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 This study develops and applies the Poisson-Gamma Hierarchical Generalized 
Linear Model (PGHGLM) to address the challenge of determining accurate and fair 
premium rates in vehicle insurance. The PGHGLM models a mixture distribution 
for the response variable, influenced by random effects, and employs a logarithmic 
link function. Parameter estimation is conducted using the maximum likelihood 
method. However, since analytical estimation is not feasible, the numerical 
conjugate gradient method, specifically the Fletcher-Reeves algorithm, is utilized. 
The implementation of the PGHGLM uses the longitudinal Claimslong dataset, 
incorporating driver age as a covariate. The main contribution of this research lies 
in integrating a priori risk classification with a posteriori adjustment based on 
longitudinal claim frequency data. For datasets without covariates, trend 
parameters are incorporated into the model. For datasets with covariates, such as 
driver age, the average claim frequency is computed for each age category. Results 
show that posteriori premium rates increase with rising claim frequency from the 
previous year, with higher claim frequencies leading to larger rate adjustments in 
the subsequent year. Through the PGHGLM, a posteriori premium rate estimates 
are obtained for each age group of vehicle insurance policyholders. This study 
demonstrates the practical application of the PGHGLM in calculating precise 
premium rates. By analyzing a longitudinal vehicle insurance dataset, the model 
generates annual a posteriori premium rates tailored to age groups. These findings 
underscore the PGHGLM’s robust methodological framework and its potential to 
enhance premium fairness, enable risk-adjusted pricing, and better tailor 
insurance products to diverse policyholder profiles. 
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A. INTRODUCTION  

Risk and uncertainty are inherent aspects of human life, often resulting in financial losses. 

Insurance provides an effective mechanism to manage these risks by transferring them to an 

insurer in exchange for a premium (Lanfranchi & Grassi, 2022; Rejda, 2017; Rumson & Hallett, 

2019a; Sheehan et al., 2023a). Among various insurance types, vehicle insurance plays a vital 

role in mitigating financial risks from accidents, theft, and damages, offering coverage such as 

liability, medical benefits, and accident compensation. This protection is particularly important 

for drivers facing risks from factors like poor road conditions, driver inexperience, and 

environmental hazards (Bagariang & Raharjanti, 2023a; Hsu et al., 2016a). To receive the 

protection, guarantee and risk transfer benefits offered, the policyholder must pay a premium 

to the insurance company. According to Indonesian Law No. 40 of 2014 on Insurance, a 

premium is the amount of money determined by the insurance company and agreed upon by 
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the policyholder to be paid based on the insurance agreement, or the amount determined based 

on the provisions of legislation that underlie compulsory insurance programs to obtain benefits. 

According to the law, there are four components of a premium: (i) basic premium, listed in the 

insurance policy with a fixed amount as long as there is no change in the protection guarantee, 

(ii) additional premium, which must be paid if there is a change in the policyholder's data 

resulting in expanded risk coverage, (iii) premium reduction, which represents a discount on 

the premium due to certain conditions, (iv) company tariff, which is the rate set by the 

insurance company association to prevent unhealthy competition among insurance companies. 

In an insurance agreement, there is also the total coverage amount, which is the amount of 

money that will be paid by the insurance company to the policyholder according to the agreed 

benefits. The most used premium calculation method is multiplying the premium rate by the 

total coverage amount (Niehaus, 2016; Lima Ramos, 2017). 

An insurance pool, consisting of a collection of risks and premiums, is referred to as an 

insurance portfolio. An insurance portfolio can have several distinct risk classes based on the 

risk profile of each policyholder. When an insurance portfolio includes multiple risk classes and 

premiums, it is described as a heterogeneous portfolio (Boonen & Liu, 2022; Frostig, 2001; 

Frostig et al., 2007). Due to this heterogeneity, an insurance company cannot set a single 

premium rate for all risks in the portfolio, as it would be detrimental to both the company and 

the policyholders. For example, with a single premium rate, individuals with a low-risk profile 

would overpay, while those with a high-risk profile would underpay, benefitting 

disproportionately because the premium charged is too low (Antonio & Valdez, 2012). To 

prevent such inequities and potential losses, insurance companies must determine premium 

rates based on the policyholder's specific risk profile. In vehicle insurance, these risk profiles 

can be classified according to factors such as the driver's age, vehicle age, vehicle type, 

geographic location, and other attributes (Levitas et al., 2022). The policyholder's risk profile 

reflects the likelihood of filing a claim, defined as a request to the insurance company for 

compensation under the terms of the insurance policy (Levitas et al., 2022). A 2022 study by 

the Insurance Information Institute (III) in New York found that individuals with high-risk 

profiles are more likely to file claims. To address this, a risk classification scheme is employed 

to group risks into homogeneous categories, ensuring that policyholders with similar risk 

profiles pay premiums proportionate to their claim frequency and the benefits they receive 

(Lee et al., 2020). 

In general insurance, premium rate calculation methods include judgment rating, class 

rating, and experience ratemaking (Rejda & McNamara, 2017). For motor vehicle insurance, 

experience ratemaking is commonly used, which involves two stages: a priori and a posteriori 

premium calculations. The a priori stage uses a risk classification scheme based on measurable 

factors associated with each policyholder's risk profile (Boucher & Denuit, 2006; Boucher & 

Inoussa, 2014). This stage is typically applied to new policyholders for whom the insurance 

company lacks historical claim data, relying instead on measurable attributes like age and 

gender at the time of observation (Tseung et al., 2022). However, unobservable or 

unmeasurable factors not considered in the a priori stage contribute to heterogeneity within 

the insurance portfolio and affect claim frequency (Antonio & Valdez, 2012; Boucher & Inoussa, 

2014; Wolny-Dominiak & Sobiecki, 2014). Over time, as the insurer accumulates historical 
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claim data and detailed information about each policyholder's risk profile, the process moves 

to the a posteriori stage of premium rate calculation (Tseung et al., 2022). The data collected, 

including historical claims and policyholder risk profiles, is referred to as longitudinal data 

(Boucher & Inoussa, 2014). In the a posteriori stage, premium rate calculations refine the a 

priori assessments by incorporating heterogeneity factors previously unaccounted for 

(Antonio & Valdez, 2012; Boucher & Inoussa, 2014). For example, in vehicle insurance, risk 

factors considered during the a priori stage include driver age, gender, marital status, vehicle 

usage duration, and geographic location (Antonio & Valdez, 2012). Conversely, unmeasurable 

heterogeneity factors such as individual driving skills, road condition knowledge, emotional 

states, reflexes, and accident avoidance behavior are incorporated during the a posteriori stage, 

informed by longitudinal historical claim data (Lee et al., 2020). 

To model the relationship between claim frequency and the influencing risk and 

heterogeneity factors in a posteriori premium calculation, statistical models such as the 

Generalized Linear Model (GLM), Linear Mixed Model (LMM), and Generalized Linear Mixed 

Model (GLMM) have been developed (Antonio & Beirlant, 2005; Tseung et al., 2022). Laird and 

Ware (1982) introduced the LMM, which extends the GLM used for a priori premium 

calculations by accommodating heterogeneity and correlation within insurance portfolios 

based on longitudinal claim data. However, the GLM is less suitable for longitudinal data as it 

cannot account for heterogeneity and correlation between responses at different times (Wolny-

Dominiak & Sobiecki, 2014). To address these issues, the LMM was extended to the GLMM, 

which incorporates random effects for longitudinal data distributed within the exponential 

family (Antonio & Beirlant, 2005; Lee et al., 2020). These random effects not only model 

correlations between observations but also capture heterogeneity factors within the insurance 

portfolio, allowing for adjustments to the parameters of the response variable distribution 

(Gupta et al., 2004). Despite its advantages, the GLMM assumes normally distributed random 

effects, limiting its applicability when this assumption does not hold. 

Gning et al. (2023) addressed this limitation by developing the Hierarchical Generalized 

Linear Model (HGLM) as an extension of the GLMM, enabling random effects to follow 

distributions other than normal. This study builds on these advancements by introducing the 

Poisson-Gamma HGLM to improve the accuracy and fairness of premium rate calculations in 

motor vehicle insurance. The model addresses heterogeneity in policyholders' risk profiles, 

particularly unobservable risk factors often overlooked in traditional methods, which can lead 

to inefficiencies in premium rate-setting. By accommodating non-normal random effects, the 

Poisson-Gamma HGLM allows for more accurate modeling of claim frequency and risk profiles 

in heterogeneous insurance portfolios (Antonio & Valdez, 2012; Gning et al., 2023). This 

ensures policyholders pay premiums proportional to their risk while maintaining the insurer's 

financial stability, effectively filling gaps in existing premium rate-setting methodologies and 

enhancing fairness and precision in motor vehicle insurance. 
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B. RESEARCH METHODS 

1. Poisson-Gamma Mixture Distribution  

As in (Li et al., 2024; Shirazi & Lord, 2019; Wu, 2022), let 𝑌 as a discrete random variable 

following a Poisson distribution with parameter 𝜆  denoted as 𝑌 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆)  with the 

conditional distribution of 𝑌 given 𝜆 is 

 

Pr(𝑌 = 𝑦|Λ) =
𝑒−𝜆𝜆𝑦

𝑦!
            𝑦 = 0, 1,2, …. 

 

The parameter 𝜆 is a random variable following a Gamma distribution with parameters 𝛼 and 

𝛽, denoted as: Λ ~ 𝐺𝑎𝑚𝑚𝑎 (𝛼, 𝛽) with the probability density function of Λ is  

 

𝑓(𝜆) =
1

Γ(𝛼)𝛽𝛼
  𝜆𝛼−1𝑒

−
𝜆
𝛽                𝛼, 𝛽 > 0. 

 

Thus, the Pdf of Poisson-Gamma mixture distribution is 

 

𝑃𝑟(𝑌 = 𝑦) =
Γ(𝛼 + 𝑦)

𝑦! Γ(𝛼)
 (

1

1 + 𝛽
)
𝛼

(
𝛽

1 + 𝛽
)
𝑦

, 𝑦 = 0,1,2, … 

 

The characteristics of Poisson-Gamma mixture distribution is as follows:  

a. Mean  

By the law of total expectation, the mean of poisson-gamma mixture distribution is  

 

𝐸(𝑌) = 𝐸[𝐸(𝑌|Λ)] = 𝛼𝛽 

b. Variance 

By the law of total variance, the variance of poisson-gamma mixture distribution is 

 

𝑉𝑎𝑟 (𝑌) = (𝑉𝑎𝑟(𝑌|Λ) + 𝑉𝑎𝑟(𝐸(𝑌|𝛬))) = 𝛼𝛽 + 𝛼𝛽2 

 

c. Moment Generating Function (MGF) 

 

𝑀(𝑡) = 𝐸[𝑒𝑡𝑦] = (
1

1 + 𝛽 − 𝛽𝑒𝑡
)
𝛼

 

 

d. Characteristic Function 

 

𝜙(𝑡) = 𝐸[𝑒𝑖𝑡𝑦] = (1 + 𝛽 − 𝛽𝑒𝑖𝑡)
−𝛼
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The pdf plot of poisson-gamma mixture distribution is as shown in figure 1 and figure 2 

below:  

 
Figure 1. Poisson-Gamma Plot with varying values of 𝛼 

 

 
Figure 2. Poisson-Gamma Plot with varying values of 𝛽 

 

2. Hierarchical Generalized Linear Model (HGLM) 

The Hierarchical Generalized Linear Model (HGLM) is a statistical model particularly well-

suited for modelling longitudinal data (Gning et al., 2023; Jin & Lee, 2024; Matsuyama, 2020). 

Longitudinal data involves repeated measurements on the same subjects over time, resulting 

in a complex structure where observations are correlated with one another. This correlation 

can arise from various factors, one of which is unobserved random effects. Given the presence 

of time correlations for each measurement, HGLM is a more appropriate model because it can 

accommodate these correlations by incorporating random effects into the model. For example, 

HGLM can be used to model a dataset of the number of claims from motor vehicle insurance. 

Suppose there is an insurance portfolio viewed as a single cluster. The number of claims 

occurring in this cluster at the initial time and subsequent times is likely correlated because 

policyholders within this portfolio cluster share similar risk characteristics. Let 𝑦  be the 

response variable and 𝑢 be the unobserved random component. The conditional log-likelihood 

for 𝑦 given 𝑢 has the form 

  

𝑙(𝜃′, 𝜙; 𝑦|𝑢) =
{𝑦𝜃′ − 𝑏(𝜃′)}

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙) 

 

where 𝜃′ denotes the canonical parameter and 𝜙 is the dispersion parameter. Let matrix 𝑿 with 

𝑛 × 𝐽  size denotes covariates and 𝜷 = (𝛽1…𝛽𝐽)
′

 denotes regression parameter with 𝑛 

represents the number of subject and 𝐽 represents the number of covariates. Also, let 𝜇 be the 

conditional expectation of 𝑦  given 𝑢  and 𝜂 = 𝑔(𝜇) = 𝑔(𝑦|𝑢)  wheren 𝑔(. )  is link function in 

GLM with linear predictor given by:  

𝛼 = 5 

𝛽 = 1 

𝛼 = 0,5 

𝛽 = 1 

𝛼 = 8 

𝛽 = 1 

 

𝛼 = 1 

𝛽 = 5 

 

𝛼 = 1 

𝛽 = 1 

 

𝛼 = 1 

𝛽 = 0,5 
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𝜂 = 𝑔(𝜇) = 𝜂 + 𝑣 = 𝑿𝜷 + 𝒗 

 

where 𝑣 = 𝑣(𝑢)  is a strictly monotonic function of 𝑢 . The distribution of 𝑢  is assumed 

appropriately.  

 

3. Poisson-Gamma Hierarchical Generalized Linear Model (PGHGLM)  

In this section, there are two types of models that are discussed, which are model with 

covariates and without covariates. In PGHGLM with covariates, the representation of response 

variable 𝑌𝑘𝑡  and covariates 𝑥𝑘𝑡  are explained, continued with the parameter estimation 

methods (Iqbal et al., 2023; Tawiah et al., 2020; Tzougas & Pignatelli di Cerchiara, 2021). Let's 

assume there are 𝑛 individuals observed over a period 𝑇. The response variable used in the 

PGHGLM regression model is 𝑌𝑘𝑡 , which is a count variable observed for individual 𝑘 during 

period 𝑡, with 𝑘 = 1,… . , 𝑛 and 𝑡 = 1,… , 𝑇. The representation of the response variable 𝑌𝑘𝑡 is as 

follows: 

 

 

𝐘𝐤𝐭 =

[
 
 
 
 
 
 
 
 
 
𝑦11
𝑦12
⋮
𝑦1𝑇
𝑦21
⋮
𝑦2𝑇
𝑦𝑛1
⋮
𝑦𝑛𝑇]

 
 
 
 
 
 
 
 
 

 (1)  

 

where 𝑦11  represents the observation of the first individual at the first period and 𝑦𝑛𝑇 

represents the observation of the 𝑛 -th individual at the 𝑇 -th period. Suppose we want to 

determine the relationship between characteristics of 𝑘-th individual at the 𝑡-th period with 

response variable 𝑌𝑘𝑡 , define covariate 𝑥𝑘𝑡𝑗 , 𝑗 = 1,… , 𝐽. The covariate matrix, denoted as 𝐗 =

(𝒙𝒌𝒕𝟏 𝒙𝒌𝒕𝟐…  𝒙𝒌𝒕𝑱) is of size 𝑛𝑇 × 𝐽 as shown below  

 

 

𝐗 =

[
 
 
 
 
 
 
𝑥111 𝑥112 … 𝑥11𝐽
𝑥121 𝑥122 … 𝑥12𝐽
⋮ ⋮ ⋱ ⋮

𝑥1𝑇1 𝑥1𝑇2 … 𝑥1𝑇𝐽
𝑥211 𝑥212 … 𝑥21𝐽
⋮ ⋮ ⋱ ⋮

𝑥𝑛𝑇1 𝑥𝑛𝑇2 … 𝑥𝑛𝑇𝐽]
 
 
 
 
 
 

 (2) 

 

For 𝑘-th individual, it is assumed that there exist a real and positive random characteristic 

Θ𝑘, 𝑘 = 1,… , 𝑛 called random effect. Parameter of the regression model is expressed by vector 

𝜷 = (𝛽1…𝛽𝐽)
′
. Poisson-Gamma HGLM requires the three following assumptions (Gning et al., 

2023):  
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(A1) the random variable Θ𝑘 is independent for 𝑘 = 1,… , 𝑛 and 𝑌𝑘1, … , 𝑌𝑘𝑇  also independen for 

𝑘 = 1 , … , 𝑛 ; (A2) for each 𝑘  and 𝜃𝑘 > 0 , the conditional distribusion of 𝑌𝑘𝑡  given Θ𝑘  is the 

Poisson distribution  

 

𝑌𝑘𝑡|Θ𝑘 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑘𝑡Θ𝑘𝑡) 

 

where the pdf form is as follows:  

 

 
𝑃(𝑌𝑘𝑡 = 𝑦𝑘𝑡 | Θ𝑘 = 𝜃) =

𝑒−𝜆𝑘𝑡𝜃𝜆𝑘𝑡𝜃
𝑦𝑘𝑡

𝑦𝑘𝑡!
 (3) 

 

with 𝐸(𝑌𝑘𝑡|Θ𝑘) = 𝜆𝑘𝑡Θ𝑘𝑡 , where 𝜆𝑘𝑡 = 𝑒
𝒙𝒌𝒕
′ 𝜷, 𝑘 = 1 , … , 𝑛 ;  𝑡 = 1,… , 𝑇; 

 

(A3) for each 𝑘 the distribution of Θ𝑘 is 𝑔𝑎𝑚𝑚𝑎(𝑎, 𝑎) with the pdf form is as follows: 

 

 
𝑔(𝜃) =  

𝑎𝑎

𝛤(𝑎)
𝜃𝑘
𝑎−1𝑒−𝑎𝜃𝑘  (4) 

 

To determine the non-conditional distribution of 𝑌𝑘𝑡 that includes Θ𝑘 as the random effect, 

mixing distribution technique is used. Thus, from (A2) and (A3), the pdf for 𝑌𝑘𝑡 is:  

  

 
𝑃(𝑌𝑘𝑡 = 𝑦𝑘𝑡) =

Γ(𝑎 + 𝑦𝑘𝑡)

𝑦𝑘𝑡! Γ(𝑎)
 (

𝑎

(𝑎 + 𝜆𝑘𝑡)
)

𝑎

(
𝜆𝑘𝑡

(𝑎 + 𝜆𝑘𝑡)
)
𝑦𝑘𝑡

 (5) 

 

for 𝑦𝑘𝑡 = 0,1,2, … and 0 elsewhere.  The cummulative distribution form of 𝑌𝑘𝑡 is  

 

𝐹(𝑦) =∑𝑃(𝑌𝑘𝑡 = 𝑦𝑘𝑡),  𝑦 ∈ ℝ

𝑦𝑘𝑡

 

=∑
Γ(𝑎 + 𝑦𝑘𝑡)

𝑦𝑘𝑡! Γ(𝑎)
 (

𝑎

(𝑎 + 𝜆𝑘𝑡)
)

𝑎

(
𝜆𝑘𝑡

(𝑎 + 𝜆𝑘𝑡)
)
𝑦𝑘𝑡

𝑦𝑘𝑡

 

 

Based on the law of total expectation, the mean of 𝑌𝑘𝑡 is 

 

 𝐸(𝑌𝑘𝑡) = 𝐸[𝐸(𝑌𝑘𝑡|Θ𝑘)] = 𝜆𝑘𝑡 (6) 

 

and based on the law of total variance, the variance of 𝑌𝑘𝑡 is  

 

 𝑉(𝑌𝑘𝑡) = 𝑉(𝐸(𝑌𝑘𝑡|Θk)) + 𝐸(𝑉(𝑌𝑘𝑡|Θk)) 

=
𝜆𝑘𝑡
2

𝑎
+ 𝜆𝑘𝑡 

(7) 
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The link function used of PGHGLM is the log function, expressed as 𝜂 = 𝑔(𝜇) = log (𝜇) with the 

linear predictor form as follows:  

 

 𝑔(𝜇) = ln[𝐸(𝑌𝑘𝑡)] = ln[𝜆𝑘𝑡] =𝒙𝒌𝒕
′ 𝜷 (8) 

 

thus based on the property of natural logarithm, 𝜆𝑘𝑡 is 

 

 𝜆𝑘𝑡 = exp(𝒙𝒌𝒕
′ 𝜷) (9) 

 

The representation of PGHGLM is:  

 

 ln[𝐸(𝑌𝑘𝑡)] = 𝒙𝒌𝒕
′ 𝜷𝑖 , 𝑖 = 1,… , 𝑗 (10) 

 

with 𝜷 = (𝛽1, … , 𝛽𝑗)′  is the PGHGLM regression parameter that should be estimated. The 

parameter estimation method that is used is maximum likelihood estimation (MLE). The steps 

to obtain the likelihood function is as follows: First, for any 𝑘 =  1, . . . , 𝑛, given Θ𝑘, the count 

variables 𝑌𝑘1, . . . , 𝑌𝑘𝑇  are assumed independent. Therefore, their joint probability function is 

 

 𝑃𝑟(𝑌𝑘1 = 𝑦𝑘1, … , 𝑌𝑘𝑇 = 𝑦𝑘𝑇) 

= ∫ 𝑃(𝑌𝑘1 = 𝑦𝑘1, … , 𝑌𝑘𝑇 = 𝑦𝑘𝑇|Θ𝑘)𝑔(𝜃𝑘) 𝑑𝜃𝑘

∞

0

 

=∏
𝜆𝑘𝑡
𝑦𝑘𝑡

𝑦𝑘𝑡!

𝑇

𝑡=1

𝑎𝑎

Γ(𝑎)

Γ(𝑎 + ∑ 𝑦𝑘𝑡
𝑇
𝑡=1 )

(𝑎 + ∑ 𝜆𝑘𝑡
𝑇
𝑡=1 )𝑎+∑ 𝑦𝑘𝑡

𝑇
𝑡=1  

 

 

(11) 

Based on equation (11), the likelihood function can be constructed as 

 

 
𝐿(𝑎, 𝜷) =∏[

Γ(𝑎 + ∑ 𝑦𝑘𝑡
𝑇
𝑡=1 )

(𝑎 + ∑ 𝜆𝑘𝑡
𝑇
𝑡=1 )𝑎+∑ 𝑦𝑘𝑡

𝑇
𝑡=1  

𝑎𝑎

Γ(𝑎)
∏(

𝜆𝑘𝑡
𝑦𝑘𝑡

𝑦𝑘𝑡!
)

𝑇

𝑡=1

]

𝑛

𝑘=1

 (12) 

 

Based on equation (9), equation (12) can also be expressed as  

 

 𝐿(𝑎, 𝜷)

=∏(
𝑎𝑎

Γ(𝑎)

Γ(𝑎 + ∑ 𝑦𝑘𝑡
𝑇
𝑡=1 )

(𝑎 + ∑ exp(𝒙𝒌𝒕
′ 𝜷)𝑇

𝑡=1 )𝑎+∑ 𝑦𝑘𝑡
𝑇
𝑡=1  

∏(
exp(𝒙𝒌𝒕

′ 𝜷)𝑦𝑘𝑡

𝑦𝑘𝑡!
)

𝑇

𝑡=1

)

𝑛

𝑘=1

 
(13) 

 

Let 𝑠𝑘 = ∑ 𝑦𝑘𝑡
𝑇
𝑡=1   and 𝜇𝑘 = ∑ exp(𝒙𝒌𝒕

′ 𝜷)𝑇
𝑡=1 , thus the likelihood function from equation (13) 

will be 

 

 
𝐿(𝑎, 𝜷) =∏(

𝑎𝑎

Γ(𝑎)

Γ(𝑎 + 𝑠𝑘)

(𝑎 + 𝜇𝑘)𝑎+𝑠𝑘 
∏(

exp(𝒙𝒌𝒕
′ 𝜷)𝑦𝑘𝑡

𝑦𝑘𝑡!
)

𝑇

𝑡=1

)

𝑛

𝑘=1

 (14) 
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Second, to obtain the estimation for parameters 𝑎 and 𝜷 that maximize the likelihood function 

in (14), log-likelihood function is constructed as shown below: 

 

 ℓ(𝑎, 𝛃) = ln[𝐿(𝑎, 𝜷)] 

= ln∏[ [∏(
exp(𝒙𝒌𝒕

′ 𝜷)𝑦𝑘𝑡

𝑦𝑘𝑡!
)

𝑇

𝑡=1

]
𝑎𝑎

Γ(𝑎)

Γ(𝑎 + 𝑠𝑘)

(𝑎 + 𝜇𝑘)𝑎+𝑠𝑘 
]

𝑛

𝑘=1

 

= 𝒀′𝑿𝜷 −∑𝑎 + 𝑠𝑘 ln (𝑎 +∑ exp(𝒙𝒌𝒕
′ 𝜷)

𝑇

𝑡=1
)

𝑛

𝑘=1

+ 𝑛𝑎 ln 𝑎

+∑ ln(
Γ(𝑎 + 𝑠𝑘)

Γ(𝑎)
)

𝑛

𝑘=1

−∑∑ln (𝑦𝑘𝑡!)

𝑇

𝑡=1

𝑛

𝑘=1

 

(15) 

 

In equation (15), the term ln (
Γ(𝑎+𝑠𝑘)

Γ(𝑎)
) can be simplified based on the properties of gamma 

function as ∑ ln(𝑎 + 𝑤)
𝑠𝑘−1
𝑤=0  where ∑ ln(𝑎 + 𝑤)

𝑠𝑘−1
𝑤=0 = 0 if 𝑠𝑘 = 0. Therefore, substituting it to 

equation (15), we obtain the log-likelihood function for PGHGLM shown in equation (16).  

 

 ℓ(𝑎, 𝛃) = 𝒀′𝑿𝜷 − ∑ (𝑎 + 𝑠𝑘 ln(𝑎 + ∑ exp(𝒙𝒌𝒕
′ 𝜷)𝑇

𝑡=1 ))𝑛
𝑘=1 +

𝑛𝑎 ln 𝑎 + ∑ ∑ ln(𝑎 + 𝑤)
𝑠𝑘−1
𝑤=0

𝑛
𝑘=1 − ∑ ∑ ln (𝑦𝑘𝑡!)

𝑇
𝑡=1

𝑛
𝑘=1   

(16) 

 

The partial derivatives for log-likelihood function in equation (16) to each of the 

parameters are: 

a. Estimation of 𝜷 parameter 

 

𝜕ℓ(𝑎, 𝛃)

𝜕𝜷
= 0 (17) 

  

⟺
𝜕

𝜕𝜷
[𝒀′𝑿𝜷 −∑𝑎 + 𝑠𝑘 ln (𝑎 +∑ exp(𝒙𝒌𝒕

′ 𝜷)
𝑇

𝑡=1
)

𝑛

𝑘=1

+ 𝑛𝑎 ln 𝑎 +∑ ∑ ln(𝑎 + 𝑤)

𝑠𝑘−1

𝑤=0

𝑛

𝑘=1

−∑∑ln (𝑦𝑘𝑡!)

𝑇

𝑡=1

𝑛

𝑘=1

] = 0 

⟺
𝜕

𝜕𝜷

[
 
 
 
 

𝒀′𝑿𝜷⏟  
𝑎

−∑𝑎 + 𝑠𝑘 ln (𝑎 +∑ exp(𝒙𝒌𝒕
′ 𝜷)

𝑇

𝑡=1
)

𝑛

𝑘=1⏟                        
𝑏 ]

 
 
 
 

= 0 

 

For part (a), suppose 𝒎 = 𝒀′𝑿𝜷, where 𝒀′and 𝑿 are presented on equation (1) and (2). 

Then, 𝑚 can be constructed as  

 



230  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 9, No. 1, January 2025, pp. 221-241 

 

 

𝒎 = [𝑌11 𝑌12 𝑌13  ⋯𝑌1𝑇 𝑌21 ⋯ 𝑌2𝑇 𝑌𝑛1 𝑌𝑛2  ⋯  𝑌𝑛𝑇]⏟                            
1×𝑛𝑇

[
 
 
 
 
 
 
𝑥111 𝑥112 … 𝑥11𝐽
𝑥121 𝑥122 … 𝑥12𝐽
⋮ ⋮ ⋱ ⋮

𝑥1𝑇1 𝑥1𝑇2 … 𝑥1𝑇𝐽
𝑥211 𝑥212 … 𝑥21𝐽
⋮ ⋮ ⋱ ⋮

𝑥𝑛𝑇1 𝑥𝑛𝑇2 … 𝑥𝑛𝑇𝐽]
 
 
 
 
 
 

⏟              
𝑛𝑇×𝐽

[
 
 
 
 
 
 
𝛽1
𝛽2
𝛽3
𝛽4
𝛽5
⋮
𝛽𝐽 ]
 
 
 
 
 
 

⏟
𝐽×1

 

 

In general, for any values of 𝑛 and 𝑇, the derivative of 𝑚 with respect to each 𝛽 is: 

 
𝜕𝑚

𝜕𝛽1
= 𝑌11𝑥111 + 𝑌12𝑥121 + ⋯+ 𝑌𝑛𝑇𝑥𝑛𝑇1 

𝜕𝑚

𝜕𝛽2
= 𝑌11𝑥112 + 𝑌12𝑥122 + ⋯+ 𝑌𝑛𝑇𝑥𝑛𝑇2 

⋮ 
𝜕𝑚

𝜕𝛽𝐽
= 𝑌11𝑥11𝐽 + 𝑌12𝑥12𝐽 +⋯+ 𝑌𝑛𝑇𝑥𝑛𝑇𝐽 

 

For part (b), suppose 𝑧 = ∑ 𝑎 + 𝑠𝑘 ln(𝑎 + ∑ exp(𝒙𝒌𝒕
′ 𝜷)𝑇

𝑡=1 )𝑛
𝑘=1  where  

 

∑ exp(𝒙𝒌𝒕
′ 𝜷)𝑇

𝑡=1 = exp(𝒙𝒌𝟏𝜷) + exp(𝒙𝒌𝟐𝜷) + exp(𝒙𝒌𝟑𝜷) +⋯+ exp(𝒙𝒌𝒕𝜷) and the 

term exp(𝒙𝒌𝒕𝜷) = exp(𝑥𝑘𝑡1𝛽1 + 𝑥𝑘𝑡2𝛽2 +⋯+ 𝑥𝑘𝑡𝐽𝛽𝐽).  

 

In general, for any values of 𝑛 and 𝑇, the derivative of 𝑧 with respect to each 𝛽 is: 

 

𝜕𝑧

𝜕𝛽1
=∑(𝑎 + 𝑠𝑘)

𝑛

𝑘=1

𝑥𝑘11 exp(𝒙𝒌𝟏
′ 𝜷) + 𝑥𝑘21 exp(𝒙𝒌𝟐

′ 𝜷) +⋯+ 𝑥𝑘𝑇1 exp(𝒙𝒌𝑻
′ 𝜷)

𝑎 + exp(𝒙𝒌𝟏
′ 𝜷) + exp(𝒙𝒌𝟐

′ 𝜷) + …+ exp(𝒙𝒌𝑻
′ 𝜷)

 

𝜕𝑧

𝜕𝛽2
=∑(𝑎 + 𝑠𝑘)

𝑛

𝑘=1

𝑥𝑘12 exp(𝒙𝒌𝟏
′ 𝜷) + 𝑥𝑘22 exp(𝒙𝒌𝟐

′ 𝜷) +⋯+ 𝑥𝑘𝑇2 exp(𝒙𝒌𝑻
′ 𝜷)

𝑎 + exp(𝒙𝒌𝟏
′ 𝜷) + exp(𝒙𝒌𝟐

′ 𝜷) + …+ exp(𝒙𝒌𝑻
′ 𝜷)

 

⋮ 

𝜕𝑧

𝜕𝛽𝐽
=∑(𝑎 + 𝑠𝑘)

𝑛

𝑘=1

𝑥𝑘1𝑗 exp(𝒙𝒌𝟏
′ 𝜷) + 𝑥𝑘2𝑗 exp(𝒙𝒌𝟐

′ 𝜷) +⋯+ 𝑥𝑘𝑇𝑗 exp(𝒙𝒌𝑻
′ 𝜷)

𝑎 + exp(𝒙𝒌𝟏
′ 𝜷) + exp(𝒙𝒌𝟐

′ 𝜷) + …+ exp(𝒙𝒌𝑻
′ 𝜷)

 

 

Equation (17) can be expressed as:  

 

𝜕ℓ(𝑎, 𝛃)

𝜕𝜷
= 0 

⟺
𝜕𝑚

𝜕𝜷
+
𝜕𝑧

𝜕𝜷
= 0 

 

and the derivates for 𝛽𝑗 , 𝑗 = 1, 2, … , 𝐽 is as follows:  
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𝜕ℓ(𝑎,𝛃)

𝜕𝛽𝑗
= (𝑌11𝑥11𝑗 + 𝑌12𝑥12𝑗 + ⋯+ 𝑌1𝑇𝑥1𝑇𝑗 + 𝑌21𝑥21𝑗 +⋯+

𝑌𝑛1𝑥𝑛1𝑗+𝑌𝑛2𝑥𝑛2𝑗 +⋯+ 𝑌𝑛𝑇𝑋𝑛𝑇𝑗) − ∑ (𝑎 +𝑛
𝑘=1

𝑠𝑘)
𝑥𝑘1𝑗 exp(𝒙𝒌𝟏

′ 𝜷)+𝑥𝑘2𝑗 exp(𝒙𝒌𝟐
′ 𝜷)+⋯+𝑥𝑘𝑇𝑗 exp(𝒙𝒌𝑻

′ 𝜷)

𝑎+exp(𝒙𝒌𝟏
′ 𝜷)+exp(𝒙𝒌𝟐

′ 𝜷)+…+exp(𝒙𝒌𝑻
′ 𝜷)

= 0  

(18) 

 

b. Estimation of 𝑎 parameter  

The derivatives for log-likelihood function in equation (16) respect to 𝑎 is  

 

 
𝜕ℓ(𝑎, 𝛃)

𝜕𝑎
=
𝜕

𝜕𝑎
 (∑(𝑎 + 𝑠𝑘 ) ln (𝑎 +∑ exp(𝒙𝒌𝒕

′ 𝜷)
𝑇

𝑡=1
)

𝑛

𝑘=1

− 𝑎 ln 𝑎 +∑ ∑ ln(𝑎 + 𝑤)

𝑠𝑘−1

𝑤=0

𝑛

𝑘=1

−∑∑ln (𝑦𝑘𝑡!)

𝑇

𝑡=1

𝑛

𝑘=1

) 

=∑(𝑎 + 𝑠𝑘)

𝑛

𝑘=1

𝜕

𝜕𝑎
ln (𝑎 +∑ exp(𝒙𝒌𝒕

′ 𝜷)
𝑇

𝑡=1
)

+
𝜕

𝜕𝑎
(𝑎 + 𝑠𝑘) ln (𝑎 +∑ exp(𝒙𝒌𝒕

′ 𝜷)
𝑇

𝑡=1
)

− (𝑎
1

𝑎
+ ln 𝑎) +∑ ∑

1

𝑎 +𝑤

𝑠𝑘−1

𝑤=0

𝑛

𝑘=1

 

=∑(
(𝑎 + 𝑠𝑘)

𝑎 + ∑ exp(𝒙𝒌𝒕
′ 𝜷)𝑇

𝑡=1

+ ln (𝑎 +∑ exp(𝒙𝒌𝒕
′ 𝜷)

𝑇

𝑡=1
))

𝑛

𝑘=1

− (1 + ln 𝑎) +∑ ∑
1

𝑎 + 𝑤

𝑠𝑘−1

𝑤=0

𝑛

𝑘=1

= 0 

(19) 

 

It is challenging to obtain solutions to the homogeneous system of equations (18) and (19) 

analytically, so a numerical approach is required. For this purpose, the conjugate gradient 

method is used because it can solve large-scale optimization problems at a high convergence 

rate.  The conjugate gradient method with the Fletcher-Reeves (FR) algorithm is used to find 

the solution to the log-likelihood function so that convergent values are obtained to serve as 

estimates for each parameter. The Fletcher-Reeves (FR) method is employed because it can 

solve optimization problems for nonlinear systems of equations and requires only first-order 

derivatives without needing the Hessian matrix or its approximation. The conjugate gradient 

method uses the following recursive formula: 

 

 𝑉𝑖+1 = 𝑉𝑖 + 𝛿𝑖𝑑𝑖 , (20) 
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where 𝛿 is a positive real number called the step size, and 𝑑𝑖 is a non-zero number called the 

search direction. The numerical procedures to maximize the log-likelihood function is as 

follows:  

Step 0. Initializing vector 𝑉0 = (𝑎0, 𝛽01,𝛽02, … , 𝛽0𝐽) and define  

ℎ(𝑎, 𝛽01,𝛽02, … , 𝛽0𝐽) = −𝑙(𝑎, 𝛽1,𝛽2, … , 𝛽𝐽) 

 

Step 1. Calculating gradient 𝑔0  

𝑔0 = ∇ℎ(𝑎0, 𝛽01,𝛽02, … , 𝛽0𝐽) =

(

 
 
 
 
 
 
 
 

𝜕ℎ(𝑎0, 𝛽01,𝛽02, … , 𝛽0𝐽)

𝜕𝑎
𝜕ℎ(𝑎0, 𝛽01,𝛽02, … , 𝛽0𝐽)

𝜕𝛽1
𝜕ℎ(𝑎0, 𝛽01,𝛽02, … , 𝛽0𝐽)

𝜕𝛽2
⋮

𝜕ℎ(𝑎0, 𝛽01,𝛽02, … , 𝛽0𝐽)

𝜕𝛽𝐽 )

 
 
 
 
 
 
 
 

 

 

If ‖∇ℎ(𝑎0, 𝛽01,𝛽02, … , 𝛽0𝐽)‖ ≤ 𝜖, iteration stops and 𝑉0 = (𝑎0, 𝛽01,𝛽02, … , 𝛽0𝐽)  is  a vector with 

optimal solution. Otherwise, continue to the next step. 

 

Step 2. Calculate the search direction  

If 𝑖 = 0:  

𝑑0 = −𝑔0 = −∇(ℎ(𝑎0, 𝛽01,𝛽02, … , 𝛽0𝐽)) 

If  𝑖 > 0: 

𝑑𝑖 = −∇(ℎ(𝑎𝑖, 𝛽𝑖1,𝛽𝑖2, … , 𝛽𝑖𝐽)) + 𝜔𝑖𝑑𝑖−1. For Fletcher-Reeves method, the formula for 𝜔𝑖 is 

 

𝜔𝑖
𝐹𝑅 =

‖𝑔𝑖‖
2

‖𝑔𝑖−1‖2
 

 

Step 3. Calculate the step size 𝛿0 

Step size is calculated by exact line search method. By solving the problem argmin
𝛿0∈ℝ+

𝑙(𝑉0 + 𝛿0𝑑0), 

we obtain the exact value of 𝛿0. 

 

Step 4. Construct vector 𝑉1 = (𝑎1, 𝛽11, 𝛽12, … , 𝛽1𝐽). 

With the iterative formula 𝑉𝑖+1 = 𝑉𝑖 + 𝛿𝑖𝑑𝑖 , we obtaion the formula for 𝑉1  is 𝑉1 = 𝑉0 + 𝛿0𝑑0 

dengan 𝑑0 = −∇ℎ(𝑎0, 𝛽01,𝛽02, … , 𝛽0𝐽) and the value of 𝛿0 calculated from previous steps. 

 

Step 5.  Set 𝑖 = 𝑖 + 1 and go back to step 1.  

This iteration runs until ‖∇ℎ ((𝑎𝑖, 𝛽𝑖1,𝛽𝑖2, … , 𝛽𝑖𝐽))‖ ≤ 𝜖. When ‖∇ℎ ((𝑎𝑖, 𝛽𝑖1,𝛽𝑖2, … , 𝛽𝑖𝐽))‖ ≤ 𝜖 , 

iteration stop and 𝑉𝑖 = (𝑎𝑖 , 𝛽𝑖1,𝛽𝑖2, … , 𝛽𝑖𝐽)  is the vector with optimal solution.  



 Fevi Novkaniza, A Posteriori Premium Rate Calculation...    233 

 

 

4. a-Posteriori Premium Rate Formulation with PGHGLM 

The a-posteriori premium rate is the premium rate for the next period. In calculating the a-

posteriori premium rate, the expected claim frequency for time 𝑡 + 1 is based on the historical 

claims from the previous year. In this case, the proposed premium rate for the insured 𝑘for time 

𝑡 + 1 is given by the following formula: 

 

 𝐸(𝑌𝑘(𝑡+1)|𝑌𝑘1 = 𝑦𝑘1, … , 𝑌𝑘𝑡 = 𝑦𝑘𝑡) (21) 

 

For 𝑘 = 1,… , 𝑛 and for each 𝑡 = 1, … , 𝑇 let 

 

 𝑚𝑘(𝑡+1) = 𝐸(𝑌𝑘(𝑡+1)|𝑌𝑘1 = 𝑦𝑘1, … , 𝑌𝑘𝑡 = 𝑦𝑘𝑡) (22) 

 

By substituting the pdf from assumptions (A1) until (A3) and based on the properties of 

conditional distribution, the a-posteriori premium rate formula is  

 

 
𝑚𝑘(𝑡+1) =

𝜆𝑘(𝑡+1)(𝑎 + ∑ 𝑦𝑘𝑠
𝑡
𝑠=1 )

(𝑎 + ∑ 𝜆𝑘𝑠
𝑡
𝑠=1 )

 (23) 

 

In the longitudinal data, which involves repeated measurements on the same subjects over 

time, the data has a complex structure, and observations are correlated over time. Therefore, it 

is necessary to calculate the correlation between the number of claims to understand the 

relationship between observation subjects or the response variable in the form of claim 

frequency of policyholders over time. For 𝑘 = 1,… , 𝑛  and 𝑡, 𝑡1, 𝑡2 = 1, . . , 𝑇  and 𝑡1 ≠ 𝑡2 , the 

covariance for 𝑌𝑘𝑡1  and 𝑌𝑘𝑡2  is 

 

𝐶𝑜𝑣(𝑌𝑘𝑡1 , 𝑌𝑘𝑡2) = 𝐸(𝑌𝑘𝑡1𝑌𝑘𝑡2) − 𝐸(𝑌𝑘𝑡1)𝐸(𝑌𝑘𝑡2) 

 

Based on the law of total covariance and by the assumption of 𝑌𝑘𝑡 independency, covariance for 

𝑌𝑘𝑡1  and 𝑌𝑘𝑡2  is as follows:  

 

𝐶𝑜𝑣(𝑌𝑘𝑡1 , 𝑌𝑘𝑡2) =
𝜆𝑘𝑡1𝜆𝑘𝑡2
𝑎

. 

 

Thus, the correlation coefficient between 𝑌𝑘𝑡1  and 𝑌𝑘𝑡2  is 

 

 
𝜌(𝑌𝑘𝑡1 , 𝑌𝑘𝑡2) =

𝐶𝑜𝑣(𝑌𝑘𝑡1 , 𝑌𝑘𝑡2)

√𝑉𝑎𝑟(𝑌𝑘𝑡1)𝑉𝑎𝑟(𝑌𝑘𝑡2)

= (1 −
𝐸(𝑌𝑘𝑡1)

𝑉(𝑌𝑘𝑡1)
)

1
2

(1 −
𝐸(𝑌𝑘𝑡2)

𝑉(𝑌𝑘𝑡2)
)

1
2

 

(24) 
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C. RESULT AND DISCUSSION 

We used the Claimslong dataset, a longitudinal claim frequency dataset obtained from the 

'insuranceData' package in R. It contains data from 40,000 motor vehicle insurance policies 

observed over three years, with one covariate: the policyholder's age. The second dataset is 

from the motor vehicle insurance portfolio of the Automobile Common Statistics A.P.S.A.D for 

the years 1979–1981 in France, comprising claim frequency data for 1,044,454 motor vehicle 

insurance policyholders (C. Partrat and J. Besson, 1992), without covariates. We used the 

Claimslong dataset which is a longitudinal claim frequency dataset obtained from the 

'insuranceData' package in R.  

1. Data Description 

The data with covariates used in this study was taken from the R Studio software and is 

titled Claims Longitudinal (Claimslong), available in the 'insuranceData' package. This data 

contains information on 40,000 motor vehicle insurance policyholders over three periods, 

consisting of policy ID numbers, driver ages, vehicle values, observation periods, and claim 

frequencies. From the available data, two variables considered in this thesis are given as 

follows: 

a. NUMCLAIMS is a numerical variable that indicates the frequency of car insurance claims. 

b. AGECAT is a categorical variable that indicates the driver's age category, with categories 

ranging from 1 (youngest) to 6 (oldest). 

 

Table 1 below shows the vehicle insurance claim frequency data, including the observation 

year (𝑡) and claim frequency (𝑁𝑡) whch represented the number of claims in year 𝑡. 

 

Table 1. Claimslong Frequency Data for Two Years 

Claim 𝑵𝟎(𝟐) 𝑵𝟏(𝟐) 𝑵𝟐(𝟐) 𝑵𝟑(𝟐) 𝑵𝟒(𝟐) 𝑵≥𝟓(𝟐) Total 
𝑁0(1) 31397 2751 493 96 23 4 34764 

𝑁1(1) 2505 784 266 89 35 25 3704 

𝑁2(1) 360 242 131 79 39 24 875 

𝑁3(1) 65 82 62 41 17 34 301 

𝑁4(1) 16 28 24 16 22 23 129 

𝑁≥5(1) 3 14 29 22 19 140 227 

Total 34346 3901 1005 343 155 250 40000 

 

Notes: 𝑁0(1) = the number of policyholders who filed 0 claims in the first year; 𝑁0(2) = the 

number of policyholders who filed 0 claims in the second year; 𝑁1(1)  = the number of 

policyholders who filed 1 claim in the first year; 𝑁1(2) = the number of policyholders who filed 

1 claim in the second year. and so on. For example, there were 31,397 policyholders who filed 

0 claims in both the first and second years, and the total number of policyholders who had 0 

claims in the second period was 34,346 policies. Figures 1 and Figures 2 display bar charts for 

claim frequencies in the first and second years, and the frequency distribution by age category, 

respectively. 
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Figure 1. Claimslong Claim Frequency Data Bar Chart 

 

 
Figure 2. Frequency of Policyholder in Each Age Category Bar Chart 

 

From Figure 2, the distribution of policyholders across age categories is consistent across 

both years. The largest group of policyholders is in category 3 (9,512 individuals), while the 

smallest group is in category 1 (3,457 individuals). 

 

Table 2. Descriptive Statistics for Claimslong Data 

Statistics Year 1 Year 2 
Mean 0.20020 0.22025 
Variance 0.40122 0.44494 
Min 0 0 
Max 27 33 

 

From Table 2 the average claim frequency in Year 1 is 0.2002, and in Year 2 it is 0.22025. 

The variance in Year 1 is 0.40122, and in Year 2 it is 0.44494. The claim frequencies range from 

0 to 27 in Year 1 and from 0 to 33 in Year 2. The model uses 𝑌𝑘𝑡  (claim frequency) as the 

dependent variable, and AGECAT as the categorical covariate. The age categories are encoded 

using dummy variables with category 1 as the base level.  
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 𝑥𝑘𝑡1 = {
1,     𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2
0,         𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 𝑥𝑘𝑡2 = {
1,     𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 3
0,         𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 𝑥𝑘𝑡3 = {
1,     𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 4
0,         𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 𝑥𝑘𝑡4 = {
1,     𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 5
0,         𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 𝑥𝑘𝑡5 = {
1,     𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 6
0,         𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 

The PGHGLM model is employed to model claim frequency with age as the sole covariate. 

The model is expressed as: 

 

ln[𝜆𝑘𝑡] = 𝛽0 + 𝛽1𝑥𝑘𝑡1 + 𝛽2𝑥𝑘𝑡2 + 𝛽3𝑥𝑘𝑡3 + 𝛽4𝑥𝑘𝑡4 + 𝛽5𝑥𝑘𝑡5 ; 𝑡 = 1,2. 

 

The Poisson-Gamma HGLM was selected due to its flexibility in handling overdispersed 

count data, such as insurance claims, where the variance exceeds the mean. The assumptions 

underlying this model include the independence of claims within the same year, a constant rate 

of claim occurrences across different age categories, and the use of a Gamma distribution for 

the random effects, which is appropriate for modelling insurance claim frequency where the 

variance is higher than the mean. Based on Section 2, parameter estimation can be performed 

using MLE with the help of conjugate gradient method. Therefore, the estimated values for each 

parameter are shown in Table 3. 

 

Table 3. Estimated Value for Each Parameter 

Parameter Estimated Value 
�̂� 1.1203526 

�̂�0   0.58352583 

�̂�1 0.1099651 

�̂�2 0.13942694 

�̂�3 0.09610736 

�̂�4 0.05906529 

�̂�5 0.13226208 

 

Based on the estimated value for each parameter in Table 3 above, the average claim 

frequency for policyholders in each age category relative to category 1 (the youngest age 

category) is as follows: The average claim frequency for policyholders in age category 2 is 

𝑒𝑥𝑝(0.1099651)  =  1.116239113 times higher than for policyholders in age category 1. The 

average claim frequency for policyholders in age category 3 is 𝑒𝑥𝑝(0.13942694)  =

 1.149614812  times higher than for policyholders in age category 1. The average claim 

frequency for policyholders in age category 4 is 𝑒𝑥𝑝(0.09610736)  =  1.100877248  times 

higher than for policyholders in age category 1. The average claim frequency for policyholders 

in age category 5 is 𝑒𝑥𝑝(0.05906529)  =  1.060844501 times higher than for policyholders in 

age category 1. The average claim frequency for policyholders in age category 6 is 
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𝑒𝑥𝑝(0.13226208)  =  1.14140742 times higher than for policyholders in age category 1. The 

average claim frequency for each age category also can be calculated, result shows in Table 4 

below: 

 

Table 4. Average Claim Frequency for Each Age Category 

Age Category Average Claim Frequency 
Category 2 2.000687607 
Category 3 2.06050845 
Category 4 1.73153826 
Category 5 1.901401266 
Category 6 2.045797948 

 

In Table 4, for base level category 1, the average claim frequency is 𝑒𝛽0 = 1.792346813. 

 

2. A-Posteriori Premium Rate Calculation for Claimslong Data 

Before calculating the a-posteriori premium rate, the correlation coefficient must be first 

calculated. Based on equation (41), the result for correlation coefficient is shown in Table 5 as 

below: 

 

Table 4. Correlation of Claim Frequency for Each Age Category 

Age Category 𝝆(𝒀𝒌𝟏, 𝒀𝒌𝒕𝟐)   

Category 1 0.615355915 
Category 2 0.641032308 
Category 3 0.647783232 
Category 4 0.637837313 
Category 5 0.629237638 
Category 6 0.646146769 

 

If the correlation between claims at year 1 and year 2 is high, then the number of claims in 

subsequent years is closely related to the number of claims in the previous year. In other words, 

the number of claims in the previous year affects the number of claims in the coming year, 

resulting in a more differentiated a posteriori premium rate that considers the number of 

claims in previous years. Conversely, the a posteriori premium rate will not differ much from 

the previous year if the correlation coefficient is low. The a-Posteriori premium rate is 

calculated based on equation (40). To calculate the a-posteriori rate in year 3, where there is 0 

claim in year 1 and 2, the formula is: 

 

𝐸(𝑌3|𝑌1 = 0, 𝑌2 = 0) =
�̂�𝑘3(�̂� + 0 + 0)

(�̂� + ∑ 𝜆𝑘𝑡
2
𝑡=1 )

 

 

Then, to find the premium rate difference between year 3 and year 2, the formula is 

 

% 𝐷𝑖𝑓𝑓 =
(𝐸(𝑌𝑡|𝑌𝑡−2, 𝑌𝑡−1) − 𝐸(𝑌𝑡−1))

𝐸(𝑌𝑡−1)
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Based on those formula, the result of premium rate and difference is shown in Table 5. 

 

Table 5. A-Posteriori Premium Rate Difference 
Age Category Claim Frequency Premium Rate %Rate Diff 

Category 1 E(Y3|Y1=0, Y2=0) 0.426788668 -57.32% 
E(Y3|Y1=0, Y2=1) 0.80773005 -19.23% 
E(Y3|Y1=0, Y2=2) 1.188671433 18.87% 
E(Y3|Y1=0, Y2=3) 1.569612815 56.96% 
E(Y3|Y1=0, Y2=4) 1.950554197 95.06% 
E(Y3|Y1=0, Y2=5) 2.33149558 133.15% 

Category 2 E(Y3|Y1=0, Y2=0) 0.437640508 -56.24% 
E(Y3|Y1=0, Y2=1) 0.828267984 -17.17% 
E(Y3|Y1=0, Y2=2) 1.218895459 21.89% 
E(Y3|Y1=0, Y2=3) 1.609522935 60.95% 
E(Y3|Y1=0, Y2=4) 2.000150411 100.02% 
E(Y3|Y1=0, Y2=5) 2.390777886 139.08% 

Category 3 E(Y3|Y1=0, Y2=0) 0.440437561 -55.96% 
E(Y3|Y1=0, Y2=1) 0.83356162 -16.64% 
E(Y3|Y1=0, Y2=2) 1.226685678 22.67% 
E(Y3|Y1=0, Y2=3) 1.619809737 61.98% 
E(Y3|Y1=0, Y2=4) 2.012933795 101.29% 
E(Y3|Y1=0, Y2=5) 2.406057854 140.61% 

Category 4 E(Y3|Y1=0, Y2=0) 0.436308714 -56.37% 
E(Y3|Y1=0, Y2=1) 0.825747462 -17.43% 
E(Y3|Y1=0, Y2=2) 1.215186211 21.52% 
E(Y3|Y1=0, Y2=3) 1.604624959 60.46% 
E(Y3|Y1=0, Y2=4) 1.994063707 99.41% 
E(Y3|Y1=0, Y2=5) 2.383502455 138.35% 

Category 5 E(Y3|Y1=0, Y2=0) 0.432698096 -56.73% 
E(Y3|Y1=0, Y2=1) 0.818914093 -18.11% 
E(Y3|Y1=0, Y2=2) 1.205130089 20.51% 
E(Y3|Y1=0, Y2=3) 1.591346086 59.13% 
E(Y3|Y1=0, Y2=4) 1.977562083 97.76% 
E(Y3|Y1=0, Y2=5) 2.363778079 136.38% 

Category 6 E(Y3|Y1=0, Y2=0) 0.439761646 -56.02% 
E(Y3|Y1=0, Y2=1) 0.832282399 -16.77% 
E(Y3|Y1=0, Y2=2) 1.224803152 22.48% 
E(Y3|Y1=0, Y2=3) 1.617323905 61.73% 
E(Y3|Y1=0, Y2=4) 2.009844658 100.98% 
E(Y3|Y1=0, Y2=5) 2.402365411 140.24% 

 

From the correlation results and Table 4, it can be concluded that the correlation between 

claims in the first and second years is quite high, at around 60%. This results in a significant 

difference in the premium rate for the subsequent year, the third year, compared to the 

premium rate in the second year. To obtain the a-posteriori premium rate for the third year, 

the average base premium for motor vehicle insurance in Indonesia, around IDR 3,588,000, is 

used. The a posteriori premium can be calculated by multiplying (1 + rate) with the base 

premium. Therefore, the a posteriori premium in 2024 for a policyholder in age category 6 who 

claimed 3 times in 2023 and 0 times in 2022 is: 
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IDR 3.588.000 × (1 + 1.617323905) = IDR 9.390,958 , 

 

Thus, the premium for the third year will increase by a factor of (1 + rate) times the base 

premium. However, the difference in the rate increase will vary from the previous year 

depending on the claim frequency in the previous year. If the claim frequency in the previous 

year is higher, the difference in the rate for the following year will also be greater. The model's 

validity can be assessed using deviance residuals and goodness-of-fit tests, such as the Akaike 

Information Criterion (AIC). While the Poisson-Gamma HGLM is suitable for this dataset, one 

limitation is that it assumes the number of claims is independent across years. If claims in 

consecutive years are correlated, this assumption could lead to biased estimates. To address 

this, the model could be extended to account for temporal dependencies, such as using a time-

series model or including lagged variables for past claims. 

 

D. CONCLUSION AND SUGGESTIONS 

The results of this study have direct implications for determining premium rates and 

managing risks in insurance companies. By modeling the claim frequency for different age 

groups, insurers can more accurately adjust their premium rates based on the likelihood of 

future claims. For instance, the estimated claim frequencies show that policyholders in older 

age categories tend to have a higher claim frequency, suggesting that premium rates for these 

groups should be adjusted accordingly. Additionally, the a-posteriori premium rate 

calculations, which take into account past claims, allow insurers to better reflect the risk profile 

of policyholders and tailor premiums more precisely to individual risks. The Poisson Gamma 

Hierarchical Generalized Linear Model (PGHGLM) is constructed by determining a mixture 

distribution for the response variable, which is influenced by random effects. This model 

utilizes a logarithmic link function, with parameter estimation conducted using the maximum 

likelihood method and the conjugate gradient technique for numerical optimization. From the 

PGHGLM construction, a formula for calculating posterior premium rates can be derived. 

PGHGLM is well-suited for datasets with a longitudinal structure, such as motor vehicle 

insurance data. When dealing with data that lacks covariates, trend parameters are 

incorporated into the model, while for datasets with covariates, the average claim frequency is 

computed for each age category, with the highest average observed in category 3. Furthermore, 

an increase in claim frequency from the previous year is associated with a corresponding rise 

in posterior premium rates. 
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