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 Indonesia’s tropical climate, marked by rainy and dry seasons, is increasingly 
affected by extreme weather events driven by climate change. Rising temperatures, 
shifting rainfall patterns, and sea-level rise have intensified health risks such as 
malaria, dengue hemorrhagic fever (DHF), and gastrointestinal infections. Accurate 
weather forecasting is essential for mitigating these challenges and informing risk 
management strategies. This study develops and evaluates a hybrid SARIMA-LSTM 
model for weather forecasting in Bandar Lampung, integrating time series analysis 
with deep learning to enhance predictive accuracy. SARIMA captures seasonal 
variations, while LSTM models nonlinear relationships, offering a robust approach 
to forecasting complex weather patterns. The SARIMA (6,1,0)(3,1,0)26 model was 
selected for its effective seasonal representation and combined with LSTM to 
leverage its capability in modelling nonlinear dependencies. Hyperparameter 
optimization using grid search further improved model performance. Two data 
partitioning approaches were tested: 70%-30% and 80%-20% splits for training 
and testing, respectively. The SARIMA-LSTM hybrid model demonstrated superior 
performance with the 80%-20% split, achieving MSE, RMSE, and MAPE values of 
0.1174, 0.3426, and 0.0104%, respectively. The model accurately forecasted 
weather conditions over 21 weeks, aligning closely with observed trends and 
effectively capturing seasonal patterns. These findings underscore the model’s 
potential to support public health strategies, including disease outbreak mitigation 
for malaria and DHF, and enhance disaster preparedness in flood-prone areas. 
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A. INTRODUCTION  

Indonesia, known for its tropical climate and distinct seasons, has witnessed significant 

weather fluctuations attributed to climate change (M. Rizki et al., 2020). These changes 

encompass higher temperatures, altered rainfall patterns, rising sea levels, forest fires, 

droughts, and floods (Abbass et al., 2022; Ainurrohmah & Sudarti, 2022; Kulkarni et al., 2022; 

Lipczynska-Kochany, 2018; Michel et al., 2021; Murshed & Dao, 2022; Rocque et al., 2021). In 

Bandar Lampung City, climate change has notably increased the frequency of flood events. 

According to Kurniadi et al. (2020), seasonal flooding occurs almost annually, resulting in 

significant losses. Flood-prone areas demand targeted interventions, urging residents and local 

authorities to adopt proactive measures for prevention. Over the past decade, BNPB recorded 

16 flooding incidents in Bandar Lampung, affecting 14,000 individuals, displacing over 500 

people, damaging more than 900 homes, and impacting four public facilities. 

Climate change has had a profound impact on public health, contributing to increased 

incidences of diseases such as malaria, Dengue Fever (DF), and gastrointestinal infections 
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(Ahmed et al., 2020; Fatmawati & Sulistyawati, 2019; Kaseya et al., 2024). These diseases thrive 

in environments affected by unpredictable weather patterns, creating favourable conditions for 

spreading and transmitting illnesses. The incidence of dengue, malaria, and diarrhoea in Bandar 

Lampung has demonstrated notable annual fluctuations. Dengue cases rose from 829 in 2017 

to 1,198 in 2019, while diarrhoea cases increased from 18,136 in 2017 to 22,304 in 2019, 

reflecting a substantial rise. Conversely, malaria cases declined significantly from 932 in 2017 

to 376 in 2019. Despite a marked decrease in 2022, with reported cases of dengue at 1, 

diarrhoea at 4, and malaria at 250, a resurgence has since occurred. Recent data from the Badan 

Pusat Statistik (2023) indicate 202 cases of dengue, 5,767 cases of diarrhoea, and 230 cases of 

malaria, underscoring the increasing variability and unpredictability of these diseases over 

time. 

The two phenomena—floods and disease endemics—represent just a fraction of the 

broader impacts of weather changes in Bandar Lampung. Accurate weather forecasting is 

crucial for mitigating risks associated with extreme weather, providing vital support to 

governments and local communities. BMKG currently offers public services such as 3-day 

extreme weather forecasts, same-day alerts, and notifications for events expected within 2-3 

hours (Nurpambudi & Aziz, 2023). These services present opportunities for improvement, 

enabling the daily dissemination of weather information. This study aims to develop long-term 

weather forecasts for Bandar Lampung. 

 Unfortunately, accurate weather forecasting is crucial in helping the government and the 

community manage risks associated with extreme weather events. Weather forecasting 

continues to pose a worldwide challenge owing to its inherent unpredictability and the 

complexities involved in time series forecasting (Kumar & Jha, 2013; Mung & Phyu, 2023). Time 

series forecasting, a field within predictive analytics, anticipates future values of a variable 

based on historical data or observations (Sandhya Arora, Milind Kolambe, 2024). Time series 

data are characterized by four main patterns: constant (horizontal), trend, cyclical, and 

seasonal  (Nurfadila & Ilham Aksan, 2020). Weather data commonly exhibit seasonal patterns. 

Time series data often contain both linear and nonlinear elements, yet neither linear nor 

nonlinear models fully capture the information within (Zhao et al., 2023). Consequently, 

researchers have proposed integrated models that incorporate both components. Linear 

models, such as the Seasonal Autoregressive Moving Average (SARIMA), are designed to 

identify and represent recurring seasonal patterns in data, including weekly, monthly, or 

annual cycles (Kumari & Muthulakshmi, 2024). SARIMA utilizes statistical methods to forecast 

future values by analyzing historical seasonal trends. Its primary strength lies in generating 

accurate short-term forecasts, assuming seasonal patterns will persist. However, SARIMA’s 

effectiveness diminishes in long-term predictions, as seasonal trends may change over time, 

leaving residuals with nonlinear elements that are inadequately addressed (D. C. W. Wu et al., 

2021). 

In contrast, Deep Learning (DL) models like Long Short-Term Memory (LSTM) are adept at 

capturing nonlinear patterns and long-term dependencies in time series data. LSTM utilizes a 

feedback mechanism and memory components to learn complex temporal relationships 

effectively (Ni et al., 2020). This capability enables LSTMs to overcome challenges faced by 

SARIMA, particularly in long-term forecasting involving nonlinear patterns without seasonal 
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repetition (Y. Wu et al., 2024). However, LSTMs present certain drawbacks, including extended 

processing times and high computational demands due to their complexity. This study 

combines SARIMA and LSTM to capitalize on the strengths of both methods, addressing their 

respective limitations. While SARIMA excels at identifying seasonal patterns, LSTM is more 

adept at capturing nonlinear relationships that SARIMA may miss. The integrated model aims 

to improve the accuracy and reliability of time series forecasts, particularly for weather data. 

 A previous study by Sun et al. (2020) combines SARIMA and LSTM models to forecast sea 

level changes caused by extreme weather events. The SARIMA model addresses linear data 

trends, while LSTM captures nonlinear patterns. Their study decomposes sea level anomalies 

(SLAs) into seasonal and random components, with SARIMA predicting the seasonal trends and 

LSTM forecasting the random elements. Using sea level data from 1993 to 2018, the 

SARIMA+LSTM model outperforms other models, achieving a minimum mean square error of 

1.155 cm and a maximum R² of 0.89. The predicted outcomes align with SLA data, 

demonstrating the model’s effectiveness in estimating sea level variability. Li & Yang (2023) 

proposed a hybrid model that integrates SARIMA and LSTM to improve air temperature 

forecasting accuracy. The model decomposes the temperature data into trend, seasonal, and 

residual components using the Loess technique. SARIMA handles the trend and seasonal 

components, capturing linear patterns, while LSTM models focus on the residuals to detect 

nonlinear patterns. This combination has demonstrated a 10.0–27.7% improvement in 

accuracy over other individual and hybrid models, as evaluated using metrics such as RMSE, 

MAPE, MAE, and the Kupiec index. 

Amougou et al. (2024) developed a SARIMA-LSTM model to forecast climate change in the 

Sudo-Sahelian region of Cameroon, aimed at aiding climate adaptation strategy formulation. 

The model integrates two climate datasets—temperature and precipitation—derived from 

both in-situ measurements and spatial grid data. Using machine learning, the data were 

processed to create mathematical equations that capture the climate system’s dynamics, 

enhancing forecasting accuracy for future climate scenarios and supporting adaptation 

planning. The results show that the SARIMA-LSTM model outperforms the standalone LSTM 

model, achieving a Mean Squared Error (MSE) of 0.19, compared to 0.31 for the latter. 

Numerous studies demonstrate that integrating SARIMA and LSTM models enhances 

prediction accuracy and forecasting performance. However, their application in weather 

forecasting, particularly in tropical regions like Bandar Lampung, Indonesia, remains limited 

and underexplored. This study aims to fill this gap by developing a SARIMA-LSTM model 

tailored for weather forecasting in Bandar Lampung, focusing on improving prediction 

precision and aligning with local climate conditions. Additionally, the research explores 

enhancing public health strategies in Bandar Lampung, with a focus on dengue prevention and 

strengthening disaster preparedness in flood-prone areas. 

 

B. RESEARCH METHODS 

This study utilized two different methods for dividing the data: one allocated 70% for 

training and 30% for testing, while the other adopted an 80% training and 20% testing split. 

Hyperparameter tuning was implemented to enhance the model’s performance. The optimized 

model’s effectiveness was assessed using metrics like MSE, RMSE, and MAPE. Constructing the 
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forecasting model encompassed data pre-processing, forecasting with the SARIMA model, 

employing the hybrid SARIMA-LSTM model for forecasting, and evaluating the model. Section 

2 provides comprehensive descriptions of each of these steps. 

1. Data Input 

The data utilized in this research consists of daily weather information obtained from the 

BMKG website at http://dataonline.bmkg.go.id/home. The dataset includes 4,746 observations 

collected over 13 years from the Maritime Meteorology Station in Panjang, Tanjung Karang, 

Kota Bandar Lampung. It encompasses nine variables: minimum temperature, maximum 

temperature, average temperature, minimum humidity, rainfall, sunshine duration, maximum 

wind speed, maximum wind direction, and minimum wind speed. However, this study focuses 

specifically on one variable that exhibits seasonal patterns: the Daily Minimum Temperature 

(Tn). The selection of this variable aligns with the application of SARIMA, which is a univariate 

approach.  

 

2. Data Pre-processing 

Data pre-processing, or preparation, involves cleaning, transforming, and organizing raw 

data before analysis. This phase is critical as many forecasting techniques depend on 

assumptions about the data’s characteristics (Meisenbacher et al., 2022). This study’s pre-

processing includes cleaning the data by addressing missing values and converting daily time 

series into weekly patterns. Missing values in time series data can arise from factors such as 

human error, technical issues, or equipment failures. Imputation is a standard method for 

handling these gaps, where missing values are estimated based on recent or historical data. 

This technique fills in missing values using information from adjacent time points (Petrusevich, 

2021). Another method, interpolation, estimates missing values by averaging between nearby 

data points (Khattab et al., 2023). Both methods can be effective, but the choice should depend 

on the time series characteristics and the analysis objective (Liao et al., 2022). This study 

employs imputation techniques due to their versatility in handling both numerical and 

categorical data. Imputation estimates missing values using statistical or DL methods, aligning 

with the approach used here. In contrast, interpolation derives values based on mathematical 

relationships within the existing dataset. The chosen method significantly influences model 

outcomes, impacting both precision and reliability. Therefore, selecting the appropriate 

technique is crucial for ensuring the quality of the analysis and the accuracy of model 

predictions. 

 

3. SARIMA Model 

SARIMA, an advancement of ARIMA, is designed to analyze time series data with seasonal 

patterns (Chen et al., 2018). This method is renowned for its high accuracy in short-term 

forecasting. It employs two types of orders: non-seasonal, denoted as (p, d, q), and seasonal, 

represented as (P, D, Q, s). The non-seasonal order includes Autoregressive (AR) parameters, 

differencing level (d), and Moving Average (MA) parameters. The seasonal order extends these 

by incorporating seasonal AR (P), seasonal differencing (D), seasonal MA (Q), and periodicity 

(s). The seasonal differencing parameter (D) is an integer indicating the level of seasonal 

integration, while P and Q denote the seasonal lag for AR and MA. These values may be fixed or 

http://dataonline.bmkg.go.id/home
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iterative, depending on the relevant seasonal lag (M. I. Rizki & Taqiyyuddin, 2021; Sirisha et al., 

2022). The selection of SARIMA parameters was based on analyzing the time series data’s 

patterns and characteristics. Non-seasonal parameters (p, d, q) were chosen to model the linear 

relationship (p), ensure stationarity (d), and address noise (q), identified through PACF and 

ACF graphs. Seasonal parameters (P, D, Q, s) were used to capture seasonal patterns (P), remove 

non-stationary seasonal trends (D), manage seasonal noise (Q), and define the seasonal period 

length (s) tailored to the data’s characteristics. 

a. Testing Stationarity 

Before making predictions using the SARIMA model, it is crucial to verify that the data 

meets the assumption of stationarity, indicating stability without significant changes 

(Makridakis, S., Wheelwright S.C, 2017). That is important because many statistical 

forecasting methods assume time series are stationary, while those with trends or 

seasonal patterns are non-stationary due to changes in mean, variance, or both over time. 

Thus, appropriate transformations are necessary when applying these methods to non-

stationary data (Meisenbacher et al., 2022). The stationarity of a time series can be 

assessed using the Augmented Dickey-Fuller (ADF) test, which determines whether a 

time series is stationary or non-stationary by examining the presence of a unit root. This 

test compares the current value with the series mean: if above the mean, the series tends 

to decrease; if below, it tends to increase (Ensafi et al., 2022). Equation (1) illustrates 

these changes, where µ is a constant, 𝛽 is the coefficient on the time trend, k is the lag 

order of the autoregressive process, and ∆𝑦(𝑡) is defined as: 

 

∆𝑦(𝑡)  =  𝜆𝑦(𝑡 − 1) + 𝜇 + 𝛽𝑡 + 𝛼1∆𝑦(𝑡 − 1)±. . . +𝛼𝑘∆𝑦(𝑡 − 𝑘)  (1) 

 

The null hypothesis posits that the time series is non-stationary (𝜆 = 0). Rejecting this 

hypothesis indicates that future movements (∆𝑦( 𝑡)) are not purely random but depend 

on the current level, implying that the time series is stationary.  

b. Differencing 

Non-stationary data can be converted into stationary data through a differencing 

procedure. Differencing involves computing the disparity between data at one time 

period (𝑍𝑡) and the preceding period (𝑍𝑡−1), as illustrated in Equation (2). 

 

∆𝑍𝑡 = (1 − 𝐵)𝑍𝑡        (2) 

 

With 𝑍𝑡  represents the data post-first-order differencing, and notation 𝐵 denoting the 

backward shift operator. This procedure (∆Zt) can be iterated up to n times until the 

data achieves stationarity (Makridakis, S., Wheelwright S.C, 2017). The equation for 𝑛-

th order differencing can be defined by Equation (3). 

 

∆𝑛𝑍𝑡 = (1 − 𝐵)𝑛𝑍𝑡 ,      𝑛 ≥ 1        (3) 
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c. SARIMA Model Forecasting 

In this stage, stationary data are used to build an initial model by assessing the value of 

each parameter. The values of p and P are identified from the Autocorrelation Function 

(ACF) plot, while q and Q are observed from the Partial Autocorrelation Function (PACF) 

plot. Next, the preliminary SARIMA model undergoes parameter estimation, examining 

the significance of parameters and model diagnostics. A model is considered satisfactory 

if it exhibits characteristics of white noise and conforms to a normal distribution. White 

noise is a condition where residuals lack correlation, detected through autocorrelation 

tests during residual analysis (Wei, 2006). A model passes the white noise test if its 

residuals are random, indicating no autocorrelation or discernible patterns. Equation 

(4) illustrates the statistical test using the Ljung-Box test to identify autocorrelation 

within a model (Montgomery et al., 2012): 

 

𝐿𝐵 = 𝑛(𝑛 + 2) ∑
𝑟𝑘

𝑛−𝑘

𝑚
𝑘=1      (4) 

 

Meanwhile, the normality or residual distribution test evaluates whether residuals 

adhere to a normal distribution based on the collected data. The normality of residuals 

can be evaluated using the Kolmogorov-Smirnov test, as described in Equation (5) 

(Montgomery et al., 2012): 

  

𝐷 = 𝐾𝑆 = 𝑚𝑎𝑥|𝐹0(𝑋) − 𝑆𝑛(𝑋)|          (5) 

 

If multiple SARIMA models meet the criteria for parameter estimation, Akaike 

Information Criterion (AIC) values are then examined to assess model suitability. The 

SARIMA model with the lowest AIC value is considered the most suitable for forecasting 

purposes.  

 

4.  LSTM Model 

 Long Short-Term Memory (LSTM) is an advancement of the RNN model that has proven 

effective in tasks such as classification, processing, and prediction of unknown functional 

relationships within time series data (Yadav et al., 2020). The LSTM architecture typically 

includes a memory cell, an input gate, an output gate, and a forget gate. Each gate plays a specific 

role in determining which information to discard, retain, or incorporate into the model. In 

forecasting, LSTM aims to produce precise predictions with minimal errors (Wiranda & Sadikin, 

2019). It achieves this by sequentially processing input data through its hidden layers, 

producing more accurate outputs (Farhah et al., 2021).  

a. Data Normalization 

Data normalization aims to decrease excessive variability, improve overall model 

performance, and reduce learning errors by mapping data values to a defined interval 

(Lattifia et al., 2022). In this research, the Min-Max Scaler method will be utilized, which 

is recognized as one of the most commonly employed scaling algorithms. This approach 

normalizes data by linearly transforming data values onto a scale ranging from 0 to 1, 
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ensuring a uniform range of values across datasets (Larose & Larose, 2014). The 

normalized value 𝑋𝑛 of the actual data 𝑋0 can be computed using Equation (6): 

 

𝑋𝑛 =
𝑋0−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                  (6) 

 

b. Data Splitting 

The data earmarked for LSTM processing will be split into training and testing sets, with 

a more significant portion allocated to training. The training set is used to construct and 

refine the LSTM model by identifying patterns in historical data. In contrast, the testing 

set evaluates the performance of the LSTM model after training. According to 

Nurhopipah & Hasanah (2020), the data distribution ratio significantly influences 

forecasting models’ performance. Therefore, two distribution schemes will be employed 

to achieve optimal models. The first scheme divides the data into 70% for training and 

30% for testing, while the second scheme allocates 80% for training and 20% for testing. 

c. LSTM Model Forecasting 

This study develops two LSTM models: the first uses SARIMA prediction data, while the 

second uses SARIMA residual data. Each model is tested using two different data 

partitioning schemes, resulting in four LSTM models. Determining the appropriate 

hyperparameters is essential before initiating model training to ensure optimal results. 

Hyperparameters are values that must be set prior to training (Yang & Shami, 2020). 

Hyperparameter tuning involves selecting the ideal model architecture by testing 

various combinations of hyperparameters. One practical approach for this is the Grid 

Search method (George & Sumathi, 2020), which systematically evaluates all predefined 

hyperparameter combinations in a grid. This method works by assessing the 

performance of different value combinations within the model (Belete & Huchaiah, 

2022). The hyperparameters in this study include those used to configure the LSTM 

model, such as the LSTM units and batch size. The optimal model is constructed using 

the selected hyperparameter combination, which is then applied to generate weather 

forecasts. 

 

5. Hybrid SARIMA-LSTM 

The hybrid model marks a step forward by merging two or more individual methods in 

modelling. It aims to address nonlinear data that SARIMA finds challenging to handle to 

enhance accuracy (Rowan et al., 2022). The SARIMA-LSTM hybrid model integrates SARIMA’s 

predictive data with LSTM and SARIMA’s residual data with LSTM. Generally, the integration of 

time series models with linear and nonlinear autocorrelation structures is described according 

to Equation (7) (Zhang, 2003). 

 

𝑍𝑡 = 𝐿𝑡 + 𝑁𝑡                         (7) 
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6. Model Evaluation 

Model evaluation assesses the precision of predictions by comparing predicted values 

against observed or actual values (Chen et al., 2018). The quality of predictions is assessed 

based on their level of accuracy; lower error rates indicate the best predictive accuracy. This 

study employs various metrics for model evaluation, which include: 

a. MAPE: Measures the percentage of prediction errors by calculating the absolute mean 

difference between actual and predicted values relative to the actual data. A model with 

a MAPE <10% is considered excellent, indicating minimal error compared to the actual 

data. 

b. MSE: Evaluates the mean prediction error by squaring the differences between actual 

and predicted values, then averaging them over the data set. A lower MSE indicates more 

minor prediction errors, suggesting better pattern capture by the model. 

c. RMSE: The square root of MSE, which expresses prediction error in the same units as 

the original data. A lower RMSE indicates predictions that closely align with actual 

values. 

 

Model performance was assessed by comparing MAPE, MSE, and RMSE values. Models with 

MAPE below 10% and MSE and RMSE values near zero demonstrate superior performance in 

capturing data patterns. 

 

C. RESULT AND DISCUSSION 

1. Data Input 

      The initial step includes importing data into Python version 3.0 using the pandas library. 

The research dataset is stored as a .csv file within the Python directory, containing daily 

weather data for Bandar Lampung City. The dataset consists of 4746 entries and nine columns, 

with the minimum temperature (Tn) column designated for analysis. 

 

2. Data Pre-processing 

This stage is designed to prepare the data for more efficient analysis. It begins with 

identifying and addressing missing values by imputing them using historical data, leveraging a 

DL model for the imputation process. Once the missing values are handled, the next step is to 

transform the daily minimum temperature data into weekly data using the function resample 

(‘W’).min(). This function calculates the minimum value for each week, from Monday to Sunday. 

As a result, the research dataset spans from January 4, 2010, to January 1, 2023. A comparison 

of the input data before and after the pre-processing stage is outlined in Table 1. 

 

 Table 1. Comparison of Input Data Pre and Post-preprocessing 

Pre Post 
Date Minimum 

Temperature 
Date Minimum 

Temperature 04/1/2010 21,0 10/1/2010 19,0 
05/1/2010 21,0 17/1/2010 18,0 
06/1/2010 21,0 24/1/2010 18,0 
07/1/2010 24,0 31/1/2010 19,0 
08/1/2010 21,0 07/2/2010 20,0 

... ... ... ... 
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Pre Post 
Date Minimum 

Temperature 
Date Minimum 

Temperature 30/12/2022 25,5 18/12/2022 24,4 
31/12/2022 24,8 25/12/2022 23,5 
01/1/2023 24,2 01/01/2023 24,0 

  

After transforming the data into weekly patterns, the original dataset containing 4746 

entries was condensed to 678. This subset was then depicted in a time series plot to visualize 

the variations in Bandar Lampung’s minimum temperature data. Figure 1 presents a 

decomposition chart of the weekly minimum temperatures, emphasizing seasonal fluctuations. 

 

 
Figure 1. Weekly minimum temperature decomposition graph 

  

3. SARIMA Model 

The research findings show that the data does not meet the stationarity assumption due to 

mean, variance, or both changes across the seasonal pattern over time. Therefore, a differencing 

procedure is necessary for two specific components: the non-seasonal and seasonal 

components. After applying the differencing procedure, the resulting parameter values are d = 

1 for the non-seasonal lag and D = 1 for the seasonal lag. The subsequent stage includes 

identifying the SARIMA model by examining the PACF and ACF plots depicted in Figure 2. The 

PACF plot is used to identify both the non-seasonal and seasonal AR orders, while the ACF plot 

is employed to determine the non-seasonal and seasonal MA orders. 

Based on the PACF and ACF plots illustrated in Figure 2, a preliminary model is formulated, 

which will later be assessed for the significance of its parameters and the overall feasibility of 

the model. An effective model is defined by residuals that demonstrate randomness and do not 

reveal any identifiable pattern. The results of the model parameter estimation produced 18 

models that met the criteria of both the significance test and the white noise test, thus 

demonstrating that these models are adequate for predicting time series data. In order to 

ascertain the most optimal model, our focus was directed towards identifying the minimum 

value of the Akaike Information Criterion (AIC). The SARIMA model defined by the parameter 

configuration (6,1,0) (3,1,0)26 was determined to be the optimal model based on its lowest AIC 

value compared to other models, suggesting a favorable balance between precision and 
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complexity. The model with the lowest Akaike Information Criterion (AIC) is considered more 

effective, as it reduces the risk of overfitting by appropriately balancing complexity and 

retaining critical information in the dataset, as shown in Figure 2. 

 

(a) (b) 

Figure 2. Identification of SARIMA model using (a) PACF plot and (b) ACF plot 

 

Forecasts generated by this SARIMA model will be utilized to predict outcomes for the next 

21 weeks. After aggregating daily data into weekly summaries, these forecast results will be 

juxtaposed with the most recent data on weekly minimum temperatures sourced from the 

BMKG website. This graphical representation can be seen in Figure 3 (a). Figure 3 (a) illustrates 

that the SARIMA model’s forecasts do not align with the observed data patterns. This 

discrepancy may arise from various factors, including the model’s inability to capture seasonal 

variations beyond its fixed seasonal components and trends or its failure to account for more 

complex data fluctuations. Additionally, the SARIMA model may struggle to adapt to sudden 

structural changes or anomalies in recent data, such as irregular events or external influences 

affecting the data. Therefore, extracting the residuals of the SARIMA model by calculating the 

difference between the observed and predicted values is crucial. These residuals are visualized 

in Figure 3 (b). 

 

(a) (b) 

Figure 3. Results of the SARIMA model for (a) forecasting, and (b) residual 

 

Figure 3 (b) illustrates that the residual plot exhibits a systematic pattern, suggesting that 

the SARIMA model fails to capture crucial data features, such as seasonal variations or 

unforeseen fluctuations. This highlights the need for integrating DL models to address the more 

complex dynamics and variations that SARIMA cannot account for. 
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4. Hybrid SARIMA-LSTM Model 

At this stage, the forecasts and residual outputs from the SARIMA model are employed as 

inputs for the LSTM model. Before additional processing, both datasets undergo normalization 

using the Min-Max method and are divided according to predefined schemes. The first scheme 

allocates 403 data points for training and 144 for testing, while the second assigns 468 data 

points for training and 79 for testing. The data splitting significantly impacts the model’s 

performance, particularly in terms of generalization and overfitting risks. The first schema, 

with limited training data, may lead to underfitting, as the model struggles to learn effectively 

from the data, hindering its ability to generalize and resulting in less accurate test predictions. 

Conversely, the second schema, with more training data, risks overfitting, where the model 

overly adapts to the training set, including noise and irrelevant variations, compromising its 

generalization ability on new test data. Furthermore, hyperparameter tuning procedures 

determine the numbers of LSTM units and batch sizes to attain an optimal model. The most 

influential parameter combinations identified for each dataset input are outlined in Table 2. 

 

Table 2. Best Combination of LSTM Model Parameters 

Data Parameter 
Splitting Data Schemes 

First Second 

SARIMA Prediction 
LSTM unit 16 16 
Batch size 8 8 

SARIMA Residual 
LSTM unit 64 128 
Batch size 16 16 

 

These parameters are combined to build an LSTM model, which inputs predictive and 

residual data. Predictions from both models are then integrated across each data partitioning 

scheme employed. Additionally, performance evaluations are carried out using MSE, RMSE, and 

MAPE metrics on the testing data to gauge the model’s effectiveness. The assessment outcomes 

of the hybrid SARIMA-LSTM model are detailed in Table 3. 

 

Table 3. Model Evaluation 

Evaluation 
Metrics 

Splitting Data Schemes 
First Second 

MSE 1,5909 0,1174 
RMSE 1,2613 0,3426 
MAPE 0,0374% 0,0104% 

Accuracy 99,9626% 99,9896% 

 

Based on the analysis of the models detailed in Table 3, it can be inferred that the hybrid 

model employing the second scheme, with 80% of the data allocated for training and 20% for 

testing, exhibits better performance in forecasting weather over the next 21 weeks compared 

to the first scheme. That is evident from the lower MSE, RMSE, and MAPE values and higher 

accuracy rates. The forecasting outcomes using this scheme are depicted in Figure 4 (a) and (b). 

Based on Figure 4 (a), predictions made by the SARIMA-LSTM hybrid model show a robust 

ability to follow recent data trends. That suggests that the SARIMA-LSTM model effectively 

predicts weather patterns in Bandar Lampung over the next 21 weeks. Furthermore, Figure 4 
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(b) illustrates that the SARIMA-LSTM model provides precise forecasts that closely match the 

latest data trends. Given that these accurate forecasts align closely with current data trends, 

this model can significantly assist in planning and decision-making related to weather factors 

in the Bandar Lampung area. 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 4. Results of the hybrid SARIMA-LSTM model for (a) predicion, and (b) forecasting 

 

5. Comparison of SARIMA Model and SARIMA-LSTM Hybrid Model 

The comparative performance of the SARIMA and SARIMA-LSTM models in terms of long-

term forecasting capability and prediction accuracy reveals the distinct advantages of the 

hybrid approach. While the SARIMA model excels at capturing seasonal patterns and trends in 

time series data, it is less effective at forecasting data with complex dynamics or irregular 

fluctuations, such as those stemming from erratic seasonal changes. As shown in Figure 3, the 

SARIMA model captures specific patterns, but inconsistencies remain in its predictions, 

particularly with the most recent data, which may compromise long-term prediction accuracy.   

In contrast, the SARIMA-LSTM hybrid model addresses these limitations by incorporating 

residuals as additional input for the LSTM component. These residuals, representing data 

components unexplained by SARIMA, provide valuable supplementary information for the 

LSTM, enhancing its capacity to model complex data fluctuations. This is reflected in the results 

in Table 3, where the MSE, RMSE, and MAPE values of the SARIMA-LSTM model are significantly 

lower than those of the SARIMA model, demonstrating a reduction in error rates and improved 

prediction accuracy. Moreover, the hybrid model’s integration of statistical and DL techniques 

enables it to handle non-stationary data dynamics and capture intricate patterns that SARIMA 

alone cannot. Through optimal normalization and data sharing, this model mitigates issues of 

overfitting and underfitting, which are common in time series forecasting. Overall, the SARIMA-

LSTM hybrid model provides more accurate and dependable long-term predictions, positioning 

it as a superior method for forecasting dynamic weather patterns in Bandar Lampung. 

 

D. CONCLUSION AND SUGGESTIONS 

The SARIMA-LSTM hybrid model has proven effective for weather forecasting in Bandar 

Lampung, particularly for seasonal data like minimum temperatures. The SARIMA model, 

configured as ARIMA (6,1,0)(3,1,0)26, initially predicts weather, and the residuals are processed 

further by LSTM. The LSTM model is optimized through hypertuning to identify the best unit 

parameters and batch sizes, ensuring optimal performance. An experiment with two data split 
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schemes revealed that an 80%-20% training-testing ratio outperformed the 70%-30% split, 

likely due to a more stable data distribution and enhanced model capacity to understand 

complex patterns with larger training sets. With an MSE of 0.1174, RMSE of 0.3426, and MAPE 

of 0.0104%, the SARIMA-LSTM hybrid model achieved high accuracy. Predictions for the next 

21 weeks demonstrated consistency with recent data, highlighting the model’s capacity to 

capture seasonal patterns and adjust to emerging trends. This model shows promise for real-

world applications in Bandar Lampung, such as preventing dengue outbreaks and improving 

disaster preparedness in flood-prone areas. However, further development is necessary to 

handle more complex data variations, such as extreme weather. Future research could explore 

ensemble learning or other DL models tailored to non-stationary or unpredictable seasonal 

changes. 
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