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 Nonparametric path analysis and biresponse nonparametric regression are two 
flexible statistical approaches to analyze the relationship between variables 
without assuming a certain form of relationship. This study compares the 
performance of the two methods with the truncated spline approach, which has the 
advantage of determining the shape of the regression curve through optimal 
selection of knot points. This study aims to evaluate the best model based on linear 
and quadratic polynomial degree with 1, 2, and 3 knot points. The model is applied 
to data with 100 samples and simulated data of various sample levels. The results 
show that the best model in nonparametric path analysis is a quadratic model with 
three knots, while the best model in biresponse nonparametric regression is a 
quadratic model with two knots. Biresponse nonparametric regression has a 
coefficient of determination of 88.8% which is higher than the nonparametric path 
analysis of 70.9%. The best biresponse nonparametric regression model is the 
model with quadratic order and two knots. 
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A. INTRODUCTION  

Path analysis was first developed by Wright in 1934 (Fernandes, 2016). Path analysis is 

used to test the relationship model between variables in the form of cause and effect (Solimun, 

2002). Path analysis is a technique that can be used to determine whether there is a causal 

relationship between exogenous variables and endogenous variables. Path analysis is not only 

used to determine the direct effect of exogenous variables on endogenous variables, but also 

explains whether or not there is an indirect effect given from exogenous variables to 

endogenous variables through mediating endogenous variables. 

There are six assumptions underlying path analysis, namely (1) the relationship between 

variables is linear and additive, (2) the residuals are normally distributed, (3) the relationship 

pattern between variables is recursive, (4) the minimum endogenous variable is on an interval 

measurement scale, (5) the research variables are measured without error and (6) the model 

being analyzed is specified based on relevant theories and concepts (Solimun, 2010). The 

assumption that can make the model change is the linearity assumption. The linearity 

assumption has an influence on the shape of the model. If the linearity assumption is met then 
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the path analysis is parametric, but if the linearity assumption is not met there are 2 

possibilities, nonlinear path analysis is used when the non-linear form is known, but if the 

nonlinear form is unknown and there is no information about the data pattern then use 

nonparametric path analysis. The relationship between variables can be determined using a 

linearity test, one of which is the Regression Specification Error Test (RESET) method. 

Nonparametric regression is a regression method approach where the shape of the curve 

of the regression function is unknown. In nonparametric regression curves, the curve is simply 

assumed to be smooth. The function curve is assumed to be contained in a certain function 

space (Eubank, 1999). The difference between parametric and nonparametric is that in a 

parametric approach the data tends to be forced to follow a certain pattern, while the 

nonparametric approach is given the freedom to find its own regression curve pattern so that 

it is very flexible and objective (Hidayat et al., 2018).  Nonparametric regression is the basis of 

nonparametric path analysis for relationship patterns between exogenous, pure endogenous, 

and mediated endogenous variables. There are several approaches that can be used in 

nonparametric path analysis, namely using Moving Average, Fourier Series, and Spline, Kernel, 

Local Polynomial and Wavelet (Prahutama, 2013).  

Splines are used in nonparametric path analysis because they can follow the pattern of 

relationships between exogenous and endogenous variables and are very flexible (Eubank, 

1999). According to (Hidayat et al., 2018), spline is part or pieces of polynomials that have 

segmented and continuous (truncated) properties. The advantage of truncated spline is that it 

tends to find its own form of estimating the regression curve. This can happen because the 

spline has a combination point that shows the pattern of data behavior called the knot point. 

This study uses a truncated spline by considering the existence of knot points in determining 

the most optimal points. 

A relationship in regression analysis is not always between predictor variables and one 

response variable. Multi-response regression is a regression model when there is more than 

one response variable and one response variable has a relationship with another response 

variable. Multiresponse regression allows the relationship between variables to be seen 

through the variance matrix (Härdle & Liang, 2007). The form of path analysis is similar to 

birresponse regression. The similarity lies in the presence of two response variables (Y), but 

the relationship between response variables is different. In path analysis, the relationship 

between variables Y1 and Y2 is a causal relationship. Whereas in birresponse regression, there 

is no relationship between response variables, but between response variables are correlated, 

so the function estimation process uses weighted least square to accommodate the correlation 

between responses. 

Previous research related to truncated spline nonparametric path analysis is research 

Efendi et al. (2021) entitled "Modelling of Path Nonparametric Truncated Spline Linear, 

Quadratic, and Cubic in Model on Time Paying Bank Credit". From the results of the study, it 

was found that the best model produced using truncated spline nonparametric path analysis 

was a model with a linear polynomial degree of 2 knots. The research can still be developed 

because it only compares 2 knot points at various polynomial degrees, besides that in 

hypothesis testing only uses Linear Function Parameter Hypothesis (HFLP) testing. One 
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example of development is to compare various knot points at linear and quadratic polynomial 

degrees using jackknife resampling hypothesis testing.  

This study aims to address the gaps in the literature by modelling data using a 

nonparametric path analysis with a truncated spline approach and comparing it with 

biresponse regression. By comparing various knot points at linear and quadratic polynomial 

degrees, it is expected to obtain the best truncated spline function. In addition, to see which 

analysis is better, a comparison of the results of nonparametric path analysis with biresponse 

nonparametric regression is carried out. The results of this comparison are expected to provide 

deeper insight into the effectiveness and accuracy of the two methods in estimating causal 

relationships and regression patterns in complex data. These insights will be crucial for 

researchers in choosing the appropriate analytical approach for their studies. 

 

B. METHODS 

1. Truncated Spline Nonparametric Regression Analysis 

Nonparametric regression is used when the assumptions of parametric regression are not 

met, one of which is because the curve does not follow a linear, quadratic and polynomial shape. 

Truncated spline has the advantage of handling data patterns that show sharp changes, either 

in the form of increases or decreases, by using knot points, which are intersection points that 

show changes in data behavior patterns (Firpha & Achmad, 2022). The truncated spline 

nonparametric regression model is as follows. 
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where: 𝑓(𝑋𝑖) is Regression function for which the shape of the pattern to be estimated is 

unknown; 𝑋𝑖  is The i-th predictor variable; i is 1,2,3,…, n where n is the number of observations; 

j is 1,2,3, …, p;p≥1 with p is the order of the spline regression polynomials; k  is 1,2,3, …, K 
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2. Truncated Spline Biresponse Nonparametric Regression Analysis 

Multi-response regression is an approach model where one response variable has a 

relationship with more than one response variable. (Fernandes & Solimun, 2021) describe the 

nonparametric multi-response regression model as shown in equation (2). 
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with the truncated spline function in equation (3). 
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In this case: 

𝑦𝑘𝑖 : The k-th response variable at the i-th observation 

: The l-th predictor variable at the i-th observation 

: The regression function linking the l-th predictor with the k-th response 

𝑛 : The number of observations 

𝑝 : The number of predictor variables 

𝜀𝑘𝑖 : The error in the k-th response at the i-th observation 

 

If equation (2) is applied to biresponse nonparametric regression, the regression model is 

obtained as shown in equation (3). 
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The birespon nonparametric regression model for linear order with 1 knot point is as 

follows. 
1 01 11 1 21 1 11 31 2 41 2 21
ˆ ˆ ˆ ˆ ˆ ˆ( - ) ( - )i i i i if x x k x x k           

 

                                   
2 02 12 1 22 1 12 32 2 42 2 22
ˆ ˆ ˆ ˆ ˆ ˆ( - ) ( - )i i i i if x x k x x k                                               (4) 

 

The birespon nonparametric regression model for linear order with 2 knots is as follows. 
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The birespon nonparametric regression model for quadratic order with 1 knot point is as 

follows. 
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The birespon nonparametric regression model for quadratic order with 2 knots is as follows. 
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3. Truncated Spline Nonparametric Path Analysis 

Parametric path analysis cannot overcome when the regression curve is unknown and the 

linearity assumption is not met. Therefore, nonparametric path analysis was developed. The 

general equation of nonparametric path analysis with two exogenous variables and two 

endogenous variables can be written as follows: 
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where:  1 1 2,i if X X   is  nonparametric path function between exogenous variables and 

endogenous variables endogenous variables  1iY ; and  2 1 2 1, ,i i if X X Y  is nonparametric path 

function between exogenous variable  1 2 1, ,i i iX X Y  and endogenous variable  2iY  The quadratic 

moment truncated spline nonparametric path model with 1 knot point for two exogenous 

variables and two endogenous variables is as follows: 
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where the truncated function: 
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4. Optimal Knot Point Selection 

Wu & Zhang (2006) stated that the method used to determine the optimal knot is the 

Generalized Cross Validation (GCV) method. If the optimal knot point is obtained, the best 

spline function is obtained. The GCV formula is as follows. 
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5. Model Fit Measures 

The coefficient of determination is a measure of the contribution of predictor variables to 

the response variable. The coefficient of determination is used to determine how much 

diversity can be explained by the model formed. According to (Fernandes & Solimun, 2021), the 

coefficient of determination formula is as follows. 
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where:  𝑅2 is Total coefficient of determination; kiy  is The i-th value of the endogenous variable; 

ˆ
kif  is The i-th function estimator for the endogenous variable; ky  is Average of endogenous 

variables; i is 1,2, …, n with n number of observations. 

 

6. Jackknife Resampling 

A simple resampling technique has been used long before the bootsrap method was 

invented, namely jackknife resampling. In 1949 the jackknife method was first discovered by 

Quenouille which is used to estimate the bias of an estimator by removing some sample 

observations. The jackknife method is known as a resampling method without returns, so there 

is an intertwined relationship in each resampling process. The jackknife method can be used to 

construct the variance of an estimator (Rodliyah, 2016). According to Aidi & Saufitra (2007) the 

jackknife method can be divided based on the amount of data removed into jackknife. In 

WarpPLS 6 software, the algorithm of the jackknife resampling process is called delete one, 
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which is done by removing one sample and repeating it on each sample until the last. Suppose 

there is a sample 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝜃 = 𝑠(𝑥)  is an estimate for a parameter.  

 

7. Hypothesis Testing (Resampling) 

Hypothesis testing uses t test statistics, where parameter estimates and standard errors 

are obtained from jackknife resampling. Hypothesis testing with t test statistics as follows.  

 

Test statistic 
ˆ

1~
ˆ

j

j

nt t
SE




      (12) 

 

The hypothesis used for the test statistics in formula (6) is as follows.  
0 : 0jH   (there is no 

partial influence); and 
1 : 0jH   ( there is a partial influence). The test criteria, namely if the 

test statistic 𝑡 > 𝑡𝛼/2(𝑛−1) then 𝐻0 is rejected, which means that there is a significant influence 

between exogenous variables on endogenous variables.  

 

8. Research Methods and Research Model 

This study uses truncated spline nonparametric path analysis as the primary analytical 

method. In addition, nonparametric biresponse regression is also employed to provide a 

comparative perspective on the results. The path model was analyzed to determine the best 

nonparametric path function between linear and quadratic polynomial degrees with 1, 2, and 3 

knot points and then tested the best model hypothesis with the t test at the jackknife resampling 

stage. The software used in this research is R Studio. The data used in this study is primary data 

from a research grant conducted by Fernandes in 2024 with a sample size of 100 samples. The 

variables used in this study consisted of two exogenous variables, mediating endogenous 

variables, and pure endogenous variables. For the truncated spline nonparametric path 

analysis, the variables consist of two exogenous variables, mediating endogenous variables, and 

pure endogenous variables. Meanwhile, in the nonparametric biresponse regression analysis, 

the variables include two predictor variables and two response variables. The research model 

can be seen in Figure 1 and Figure 2.  

 

 
Figure 1. Nonparametric Path Analysis Research Model 
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If the mediation of endogenous variables does not exist, and there is a correlation between 

endogenous variables, then the research model looks like the following, namely using 

biresponse nonparametric regression.   

 

 
Figure 3. Nonparametric Biresponse Regression Analysis Research Model 

 

The following is a flow chart showing the research method presented explicitly in Figure 3.  

 

Nonparametric Path Analysis Nonparametric Biresponse Regression 

Analysis 

 

 
 

 

 

Figure 3. Flow Chart 
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C. RESULT AND DISCUSSION 

1. Linearity Test 

The linearity test aims to determine the existence of a linear relationship between more 

than two variables. The results of the linearity test with Ramsey's RESET are presented in Table 

1. 

 

Table 1. Linearity Assumption Test Results 

Variables P-value Relationship 
 (𝑿𝟏) → (𝒀𝟏) <0.001 Nonlinear 
(𝑿𝟐) → (𝒀𝟏) <0.001 Nonlinear 
 (𝑿𝟏) → (𝒀𝟐) 0.04 Nonlinear 
(𝑿𝟐) → (𝒀𝟐) 0.04 Nonlinear 

 (𝒀𝟏) → (𝒀𝟐) 0.03 Nonlinear 

 

Based on Table 1 it can be seen that the test results with Ramsey's RESET show that the 

relationship between variables has a p-value <0.05 so 𝐻0 is rejected. With a real level of 5%, it 

is known that the relationship between variables is not linear and the form of nonlinearity has 

not been found. 

 

2. Best Model Selection  

The criterion used to determine the best model is a small GCV value. The best model is the 

model that has the optimal knot points.  

 
Table 2. Comparison of GCV and 𝑹𝟐 of each Model 

Analysis Orde Knot Point GCV Model 𝑹𝟐 
Nonparametric 

Truncated Spline 
Path Analysis 

Linear 1 6.5778 0.3487 
2 6.3714 0.4308 
3 6.0898 0.5419 

Quadratic 1 6.7152 0.3826 
2 5.7995 0.5828 
3 5.2492 0.6933 

Biresponse 
Truncated Spline 

Regression  

Linear 1 0.3861 0.8412 
2 0.3645 0.8743 

Quadratic 1 0.3642 0.8751 
2 0.3561 0.8852 

 

Based on Table 3, it can be seen that the nonparametric truncated spline path analysis lies 

in the GCV value of 5.2492 with the highest coefficient of determination of 69.33%. While in 

biresponse truncated spline regression, the lowest GCV value is 0.3561 with a coefficient of 

determination of 88.52%. This means that in nonparametric truncated spline analysis, the best 

model is the quadratic order model with three knot points. Meanwhile, in biresponse truncated 

spline regression, the best model is the quadratic model with two knot points. 
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3. Best Truncated Spline Nonparametric Path Model 

Based on the explanation in sub chapter C.2, the best nonparametric truncated spline path 

model is obtained, namely the quadratic polynomial degree truncated spline nonparametric 

path model (order p = 2) with 3 knot points and biresponse truncated spline regression (order 

p = 2) with 2 knot points. Here are the optimal knot points and the best model goodness test. 

 

Table 3. Optimal Knot Points of Truncated Spline Nonparametric Path Model 

Variable 
Relationship 

Nonparametric Truncated Spline 
Path Analysis 

Biresponse Truncated Spline 
Regression 

Knot Point 
Optimal 

Final GCV 
and 𝑹𝟐 

Knot Point 
Optimal 

Final GCV 
and 𝑹𝟐 

𝑋1  → 𝑌1  𝐾11 = 1.12 

GCV = 5.2442 
𝑅2 = 0.7096 

𝐾11 = 2.81 

GCV = 0.353 
𝑅2 = 0.888 

𝐾12 = 1.54 𝐾12 = 3.19 
𝐾13 = 1.84 

 𝑋2 →  𝑌1   𝐾21 = 2.02 𝐾21 = 2.12 
𝐾22 = 2.82 𝐾22 = 3.11 

𝐾23 = 5 
𝑋1  → 𝑌2  𝐾31 = 1.24 𝐾31 = 2.81 

𝐾32 = 1.58 𝐾32 = 3.19 
𝐾33 = 2.93 

𝑋2  → 𝑌2 𝐾41 = 1.79 𝐾41 = 2.08 
𝐾42 = 3.31 𝐾42 = 3.08 

𝐾43 = 5 
𝑌1  → 𝑌2 𝐾51 = 3.54  

𝐾52 = 4.51 
𝐾53 = 6.28 

 

Based on Table 3, for Nonparametric Truncated Spline Path Analysis, it can be seen that the 

GCV value is 5.2442 and the 𝑅2 value is 0.7096. It can be interpreted that the model formed can 

explain the response variable by 70.9% and the rest is explained by other factors that cannot 

be known in the model by 29.1%. The following are the results of the best model estimator. 
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From the best model estimation results above, then form a relationship pattern between 

exogenous variables to endogenous variables in the research model using a quadratic 

polynomial degree truncated spline nonparametric path function with 3 knot points as follows.  
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𝑿𝟏 → 𝒀𝟏 

 
𝑿2 → 𝒀1 

 
𝑿𝟏 → 𝒀2 

 
𝑿2 → 𝒀2 

 
𝒀𝟏 → 𝒀2 

Figure 4. Relationship Pattern Curve of the Best Combined  

Truncated Spline Path Model Analysis 

 

Based on Figure 4, it can be seen that the relationship graph between the 𝑋1 and 𝑌1 in the 

quadratic polynomial degree truncated spline nonparametric path model with 3 knot points is 

divided into four regimes. The first regime is shown when (𝑋1𝑖) < 1.12 where 𝑋1 is in the very 

low category, the second regime when 1.12 ≤ (𝑋1𝑖) < 1.54  or 𝑋1 is in the low category, the third 

regime when 1.54 ≤  (𝑋1𝑖) < 1 where 𝑋1 is in the high category, the fourth regime whe  (𝑋1𝑖) 

≥1.84 or 𝑋1 is in the very high category. The relationship between 𝑋2 and 𝑌1is a nonparametric 

truncated spline of quadratic polynomial degree with 3 knots divided into four regimes. The 

first regime is shown when (𝑋2𝑖)< 2.02 where 𝑋2 is in the very low category, the second regime 

when 2.02 ≤ (𝑋2𝑖) < 2.82 or 𝑋2 is in the low category, the third regime when 2.82 ≤ (𝑋2𝑖)< 5 

where 𝑋2 is in the high category, and the fourth regime when (𝑋2𝑖)≥ 5% or 𝑋2 is in the very high 

category. The increase in the estimation line in regime 3 means that the higher the 𝑋2  will 

increase 𝑌1 . However, this is contradicted in regime 4, where there is a decrease in the 

estimation line of the 𝑌1 even though the 𝑋2 is higher than in regime 3.  

The relationship between 𝑋1  and 𝑌2  is a nonparametric truncated spline of quadratic 

polynomial degree with 3 knots divided into four regimes. The first regime is shown 

when(𝑋1𝑖)< 1.24 where 𝑋1 is in the very low category, the second regime when 1.24 ≤ (𝑋1𝑖) < 
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1.58 or 𝑋1 is in the low category, the third regime when 1.58 ≤ (𝑋1𝑖) < 2.93, where 𝑋1is in the 

high category, and the fourth regime when (𝑋1𝑖) ≥ 2.93 or 𝑋1is in the very high category. The 

increase in the estimation line in regime 4 which previously experienced a decrease means that 

the higher the 𝑋1will increase the 𝑌2. However, this is contradicted in regime 1, where there is 

an increase in the estimation line of 𝑌2 even though 𝑋1 is lower than regime 4. 

The relationship between the variable 𝑋2  and 𝑌2  is a nonparametric truncated spline of 

quadratic polynomial degree with 3 knots divided into four regimes. The first regime is shown 

when (𝑋2𝑖) < 1.79 where 𝑋2is in the very low category, the second regime when 1.79 ≤ (𝑋2𝑖) < 

3.31 or 𝑋2is in the low category, the third regime when 3.31 ≤ (𝑋2𝑖) < 5 where 𝑋2 is in the high 

category, and the fourth regime when (𝑋2𝑖) ≥ 5 or 𝑋2is in the very high category. The increase 

in the estimation line of 𝑌2  in regime 4 means that the higher the 𝑋2 will increase the 𝑌2 . 

However, this is contradicted in regime 1, where there is an increase in the estimation line of 

𝑌2 even though the 𝑋2 is lower than regime 4.  

The relationship between the variable 𝑌1 and 𝑌2 is a nonparametric truncated spline degree 

quadratic polynomial 3 knots which is divided into four regimes. The first regime is shown 

when (𝑌1𝑖) < 3.54 where the 𝑌1  is in the very low category, the second regime when 3.54 ≤ (𝑌1𝑖) 

< 4.51 or the 𝑌1 is in the low category, the third regime when 4.51% ≤ (𝑌1𝑖) < 6.28 where the 

𝑌1 is in the high category, and the fourth regime when (𝑌1𝑖) ≥ 6,28 or the 𝑌1 is in the very high 

category. The increase in the estimation line in regime 4, then the decrease in the estimation 

line of 𝑌2 means that the higher the 𝑌1  has not been able to increase the 𝑌2  optimally. Other 

evidence can be seen in regime 1 where when the 𝑌1 is lower than in regime 4, it is more optimal 

in increasing the 𝑌2. Based on Table 4, for BiresponseTruncated Spline Regression Analysis, it 

can be seen that the GCV value is 0.353 and the 𝑅2 value is 0.888. It can be interpreted that the 

model formed can explain the response variable by 88.9% and the rest is explained by other 

factors that cannot be known in the model by 11.1%. The following are the results of the best 

model estimator. 
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from the best model estimation results above, then form a relationship pattern between 

predictor variables to research variables in the research model using a quadratic polynomial 

degree truncated spline regression function with 2 knot points as follows.  
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                                        𝑿𝟏 → 𝒀𝟏                                                                         𝑿2 → 𝒀1 

    
                                        𝑿𝟏 → 𝒀𝟐                                                                         𝑿2 → 𝒀2 

Figure 5. Relationship Pattern Curve of the Best Combined Biresponse  

Truncated Spline Regression Model Analysis 

 

Based on Figure 5, it can be seen that the relationship model between the predictor 

variables and the response variable can be flexible to follow the data pattern. Each relationship 

is divided into three regimes. When 𝑋1 is less than 2.814 (<74%) or 𝑋1 is good enough, it causes 

a significant increase in 𝑌1 and 𝑌2. However, when 𝑋1 is more than 2.814 and less than 3.191 

(74% - 89%) or 𝑋1 is good, the value of 𝑌1  tends to decrease while 𝑌2  tends to increase. el 

response can be flexible to follow the data pattern. Conversely, when 𝑋1 is worth more than 

3,191 (> 89%) or 𝑋1 is very good, the value of 𝑌1 tends to increase while 𝑌2 tends to decrease. 

This is in accordance with the results of the hypothesis test which states that there is a 

significant influence between 𝑋1 on 𝑌1 and 𝑌2 as indicated by significant changes in response 

values. 

The relationship between 𝑋2 and 𝑌1 and 𝑌2 in the nonparametric birespon truncated spline 

regression model of quadratic polynomial degree (order p=2) with 2 knots is divided into three 

regimes. The first regime is shown when 𝑋2𝑖 < 2.118. The second regime is when 2.118 < 𝑋2𝑖 < 

3.118 and the third regime is when 𝑋2𝑖 > 3.118. When 𝑋2 is less than 2.118 (< 12%) or 𝑋2 is 

good enough, it causes an increase in 𝑌1 and 𝑌2. However, when 𝑋1 is more than 2.118 and less 

than 3.118 (12% - 90%) or 𝑥2 is good, there is a significant increase in 𝑌1 and 𝑌2. Meanwhile, 

when 𝑋2 is worth more than 3.118 (> 90%) or 𝑋2 is very good, 𝑌1 tends to increase while 𝑌2 

tends to decrease. This is in accordance with the results of the hypothesis test which states that 

the significant effect of 𝑋2 on 𝑌1 and 𝑌2 only occurs when the marketing relationship is of high 

value. Based on Table 4, it can be seen that birresponse nonparametric regression analysis has 
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a higher coefficient of determination than truncated spline nonparametric path analysis. 

However, to determine the consistency of the coefficient of determination of the two analyses, 

a simulation study was conducted based on the sample size with the following analysis results, 

as shown in Table 5. 

 

Table 5. Simulation Study Results 

Sample 
Size 

Average of Coefficient Determination 
Nonparametric Truncated Spline Path 

Analysis 
Biresponse Truncated Spline 

Regression 
100 0.7143 0.8762 
300 0.7235 0.8852 
500 0.7595 0.8974 

 

The analysis shows that the average coefficient of determination for Nonparametric 

Truncated Spline Path Analysis and Biresponse Truncated Spline Regression method increases 

as the sample size increases. At a sample size of 100, the Nonparametric Truncated Spline Path 

Analysis method was able to explain about 71.43% of the variation in the data, while the 

Biresponse Truncated Spline Regression method performed better with a coefficient of 

determination of 87.62%. When the sample size increased to 300, the coefficient of 

determination of the path analysis method increased to 72.35%, but remained lower than the 

biresponse method, which recorded a coefficient of determination of 88.52%. At the largest 

sample size of 500, the performance of both methods improved further. The path analysis 

method recorded a coefficient of determination of 75.95%, while the biresponse method 

reached 89.74%, close to 90%. Overall, the Biresponse Truncated Spline Regression method 

consistently performed better than Nonparametric Truncated Spline Path Analysis, especially 

at larger sample sizes, indicating a better ability to explain data variation. 

 

4. Hypothesis Testing of the Best Model 

Hypothesis testing using the t test is carried out on the best model, namely the quadratic 

polynomial degree truncated spline nonparametric path model (order p = 2) with 3 knot points 

through the jackknife method which begins with resampling jackknife. Jackknife resampling in 

this study was carried out by removing two random observations at each resampling stage. 

Resampling is done 1000 times. The hypothesis used is as follows. 
0 : 0jH   (there is no 

partial influence); and 
1 : 0jH   (there is a partial influence), as shown in Table 6. 

 

Table 6. Best Model Hypothesis Testing Results 

Relationship Function Estimator Test Statistic t p-value Decision 

𝑿𝟏 → 𝒀𝟏 
 

𝛽11𝑋1 14.62 <0.001 Significant 
𝛽12𝑋1

2 -15.15 <0.001 Significant 

𝛽13(𝑋1 − 𝐾11)2 15.77 <0.001 Significant 
𝛽14(𝑋1 − 𝐾12)2 -15.48 <0.001 Significant 

𝛽15(𝑋1 − 𝐾13)2 13.51 <0.001 Significant 
𝑿𝟐 → 𝒀𝟏 

 
𝛽16𝑋2 8.84 <0.001 Significant 
𝛽17𝑋2

2 -23.65 <0.001 Significant 

𝛽18(𝑋2 − 𝐾21)2 31.12 <0.001 Significant 
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Relationship Function Estimator Test Statistic t p-value Decision 

𝛽19(𝑋2 − 𝐾22)2 -26.24 <0.001 Significant 
𝛽110(𝑋2 − 𝐾23)2 -3.07 <0.001 Significant 

𝑿𝟏 → 𝒀𝟐 
 

𝛽21𝑋1 -21.55 <0.001 Significant 
𝛽22𝑋1

2 -27.76 <0.001 Significant 

𝛽23(𝑋1 − 𝐾31)2 25.69 <0.001 Significant 
𝛽24(𝑋1 − 𝐾32)2 -22.88 <0.001 Significant 

𝛽25(𝑋1 − 𝐾33)2 17.84 <0.001 Significant 
𝑿𝟐 → 𝒀𝟐 

 
𝛽26𝑋2 2.32 <0.001 Significant 
𝛽27𝑋2

2 -7.00 <0.001 Significant 

𝛽28(𝑋2 − 𝐾41)2 9.41 <0.001 Significant 
𝛽29(𝑋2 − 𝐾42)2 -7.38 <0.001 Significant 
𝛽30(𝑋2 − 𝐾43)2 -5.90 <0.001 Significant 

𝒀𝟏 → 𝒀𝟐 
 

𝛽31𝑌1 20.38 <0.001 Significant 
𝛽32𝑌1

2 -22.83 <0.001 Significant 

𝛽33(𝑌1 − 𝐾51)2 26.08 <0.001 Significant 
𝛽34(𝑌1 − 𝐾52)2 -18.92 <0.001 Significant 
𝛽35(𝑌1 − 𝐾53)2 -10.13 <0.001 Significant 

 

In Table 6 it can be seen that the p-value has a value less than (0.05), so it can be decided 

to reject 𝐻0 in testing the hypothesis of each variable.  

 

D. CONCLUSION AND SUGGESTIONS 

The analysis shows that the best nonparametric path model is the equation model with 

quadratic order and 3 knots. While the best birresponse nonparametric regression model is a 

model with quadratic order and 2 knots. Among the two analyses, the birresponse 

nonparametric regression has a higher coefficient of determination than the nonparametric 

path analysis, even at various sample sizes. The larger the sample size, the higher the coefficient 

of determination. However, the relationship in birresponse regression only applies to the 

relationship between predictor variables and response variables, not facilitating the presence 

of mediating variables such as path analysis. Future research is recommended to detect the 

consistency of the GCV value and the coefficient of determination in various scenarios of linear 

and quadratic models with various levels of knots to determine the best model scenario from 

both analyses.  
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