝑟2𝑐2(𝐾1 + 𝐾2)) + 𝛽(𝑐2

2𝐾1 + 𝑘𝑟2𝑐2𝐾1𝐾2) + 𝑐1𝑟2(𝑐2 + 2𝑘𝑟2𝐾2) − 𝑐2
2𝑟1 

𝜂0 = 𝑒(𝑐2
2𝐾1 + 𝑘𝑟2𝑐2𝐾1𝐾2) + 𝑐1𝑟2(𝑐2𝐾2 + 𝑘𝑟2𝐾2

2) − 𝑐2
2𝑟1𝐾1. 

 

The first two equilibria are always unstable, while 𝐸2 (0,
𝑟2𝐾2

𝑐2
) is stable when 𝑒 −

𝑟1𝑐2

𝑐2+𝑘𝑟2𝐾2
+

𝑐1𝑟2𝐾2

𝑐2𝐾1
> 0, and  𝐸3(𝑥

∗, 𝑦∗) is stable when 
𝑏𝑢∗𝑣∗

(𝑢∗+𝐾1)2
< min{𝜅1, 𝜅2} where 𝜅1 = 𝑎1𝑢

∗ + 𝑟2  and 𝜅2 =

1

𝑟2
[

𝑎2(𝑣∗)2

(𝑢∗+𝐾2)2
(

𝑚𝑟0𝑢∗

(1+𝑚𝑣∗)2
+

𝑏𝑢∗

𝑢∗+𝐾1
)] + 𝑟2𝑎1𝑢

∗. 

 

2. Determining the Fixed Points of the Model (2) 

To find the fixed point 𝐸 ̂(𝑥 ̂, 𝑦 ̂ )  of the system (1), we solve the following system. 

 

�̂� = �̂� + ℎ (
𝑟1

1 + 𝑘�̂�
− 𝑒 − 𝛽�̂� −

𝑐1�̂�

�̂� + 𝐾1
) �̂�, 

(4) 

�̂� = 
�̂� + ℎ (𝑟2 −

𝑐2�̂�

�̂� + 𝐾2
) �̂�. 

 

 

3. Examine the Local Stability of Each Fixed Point 

The first step in figuring out stability is to linearize the model resulting the Jacobian matrix 

as follow. 

𝐽 =

[
 
 
 
 
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓1
𝜕𝑦𝑛

𝜕𝑓2
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑦𝑛]

 
 
 
 

 

 

we determine all eigenvalues for each fixed point. A fixed point is locally asymptotically stable 

if all of its eigenvalues in the Jacobian matrix have modulus smaller than 1. 

 

4. Numerical Simulation 

To demonstrate the analytical results, numerical simulations are carried out using Matlab 

software, with parameter values that meet the stability conditions of fixed point. We investigate 

with various time step size values for every set of parameter values to demonstrate how time 

step size affects solution behavior. 
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C. RESULT AND DISCUSSION 

1. Fixed Point and Local Stability 

We solve the same system equations to get the fixed point of model (2) and the equilibrium 

point of model (1). Model (2)'s fixed points and model (1)'s equilibrium point are the same as 

follows. 

a. The trivial fixed point, 𝐸0(0,0) that always exists. 

b. The predator-free fixed point, 𝐸1 (
𝑟1−𝑒

𝛽
, 0) that exists when 𝑟1 > 𝑒. 

c. The prey-free fixed point, 𝐸2 (0,
𝑟2𝐾2

𝑐2
) that always exists. 

d. The coexistence fixed point, 𝐸3 (𝑥
∗, 𝑦∗ ), where 𝑥∗  are (is) the root(s) of the following 

cubic equation. 

 

𝜂3(𝑥
∗)3 + 𝜂2(𝑥

∗)2 + 𝜂1(𝑥
∗) + 𝜂0 = 0, (4) 

with  

𝜂3

= 

 
𝑘𝑟2𝛽𝑐2 

𝜂2

= 

 
𝑒𝑘𝑟2𝑐2 + 𝛽(𝑐2

2 + 𝑘𝑟2𝑐2(𝐾1 + 𝐾2)) + 𝑐1𝑘𝑟2
2 

𝜂1

= 

 𝑒(𝑐2
2 + 𝑘𝑟2𝑐2(𝐾1 + 𝐾2))

+ 𝛽(𝑐2
2𝐾1 + 𝑘𝑟2𝑐2𝐾1𝐾2)

+ 𝑐1𝑟2(𝑐2 + 2𝑘𝑟2𝐾2) − 𝑐2
2𝑟1 

𝜂0

= 

 𝑒(𝑐2
2𝐾1 + 𝑘𝑟2𝑐2𝐾1𝐾2) + 𝑐1𝑟2(𝑐2𝐾2 +

𝑘𝑟2𝐾2
2) − 𝑐2

2𝑟1𝐾1. 

 

Similarly, (4) can be expressed as 

 

(𝑥∗)3 + 3𝑝2(𝑥
∗)2 + 3𝑝1(𝑥

∗) + 𝑝0 = 0, (5) 

with  

𝑝2 =
𝜂2

3𝜂3
 , 

𝑝1 =
𝜂1

3𝜂3
 , 

𝑝0 =
𝜂0

𝜂3
 . 

 

Furthermore, we apply the transformation 𝑧 = 𝑥∗ + 𝑝2 on (5) to obtain as follows. 

 

𝑧3 + 3𝛾1𝑧 + 𝛾0 = 0, (6) 

with 

𝛾1 = 𝑝1 − 𝑝2
2 

 𝛾0 = 𝑝0 − 3𝑝1𝑝2 + 2𝑝2
3. 
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The fixed point 𝐸3(𝑥
∗ , 𝑦∗) with 𝑦∗ =

𝑟2(𝑥∗+𝐾2)

𝑐2
 exist(s) if there are (is a) 𝑥∗ > 0, with 𝑥∗ =

𝑧∗ − 𝑝2. In other words, 𝐸3 exist(s) if there are (is a) solution of (6), i.e. 𝑧∗ and 𝑝2 < 𝑧∗. The 

existence of 𝑧∗ > 0 can be determined by using Cardano’s criterion (Cai et al., 2015).  

 

Lemma 1 (Cardano’s criterion) (Cai et al., 2015) 

i. If 𝛾0 < 0, (6) has a single positive root. 

ii. Suppose 𝛾0 > 0 and 𝛾1 < 0, then: 

a. if 𝛾0
2 + 4𝛾1

3 = 0, (6) has a positive root of multiplicity two; 

b. if 𝛾0
2 + 4𝛾1

3 < 0, (6) has two positive roots; 

iii. If 𝛾0 = 0 and 𝛾1 < 0, (6) has a unique positive root. 

 

The fear level influences the existence of 𝐸3. The fixed points of model (2) and their existence 

condition are same with equilibrium points of model (1). The linearization system (2) around 

any fixed point �̂�(�̂�, �̂�) produced the following Jacobian matrix. 

 

𝐽(�̂�) =

(

 
 

1 +
ℎ𝑟1

1 + 𝑘�̂�
− 𝑒ℎ − 2𝛽�̂�ℎ −

ℎ𝑐1�̂��̂�

(�̂� + 𝐾1)2
−

ℎ𝑐1�̂�

�̂� + 𝐾1
−

ℎ𝑘𝑟1�̂�

(1 + 𝑘�̂�)2
−

𝑐1ℎ�̂�

�̂� + 𝐾1

𝑐2ℎ�̂�2

(�̂� + 𝐾2)
2

1 + 𝑟2ℎ − 2
𝑐2ℎ�̂�

�̂� + 𝐾2 )

 
 

. 

 

By substituting 𝐸0(0,0) to the Jacobian matrix, we have 

 

𝐽(𝐸0) = (
1 + 𝑟1ℎ − 𝑒ℎ 0

0 1 + 𝑟2ℎ
). 

 

The eigenvalues of 𝐽(𝐸0) are 𝜆1 = 1 + 𝑟1ℎ − 𝑒ℎ and 𝜆2 = 1 + 𝑟2ℎ. Since |𝜆2| > 1, 𝐸0(0,0) is 

unstable. This outcome is meet for stability in a system (1) as well. The Jacobian matrix for prey-

free fixed point is 

 

𝐽(𝐸1) = (
1 + 𝑟1ℎ − 𝑒ℎ ℎ(𝑟1 − 𝑒) (

𝑘𝑟1
𝛽

+
𝑐1

𝑟1 − 𝑒 + 𝛽𝐾1
)

0 1 + 𝑟2ℎ

). 

 

The eigenvalues of 𝐽(𝐸1) are 𝜆1 = 1 + 𝑟1ℎ − 𝑒ℎ and 𝜆2 = 1 + 𝑟2ℎ. Clearly, |𝜆2| > 1. 

Furthermore, the fixed point 𝐸1 (
𝑟1−𝑒

𝛽
, 0) is unstable. The stability of a continuous system also 

yields the same result. The Jacobian matrix for 𝐸2 (0,
𝑟2𝐾2

𝑐2
) is as follows. 

 

𝐽(𝐸2) =

(

 
 

1 +
𝑟1𝑐2ℎ

𝑐2 + 𝑘𝑟2𝐾2
− 𝑒ℎ −

𝑐1𝑟2𝐾2ℎ

𝑐2𝐾1
0

ℎ𝑟2
2

𝑎2
1 − 𝑟2ℎ

)

 
 

. 
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The eigenvalues of 𝐽(𝐸2) are 𝜆1 = 1 +
𝑟1𝑐2ℎ

𝑐2+𝑘𝑟2𝐾2
− 𝑒ℎ −

𝑐1𝑟2𝐾2ℎ

𝑐2𝐾1
 and 𝜆2 = 1 − 𝑟2ℎ. If 0 < ℎ <

2

𝑒−
𝑟1𝑐2

𝑐2+𝑘𝑟2𝐾2
+

𝑐1𝑟2𝐾2
𝑐2𝐾1

  then |𝜆1| < 1. If  0 < ℎ <
2

𝑟2
 then |𝜆2| < 1. Obviously, the fixed point 𝐸2 (0,

𝑟2𝐾2

𝑐2
) 

stable if 0 < ℎ < min {
2

𝑟2
,

2

𝑒−
𝑟1𝑐2

𝑐2+𝑘𝑟2𝐾2
+

𝑐1𝑟2𝐾2
𝑐2𝐾1

}. In continuous system, 𝐸2 stable if 𝑒 −
𝑟1𝑐2

𝑐2+𝑘𝑟2𝐾2
+

𝑐1𝑟2𝐾2

𝑐2𝐾1
> 0, but in discrete system there is a condition for time step size ℎ. In both discrete and 

continuous systems, fear has an impact on 𝐸2 stability.  The Jacobian matrix for coexistence 

fixed point 𝐸3(𝑥
∗, 𝑦∗) is  

 

𝐽(𝐸3) =

(

 
 

1 +
ℎ𝑟1

1 + 𝑘𝑦∗
− 𝑒ℎ − 2𝛽𝑥∗ℎ −

ℎ𝑐1𝑥
∗𝑦∗

(𝑥∗ + 𝐾1)2
−

ℎ𝑐1𝑦
∗

𝑥∗ + 𝐾1
−

ℎ𝑘𝑟1𝑥
∗

(1 + 𝑘𝑦∗)2
−

𝑐1ℎ𝑥∗

𝑥∗ + 𝐾1

𝑐2ℎ(𝑦∗)2

(𝑥∗ + 𝐾2)2
1 + 𝑟2ℎ − 2

𝑐2ℎ𝑦∗

𝑥∗ + 𝐾2 )

 
 

. 

 

Since 
ℎ𝑟1

1+𝑘𝑦∗ − 𝑒ℎ − 𝛽𝑥∗ℎ −
ℎ𝑐1𝑦∗

𝑥∗+𝐾1
= 0 and ℎ𝑟2 −

ℎ𝑐2𝑦∗

𝑥∗+𝐾2
= 0, we obtain this following matrix. 

 

𝐽(𝐸3) =

(

 
 

1 − 𝛽𝑥∗ℎ −
ℎ𝑐1𝑥

∗𝑦∗

(𝑥∗ + 𝐾1)2
−

ℎ𝑘𝑟1𝑥
∗

(1 + 𝑘𝑦∗)2
−

𝑐1ℎ𝑥∗

𝑥∗ + 𝐾1

𝑐2ℎ(𝑦∗)2

(𝑥∗ + 𝐾2)2
1 − 𝑟2ℎ

)

 
 

. 

 

The characteristic equation 𝐽(𝐸3) is as follows. 

 

𝜆2 − trace (𝐽(𝐸3)) + det (𝐽(𝐸3)) = 0. 

 

If all three of the following criteria are met, the coexistence fixed point 𝐸3 (𝑥
∗, 𝑦∗) is locally 

asymptotically stable: 

i. 1 + trace (𝐽(𝐸3)) + det (𝐽(𝐸3)) > 0, 

ii. 1 − trace (𝐽(𝐸3)) + det (𝐽(𝐸3)) > 0, 

iii. det (𝐽(𝐸3)) − 1 < 0. 

 

The stability of 𝐸3 is depend on time step size ℎ and fear rate 𝑘. 

Remark. Similar to local stability in continuous system, the local stability of fixed point 𝐸0(0,0) 

and 𝐸1 (
𝑟1−𝑒

𝛽
, 0) are always unstable. In continuous system, 𝐸2 (0,

𝑟2𝐾2

𝑐2
) stable if 𝑒 −

𝑟1𝑐2

𝑐2+𝑘𝑟2𝐾2
+

𝑐1𝑟2𝐾2

𝑐2𝐾1
> 0. Different with the stability condition in continuous system, in discrete system there 

is an additional condition that depend on time step size ℎ. The local stability for coexistence 

fixed point in discrete system depend on the time step size ℎ. 
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2. Numerical Simulation 

In this section, for systems (1) and (2), we execute some numerical simulations by choosing 

the time step size which satisfy the stability condition. The values of the parameters used to 

perform the numerical simulations in this article are based on theoretical assumptions because 

the real data is not available, as shown in Table 1 Figure 1, Figure 2, and Figure 3. 

 

Table 1. Parameter value 

Parameter Simulation 1 Simulation 2      Simulation 3    

𝑟1 0.32 0.4      0.7    

𝑘 4 0.5      0.64    

𝛽 0.25 0.25      0.01    

𝑐1 0.5 0.2      0.5    

𝐾1 0.3 0.7      1    

𝑒 0.2 0.2      0.2    

𝑟2 0.4 0.1      0.1    

𝑐2 0.4 0.45      0.1    

𝐾2 0.6 0.3      0.2    

 

 
Figure 1. Bifurcation diagram in (a) (ℎ − 𝑥)-plane and (b) (ℎ − 𝑦)-plane  

for the discrete model with parameter of simulation 1  
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Figure 2.  Numerical solutions 𝑥(𝑡) for the discrete model with parameter  

of simulation 1 with various value of time step size 

 

 
Figure 3.  Numerical solutions 𝑦(𝑡) for the discrete model with parameter  

of simulation 1 with various value of time step size 

 

The initial value for the first simulation is 𝑥(0) = 0.2, 𝑦(0) = 0.5. With the parameter 

values listed in Table 1 for Simulation 1, we found that there are only three fixed points which 

exist, namely the trivial fixed point 𝐸0(0,0) which is unstable, the predator-free fixed point 

𝐸1(0.48,0) which also unstable, and the prey-free fixed point or 𝐸2(0,0.6). The time series for 

𝑥(𝑡) and 𝑦(𝑡) are displayed in Figures 2 and 3, respectively. According to Figure 1, Figure 2, and 

Figure 3, if ℎ < ℎ∗ = 1.81, the solution will converge to the 𝐸2(0,0.6). For the greater time-step 

sizes, the solution may show chaotic behavior (ℎ = 2.6) or maybe stable periodic solution of 
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period two (ℎ = 2) and four (ℎ = 2.4).  The bifurcation diagram Figure 1 illustrates this 

phenomenon by illustrating how different values of time step size ℎ impact a changing value of 

the fixed point. In the second simulation, 𝑥(0) = 0.4 and 𝑦(0) = 0.2 are the initial value. Figures 

5 and 6 show the time series for 𝑥(𝑡) and 𝑦(𝑡), respectively. Figures 4(a) and 4(b) bifurcation 

diagrams illustrate that 𝐸3 is locally asymptotically stable for ℎ < 12.56, loses stability at ℎ =

12.56, and exhibits an attractive invariant curve for ℎ > ℎ∗ = 12.56. The solution stable 

periodic solution of period three is found at ℎ = 12.9, while the solution stable periodic solution 

of period six is found at ℎ = 13.1. Chaotic behavior can be seen by the solution at ℎ = 13.4. 

 

 
Figure 4.  Bifurcation diagram in (a) (ℎ − 𝑥)-plane and (b) (ℎ − 𝑦)-plane  

for the discrete model with parameter of simulation 2 

 

Figure 5. Numerical solutions 𝑥(𝑡) for the discrete model with parameter  

of simulation 2 with various value of time step size 
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Figure 7 illustrates how the time step size affects the system's solution. As step size h rises, 

the size of the limit cycle also increases. As the time step size, ℎ, rises, so does the radius of the 

limit cycle. The biological implications of these numerical findings demonstrate that, although 

the coexistence fixed point. We present two phase portraits pictures at Figure 8 to illustrate the 

dynamics for each case: Figure 9 shows a stable coexistence fixed point when ℎ = 0.6, and in 

Figure 10, where the solution converges to the limit-cycle when ℎ =  0.05.  

 

Figure 6. Numerical solutions 𝑦(𝑡) for the discrete model with parameter  

of simulation 2 with various value of time step size  

 

 
Figure 7. Impact of ℎ to the stability of 𝐸3(𝑥

∗, 𝑦∗) 
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Figure 8. Phase portraits of simulation 3 at (a) ℎ = 0.6 and (b) ℎ = 0.05 

 

 
Figure 9. Solution 𝑥(𝑡) and 𝑦(𝑡) of simulation 3 at ℎ = 0.6 

 

 
Figure 10. Solution 𝑥(𝑡) and 𝑦(𝑡) of simulation 3 at ℎ = 0.05 
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D. CONCLUSION AND SUGGESTIONS 

We investigated a discrete-time predator-prey system that includes the fear effect in this 

paper. The outcome in a continuous system is also unstable; both of the trivial fixed point and 

the predator-free fixed point. We observe a sufficient number of parameters for the local 

stability of the coexistence fixed point and the prey-free fixed point. Furthermore, it is  

demonstrated that the stability of the coexistence fixed point and the free prey fixed point is 

affected by the time step size and fear effect. In contrast to numerical simulations of continuous 

models, which employ small time step sizes to provide precise results, time step sizes for 

numerical simulations of discrete models can be selected based on stability conditions. The 

system exhibits interesting behaviors in numerical simulations through two bifurcations: a flip 

bifurcation that comprises orbits of periods 2, 4, 6, and 8, and an invariant cycle, and chaotic 

sets, respectively. These show that the fixed points are unstable when chaos reigns. Future 

studies can use the global Lyapunov function to determine the global stability of prey-free and 

coexistence fixed point. By applying the center manifold and normal forms theory of 

bifurcation, future research on this topic should yield more analytical conclusions concerning 

bifurcation. 
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