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 Along with the development of science, many researchers have found new methods 
to determine the determinant of a matrix of more than three orders. Chebyshev 
polynomial can be used to find and develop a more efficient formula in calculating 
the determinant of matrices. This research explores the Chebyshev polynomials of 
the first kind 𝑇𝑛(𝑥) and second kind 𝑈𝑛(𝑥). Both types of Chebyshev polynomials, 
𝑇𝑛(𝑥) and 𝑈𝑛(𝑥), can be represented using recurrence relations. This research aims 
to determine the determinant of tridiagonal and circulant matrices of special form 
using Chebyshev polynomials 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥). Determining the determinant of a 
matrix is a fundamental problem in linear algebra that plays an important role in 
both theoretical and applied mathematics. Its theoretical contributions include a 
deeper understanding of matrix properties, the development of efficient 
computational methods, and the explanation of the relationship between matrices 
and orthogonal polynomials. By utilizing Chebyshev polynomials, this study 
strengthens determinant theory, particularly for matrices with special shapes. The 
steps to determine the determinant of tridiagonal and circulant matrices involve 
the application of elementary row operations. The first step is to perform row 
operations on the tridiagonal and circulant matrices to obtain a matrix form that 
conforms to the determinant theorem of the tridiagonal and circulant matrices.  
After the elementary row operation is applied, if the form of the tridiagonal and 
circulant matrices each satisfies the form in the determinant theorem of the 
tridiagonal and circulant matrices, then the determinant of the matrices can be 
calculated using each of the theorems that satisfy. Then the determinants of the 
tridiagonal and the circulant matrices are obtained. The results of this study show 
that the determinant of tridiagonal and circulant matrices of special form can be 
determined using Chebyshev polynomials 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥). 
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A. INTRODUCTION  

A matrix is an arrangement of numbers organised by rows and columns in a rectangular 

shape placed between two brackets (Anton & Rorres, 2013). The arrangement of numbers in a 

rectangular array is called the entries of the matrix (Anton & Rorres, 2013). The size of the 

matrix (matrix order) is indicated by the number of rows (horizontal lines) and the number of 

columns (vertical lines) that the matrix has. There are several types of matrices, one of which 

is a square matrix. A square matrix is a matrix with the same number of rows and columns and 

is denoted as an 𝑛 × 𝑛 matrix (Anton & Rorres, 2013; Rosen, 2012). Every square matrix has a 

single value called determinant (Anton & Rorres, 2013). A German mathematician named Carl 

Friedrich Gauss first introduced the term determinant in 1801 (Kartika, 2017). 
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In determining the determinant value of a matrix, there are several methods that can be 

used including the Sarrus rule, row reduction, and cofactor expansion methods (Ilhamsyah et 

al., 2017). Along with the development of science, especially in the world of education, many 

researchers have found new methods to calculate the determinant of a matrix with a greater 

than three orders (Fitriyani et al., 2018). In this research, the determinant of the matrix with 

Chebyshev polynomials is studied. However, most of these methods are computationally 

complex or have no generalization to certain matrix shapes, such as tridiagonal matrices or 

circular matrices. In this research, matrix determinants are studied using Chebyshev 

polynomials, which include both the first and second kinds. The characteristics of these 

polynomials are discussed in (Gradshteyn & Ryzhik, 2007; Bucur et al., 2007; Belbachir & 

Bencherif, 2008). Both kinds can be applied to derive and develop formulas for the calculation 

of matrix determinants. Since Chebyshev polynomials follow a recursive pattern, where each 

polynomial is defined based on the previous polynomial, they are useful for simplifying matrix 

determinant calculations. This research focuses on special forms of matrices and utilizes the 

properties of Chebyshev polynomials to obtain an efficient and general determinant formula. 

There are several studies that discuss the general form for the determinant of an 𝑛 × 𝑛 

matrix. The generalized determinant formula streamlines the calculation of a large matrix's 

determinant by adjusting its entries and order. In addition, several previous studies focused on 

determining the determinant of a tridiagonal matrix (Belbachir & Bencherif, 2008; Jiang et al., 

2013; Qi et al., 2019; Fahlevi, 2021; Jitman & Sricharoen, 2024). A tridiagonal matrix is a square 

matrix that has entries 𝑎𝑖𝑗 = 0 for |𝑖 − 𝑗| > 1 (D. Zhang, 2017). A circulant matrix is a square 

matrix where each row is generated by shifting the previous row one position to the right in a 

circular manner (Olson et al., 2014). In this way, the entries of the first row are shifted right by 

one position to form the next row. 

In research Du et al. (2021); Seibert & Trojovský (2006) discusses the recurrence relation 

to determining the determinants of banded matrices. The research discusses an algorithm 

about the recurrence relation to calculate the determinant of a matrix. In addition Janji´c (2012), 

Hetmaniok et al. (n.d.); Jakovčević Stor & Slapničar (2024) conducted research on alternative 

proofs of several formulas to determine the determinant of a matrix. Meanwhile, Elouafi (2014),  

Jitman (2020); da Fonseca (2020) also discussed the relationship between the determinants of 

some tridiagonal matrices and Chebyshev polynomial 𝑈𝑛(𝑥). 

There is research that uses the determinant of a special form matrix with Chebyshev 

polynomials to find an uncomplicated formula for calculating the number of spanning trees in 

certain graphs (Daoud, 2012). Additionally, research Y. Zhang et al. (2005); Baigonakova & 

Mednykh (2018); Daoud (2019); Deen & Aboamer (2021) has examined the formula for finding 

the number of spanning trees in graphs, utilizing approaches such as Chebyshev polynomials, 

linear algebra, and matrix theory. In this study, Chebyshev polynomials are connected to the 

matrix determinant involved in the calculations. The determinants used are from tridiagonal 

and circulant matrices of special forms. Tridiagonal and circulant matrices have structured 

patterns, making them suitable for analysis in this study. These patterns align with the elegant 

properties of Chebyshev polynomials. Continuing these studies, this research specifically 

explores the determinants of tridiagonal and circulant matrices with special forms using 

Chebyshev polynomials. In contrast to previous studies that emphasized more on applications 
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in graph theory, this study explores the mathematical properties of the determinant, by 

providing a systematic derivation of the determinant formula based on Chebyshev polynomials. 

This approach not only highlights the importance of determinants in matrix theory, but also 

provides a stronger theoretical basis that can support future applications, both in graph theory 

and in other fields. 

 

B. METHODS 

This research is a theoretical research that focuses on developing the determinant formula 

of tridiagonal and circulant matrices with special shapes using Chebyshev polynomials. The 

subject of this research is tridiagonal and circulant matrices with special forms that can be 

applied in various fields, such as graph theory and numerical analysis. This research aims to 

develop mathematical steps in determinant calculation and explore the application of 

Chebyshev polynomials to simplify the calculation process. The research steps begin with 

applying elementary row operations to the tridiagonal and circulant matrices to obtain a matrix 

form that aligns with the determinant theorem for these matrices. After the row operations are 

applied, if the forms of the tridiagonal and circulant matrices satisfy the conditions of the 

respective determinant theorems, the determinant of the matrices can be calculated using those 

theorems. The determinants of the tridiagonal and circulant matrices are then obtained. The 

results of this study show that the determinant of special form tridiagonal and circulant 

matrices can be determined using Chebyshev polynomials 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥). 

 

C. RESULT AND DISCUSSION 

This section covers Chebyshev polynomials of the first kind 𝑇𝑛(𝑥) and second kind 𝑈𝑛(𝑥). 

These polynomials are employed to calculate the determinant of tridiagonal and circulant 

matrices in a special form. Definition 1 is provided below, which explains the Chebyshev 

polynomial 𝑇𝑛(𝑥). 

 

Definition 1 (Mason & Handscomb, 2003) Chebyshev polynomial 𝑇𝑛(𝑥) of the first kind is a 

polynomial in 𝑥 of degree 𝑛, defined by the relation: 

 

𝑇𝑛(𝑥) = cos(𝑛𝜃) (1) 

 

where 𝑥 = 𝑐𝑜𝑠 𝜃; for 0 ≤ 𝜃 ≤ 𝜋 and −1 ≤ 𝑥 ≤ 1. Some of 𝑇𝑛(𝑥) are, 

 

𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, 𝑇2(𝑥) = 2𝑥2 − 1,       𝑇3(𝑥) = 4𝑥3 − 3𝑥,

𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1,…. 
(2) 

 

In Figure 1, the graph of  𝑇𝑛(𝑥) is given for 𝑛 = 1,2,3,4. 
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∎ 𝑇1(𝑥) 

∎ 𝑇2(𝑥) 

∎ 𝑇3(𝑥) 

∎ 𝑇4(𝑥) 

 

Figure 1. 𝑇𝑛(𝑥) for 𝑛 =  1, 2,3, 4  

 

In Figure 1, for 𝑛 = 1 a linear curve forms which states a polynomial of degree 1. Then for 𝑛 =

2 the graph is a parabolic curve which states a polynomial of degree 2. Furthermore, for 𝑛 = 3 

the graph is a cubic curve which states a polynomial of degree 3 and 𝑛 = 4 the graph is a quartic 

curve which states a polynomial of degree 4. Therefore, the greater the value of n in the 

Chebyshev polynomial of first kind, the more waves are formed.first kind, the more waves are 

formed (Mason & Handscomb, 2003). The Chebyshev polynomial 𝑇𝑛(𝑥) satisfies the recurrence 

relation presented in Theorem 2. 

 

Theorem 2 Mason & Handscomb (2003) the Chebyshev polynomial of first kind satisfies the 

recurrence relation is as follows: 

 

 𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥)   (3) 

 

with 𝑛 = 2, 3, 4, …. and initial conditions, 

 

𝑇0(𝑥) = 𝑐𝑜𝑠(0𝜃) = 𝑐𝑜𝑠 0 = 1 

𝑇1(𝑥) = 𝑐𝑜𝑠(1𝜃) = 𝑐𝑜𝑠 𝜃 = 𝑥. 

 

Proof. Based on Definition 1, 𝑇𝑛(𝑥) = cos(𝑛𝜃) , then forms of 𝑇𝑛−1(𝑥)  dan 𝑇𝑛−2(𝑥)  are as 

follows: 

 

𝑇𝑛−1(𝑥) = cos(𝑛𝜃 − 𝜃) = cos 𝑛𝜃 ∙ cos 𝜃 + sin 𝑛𝜃 ∙ sin 𝜃 (4) 

𝑇𝑛−2(𝑥) = cos(𝑛𝜃 − 2𝜃) = cos 𝑛𝜃 ∙ cos 2𝜃 + sin 𝑛𝜃 ∙ sin 2𝜃 (5) 

 

Multiply (2𝑥) by Equation (4), obtained: 

 

2𝑥𝑇𝑛−1(𝑥) = 2 cos 𝑛𝜃 ∙ cos2 𝜃 + sin 𝑛𝜃 ∙ sin 2𝜃 (6) 
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Then, Equation (6) reduced by Equation (5) is obtained: 

 

2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥) = 2 cos 𝑛𝜃 ∙ cos2 𝜃 + sin 𝑛𝜃 ∙ sin 2𝜃 − (cos 𝑛𝜃 ∙ cos 2𝜃 + sin 𝑛𝜃 ∙

sin 2𝜃) 

 = cos 𝑛𝜃 (cos2 𝜃 + sin2 𝜃) 

 = cos 𝑛𝜃 

 = 𝑇𝑛(𝑥)      ∎.            

 

The solution of the Chebyshev polynomial of first kind recurrence relation is as follows: 

 

 𝑇𝑛(𝑥) =
1

2
((𝑥 + √𝑥2 − 1)

𝑛

+ (𝑥 − √𝑥2 − 1)
𝑛

) (7) 

 

Next, we discuss the Chebyshev polynomial of second kind 𝑈𝑛(𝑥). The following Definition 3 

explains the Chebyshev polynomial 𝑈𝑛(𝑥). 

 

Definition 3 (Mason & Handscomb, 2003) Chebyshev polynomial 𝑈𝑛(𝑥) of the second kind is a 

polynomial in 𝑥 of degree 𝑛, defined by the relation: 

 

 𝑈𝑛(𝑥) =
sin(𝑛 + 1) 𝜃

sin 𝜃
 (8) 

 

where 𝑥 = 𝑐𝑜𝑠 𝜃; for 0 < 𝜃 < 𝜋 and −1 < 𝑥 < 1. Some of 𝑈𝑛(𝑥) are 

 

𝑈0(𝑥) = 1, 𝑈1(𝑥) = 2𝑥, 𝑈2(𝑥) = 4𝑥2 − 1,       𝑈3(𝑥) = 8𝑥3 − 4𝑥,

𝑈4(𝑥) = 16𝑥4 − 12𝑥2 + 1,…. 
(9) 

 

In Figure 2, the graph of Chebyshev polynomial 𝑈𝑛(𝑥) is given for 𝑛 = 1,2,3,4. 

 

 

 

 

∎ 𝑈1(𝑥) 

∎ 𝑈2(𝑥) 

∎ 𝑈3(𝑥) 

∎ 𝑈4(𝑥) 

 

Figure 2 𝑈𝑛(𝑥) for 𝑛 = 1, 2,3, 4  

 

In Figure 2, show the graph of 𝑈1(𝑥), 𝑈2(𝑥), 𝑈3(𝑥), and 𝑈4(𝑥). As does in Figure 1, each time the 

value of n increases, the number of waves increases by one, and the extreme points become 
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more numerous, with their height or low increasing monotonically (Mason & Handscomb, 

2003). The Chebyshev polynomial 𝑈𝑛(𝑥) satisfies the recurrence relation outlined in Theorem 

4. 

 

Theorem 4 (Mason & Handscomb, 2003) The Chebyshev polynomial of second kind satisfies 

the recurrence relation is as follows: 

 

 𝑈𝑛(𝑥) = 2𝑥𝑈𝑛−1(𝑥) − 𝑈𝑛−2(𝑥) (10) 

 

with 𝑛 = 2, 3, 4, …. and initial conditions, 

 

𝑈0(𝑥) =
sin(0 + 1)𝜃

sin 𝜃
= 1 

𝑈1(𝑥) =
sin(1 + 1)𝜃

sin 𝜃
= 2𝑥 

 

Proof. Based on Definition 3, then forms of 𝑈𝑛−1(𝑥) dan 𝑈𝑛−2(𝑥) are as follows: 

 

𝑈𝑛−1(𝑥) =
sin 𝑛𝜃

sin 𝜃
 

(11) 

𝑈𝑛−2(𝑥) =
sin 𝑛𝜃 ∙ cos 𝜃 − cos 𝑛𝜃 ∙ sin 𝜃

sin 𝜃
 

(12) 

 

Multiply (2𝑥) by Equation (11), obtained: 

 

 2𝑥𝑈𝑛−1(𝑥) =
2 sin 𝑛𝜃 ∙ cos 𝜃

sin 𝜃
 (13) 

 

Then, Equation (13) reduced by Equation (12) is obtained: 

 

2𝑥𝑈𝑛−1(𝑥) − 𝑈𝑛−2(𝑥) 
=

2 sin 𝑛𝜃 ∙ cos 𝜃

sin 𝜃
− (

sin 𝑛𝜃 ∙ cos 𝜃 − cos 𝑛𝜃 ∙ sin 𝜃

sin 𝜃
) 

 
=

sin 𝑛𝜃 cos 𝜃 + cos 𝑛𝜃 ∙ sin 𝜃

sin 𝜃
 

 
=

sin(𝑛 + 1)𝜃

sin 𝜃
 

 = 𝑈𝑛(𝑥)   ∎. 

 

The solution of the 𝑈𝑛(𝑥) recurrence relation is as follows: 

 

 𝑈𝑛(𝑥) =
1

2√𝑥2 − 1
((𝑥 + √𝑥2 − 1)

𝑛+1

) − ((𝑥 − √𝑥2 − 1)
𝑛+1

) (14) 
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Suppose 𝐴𝑛(𝑥) is a tridiagonal matrix as follows: 

 

𝐴𝑛(𝑥) =

[
 
 
 
 
 
2𝑥 −1 0 0 ⋯ 0
−1 2𝑥 −1 0 ⋯ 0
0 −1 2𝑥 −1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ −1 2𝑥 −1
0 ⋯ ⋯ 0 −1 2𝑥]

 
 
 
 
 

 

 

Then it can be shown that by finding |𝐴𝑛(𝑥)|, obtained the same form of recurrence relation as 

Equation (10). Suppose calculated the determinant of the matrix is  for 𝑛 = 2,3,4,5, thus 

 

|𝐴2(𝑥)| = 4𝑥2 − 1 = 2𝑥(2𝑥) − 1 

|𝐴3(𝑥)| = 8𝑥3 − 4𝑥 = 2𝑥(4𝑥2 − 1) − 2𝑥 

|𝐴4(𝑥)| = 16𝑥4 − 12𝑥2 + 1 = 2𝑥(8𝑥3 − 4𝑥) − (4𝑥2 − 1) 

|𝐴5(𝑥)| = 32𝑥5 − 32𝑥3 + 6𝑥 = 2𝑥(16𝑥4 − 12𝑥2 + 1) − (8𝑥3 − 4𝑥) 

 

Then it can be shown that by performing a cofactor expansion on the matrix 𝐴𝑛(𝑥), obtained 

the same recurrence relation in Equation (10): 

 

|𝐴𝑛(𝑥)| = 2𝑥|𝐴𝑛−1(𝑥)| − |𝐴𝑛−2| 

 

Thus the recurrence relation equation of the determinant value for 𝑛 = 2,3,4,5 is obtained, 

namely |𝐴𝑛(𝑥)| = 2𝑥|𝐴𝑛−1(𝑥)| − |𝐴𝑛−2(𝑥)|. Based on the determinant of the matrix  𝐴𝑛(𝑥), the 

following relation is obtained: 

 

|𝐴𝑛(𝑥)| = 𝑈𝑛(𝑥) (15) 

 

Chebyshev polynomials 𝑇𝑛(𝑥)  and 𝑈𝑛(𝑥)  are closely related to determinants, making them 

useful for calculating larger matrices. The theorem below is applied to compute the 

determinant of a tridiagonal matrix. 

 

Theorem 5 Let matrix 𝒜𝑛(𝑧) be a special form tridiagonal matrix of size 𝑛 × 𝑛, with 

 

𝒜𝑛(𝑧) =

[
 
 
 
 
 

𝑧 −𝛼 0 0 ⋯ 0
−𝛼 𝑧 + 𝛼 −𝛼 0 ⋯ 0
0 −𝛼 𝑧 + 𝛼 −𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝛼 𝑧 + 𝛼 −𝛼
0 ⋯ 0 0 −𝛼 𝑧 ]

 
 
 
 
 

 

 

for all 𝑧, 𝛼 ∈ ℝ, 𝑧 ≠ −3𝛼, 𝑧 ≠ 𝛼 and 𝑛 ∈ ℕ, 𝑛 ≥ 2, then the determinant is 

 

det (𝒜𝑛((𝑧))) = (𝑧 − 𝛼) ∙ 𝛼𝑛−1𝑈𝑛−1 (
𝑧 + 𝛼

2𝛼
) (16) 
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Proof. The form of the tridiagonal matrix 𝐵𝑛(𝑟) is as follows:  

 

𝐵𝑛(𝑟) =

[
 
 
 
 
 

𝑟 −𝛼 0 0 ⋯ 0
−𝛼 𝑟 −𝛼 0 ⋯ 0
0 −𝛼 𝑟 −𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝛼 𝑟 −𝛼
0 ⋯ 0 0 −𝛼 𝑟 ]

 
 
 
 
 

 

 

Calculating the determinant of matrix 𝐵𝑛(𝑟) using cofactor expansion as follows: 

 

|𝐵𝑛(𝑟)| = det

[
 
 
 
 
 

𝑟 −𝛼 0 0 ⋯ 0
−𝛼 𝑟 −𝛼 0 ⋯ 0
0 −𝛼 𝑟 −𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝛼 𝑟 −𝛼
0 ⋯ 0 0 −𝛼 𝑟 ]

 
 
 
 
 

 

 = 𝑟 det

[
 
 
 
 
 

𝑟 −𝛼 0 0 ⋯ 0
−𝛼 𝑟 −𝛼 0 ⋯ 0
0 −𝛼 𝑟 −𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝛼 𝑟 −𝛼
0 ⋯ 0 0 −𝛼 𝑟 ]

 
 
 
 
 

(𝑛−1)×(𝑛−1)

 

 −𝛼2 det

[
 
 
 
 
 

𝑟 −𝛼 0 0 ⋯ 0
−𝛼 𝑟 −𝛼 0 ⋯ 0
0 −𝛼 𝑟 −𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝛼 𝑟 −𝛼
0 ⋯ 0 0 −𝛼 𝑟 ]

 
 
 
 
 

(𝑛−2)×(𝑛−2)

 

 = 𝑟|𝐵𝑛−1(𝑟)| − 𝛼2|𝐵𝑛−2(𝑟)| 

 

The recurrence relation for the determinant of matrix 𝐵𝑛(𝑟) is obtained, that is  

 

|𝐵𝑛(𝑟)| = 𝑟|𝐵𝑛−1(𝑟)| − 𝛼2|𝐵𝑛−2(𝑟)|. 

 

Suppose 𝑟 = 𝑧 + 𝛼, then 

 

|𝐵𝑛(𝑧 + 𝛼)| = (𝑧 + 𝛼)|𝐵𝑛−1(𝑧 + 𝛼)| − 𝛼2|𝐵𝑛−2(𝑧 + 𝛼)| (17) 

 

Multiply (𝑧 − 𝛼) by Equation (17), obtained: 

 

(𝑧 − 𝛼)|𝐵𝑛(𝑧 + 𝛼)| = (𝑧2 − 𝛼2)|𝐵𝑛−1(𝑧 + 𝛼)| − (𝑧 − 𝛼)𝛼2|𝐵𝑛−2(𝑧 + 𝛼)| 

(𝑧2 − 𝛼2)|𝐵𝑛−1(𝑧 + 𝛼)| − (𝑧 − 𝛼)𝛼2|𝐵𝑛−2(𝑧 + 𝛼)| − (𝑧 − 𝛼)|𝐵𝑛(𝑧 + 𝛼)| = 0  (18) 
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Equation (17) is equivalent to, 

 

|𝐵𝑛−1(𝑧 + 𝛼)| − (𝑧 + 𝛼)|𝐵𝑛−2(𝑧 + 𝛼)| + 𝛼2|𝐵𝑛−3(𝑧 + 𝛼)| = 0 (19) 

 

Multiply (𝛼2) by Equation (19), obtained: 

 

𝛼2|𝐵𝑛−1(𝑧 + 𝛼)| − (𝑧 + 𝛼)𝛼2|𝐵𝑛−2(𝑧 + 𝛼)| + 𝛼4|𝐵𝑛−3(𝑧 + 𝛼)| = 0 (20) 

 

The next step is to sum Equation (18) with (20) as follows: 

 

(𝑧2 − 𝛼2)|𝐵𝑛−1(𝑧 + 𝛼)| − (𝑧 − 𝛼)𝛼2|𝐵𝑛−2(𝑧 + 𝛼)| − (𝑧 − 𝛼)|𝐵𝑛(𝑧 + 𝛼)|  

+𝛼2|𝐵𝑛−1(𝑧 + 𝛼)| − (𝑧 + 𝛼)𝛼2|𝐵𝑛−2(𝑧 + 𝛼)| + 𝛼4|𝐵𝑛−3(𝑧 + 𝛼)| = 0 

(𝑧 − 𝛼)|𝐵𝑛(𝑧 + 𝛼)| = 𝑧2|𝐵𝑛−1(𝑧 + 𝛼)| − 2𝑧𝛼2|𝐵𝑛−2(𝑧 + 𝛼)| + 𝛼4|𝐵𝑛−3(𝑧 + 𝛼)| 

(𝑧 − 𝛼)|𝐵𝑛−1(𝑧 + 𝛼)| = 𝑧2|𝐵𝑛−2(𝑧 + 𝛼)| − 2𝑧𝛼2|𝐵𝑛−3(𝑧 + 𝛼)| + 𝛼4|𝐵𝑛−4(𝑧 + 𝛼)|            (21) 

 

Further, obtained the determinant of matrix 𝒜𝑛(𝑧) using cofactor expansion as follows: 

 

|𝒜𝑛(𝑧)| = 𝑧2|𝐵𝑛−2(𝑧 + 𝛼)| − 2𝑧𝛼2|𝐵𝑛−3(𝑧 + 𝛼)| + 𝛼4|𝐵𝑛−4(𝑧 + 𝛼)|        (22) 

 

Therefore, based on the determinant results of matrices 𝒜𝑛(𝑧) and 𝐵𝑛(𝑧 + 𝛼) in Equations (21) 

and (22), the following relationship is obtained: 

 

|𝒜𝑛(𝑧)| = (𝑧 − 𝛼)|𝐵𝑛−1(𝑧 + 𝛼)| 

 

Hence, the determinant of matrix 𝒜𝑛(𝑧) is 

 

|𝒜𝑛(𝑧)| = (𝑧 − 𝛼)|𝐵𝑛−1(𝑧 + 𝛼)| 

 

Based on Equation (15) then obtained: 

 

|𝒜𝑛(𝑧)| = (𝑧 − 𝛼) ∙ 𝛼𝑛−1𝑈𝑛−1 (
𝑧 + 𝛼

2𝛼
)  ∎. 

 

Based on the solution of the recurrence relation the form 𝑈𝑛(𝑥), the determinant of matrix 

𝒜𝑛(𝑧) as follows: 

 

det(𝒜𝑛(𝑧)) =
𝑧 − 𝛼

2𝑛√𝑧2 + 2𝑧𝛼 − 3𝛼2
((𝑧 + 𝛼 + √𝑧2 + 2𝑧𝛼 − 3𝛼2)

𝑛

 

− (𝑧 + 𝑧 − √𝑧2 + 2𝑧𝛼 − 3𝛼2)
𝑛

). 
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Theorem 6 Let matrix 𝐵𝑛(𝑧) be a special form tridiagonal matrix of size 𝑛 × 𝑛, with 

 

𝐵𝑛(𝑧) =

[
 
 
 
 
 
𝑧 + 𝛼 𝛼 0 0 ⋯ 0

𝛼 𝑧 𝛼 0 ⋯ ⋮
0 𝛼 𝑧 𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝛼 𝑧 𝛼
0 ⋯ 0 0 𝛼 𝑧 + 𝛼]

 
 
 
 
 

 

 

for all 𝑧, 𝛼 ∈ ℝ, 𝑧 ≠ −2𝛼, 𝑧 ≠ 2𝛼 and 𝑛 ∈ ℕ, 𝑛 ≥ 2, then the determinant is 

 

det(𝐵𝑛(𝑧)) = (𝑧 + 2𝛼) ∙ 𝛼𝑛−1𝑈𝑛−1 (
𝑧

2𝛼
) (23) 

 

Proof. The form of the tridiagonal matrix 𝐷𝑛(𝑧) is as follows:  

 

𝐷𝑛(𝑧) =

[
 
 
 
 
 
𝑧 𝛼 0 0 ⋯ 0
𝛼 𝑧 𝛼 0 ⋯ ⋮
0 𝛼 𝑧 𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝛼 𝑧 𝛼
0 ⋯ 0 0 𝛼 𝑧]

 
 
 
 
 

 

 

Calculating the determinant of matrix 𝐷𝑛(𝑧) using cofactor expansion is obtained as follows: 

 

|𝐷𝑛(𝑧)| = det

[
 
 
 
 
 
𝑧 𝛼 0 0 ⋯ 0
𝛼 𝑧 𝛼 0 ⋯ ⋮
0 𝛼 𝑧 𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝛼 𝑧 𝛼
0 ⋯ 0 0 𝛼 𝑧]

 
 
 
 
 

= 𝑧|𝐷𝑛−1(𝑧)| − 𝛼2|𝐷𝑛−2(𝑧)| 

 

The recurrence relation for the determinant of matrix 𝐷𝑛(𝑧) is obtained, that is  

 

|𝐷𝑛(𝑧)| = 𝑧|𝐷𝑛−1(𝑧)| − 𝛼2|𝐷𝑛−2(𝑧)| (24) 

 

Multiply (𝑧 + 2𝛼) by Equation (24), obtained: 

 

(𝑧2 + 2𝑧𝛼)|𝐷𝑛−1(𝑧)| − (𝑧 + 2𝛼)𝛼2|𝐷𝑛−2(𝑧)| − (𝑧 + 2𝛼)|𝐷𝑛(𝑧)| = 0 (25) 

 

Equation (24) is equivalent to, 

 

|𝐷𝑛−1(𝑧)| − 𝑧|𝐷𝑛−2(𝑧)| + 𝛼2|𝐷𝑛−3(𝑧)| (26) 
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Multiply (𝛼2) by Equation (26), obtained: 

 

𝛼2|𝐷𝑛−1(𝑧)| − 𝑧𝛼2|𝐷𝑛−2(𝑧)| + 𝛼4|𝐷𝑛−3(𝑧)| = 0 (27) 

 

The next step is to sum Equation (25) with (27) as follows: 

 

(𝑧2 + 2𝑧𝛼)|𝐷𝑛−1(𝑧)| − (𝑧 + 2𝛼)𝛼2|𝐷𝑛−2(𝑧)| − (𝑧 + 2𝛼)|𝐷𝑛(𝑧)| + 𝛼2|𝐷𝑛−1(𝑧)| 

−𝑧𝛼2|𝐷𝑛−2(𝑧)| + 𝛼4|𝐷𝑛−3(𝑧)| = 0 

(𝑧2 + 2𝑧𝛼 + 𝛼2)|𝐷𝑛−1(𝑧)| − 2(𝑧𝛼2 + 𝛼3)|𝐷𝑛−2(𝑧)| − (𝑧 + 2𝛼)|𝐷𝑛(𝑧)| + 𝛼4|𝐷𝑛−3(𝑧)| = 0 

(𝑧 + 2𝛼)|𝐷𝑛(𝑧)| = (𝑧2 + 2𝑧𝛼 + 𝛼2)|𝐷𝑛−1(𝑧)| − 2(𝑧𝛼2 + 𝛼3)|𝐷𝑛−2(𝑧)| + 𝛼4|𝐷𝑛−3(𝑧)| 

(𝑧 + 2𝛼)|𝐷𝑛−1(𝑧)| = (𝑧2 + 2𝑧𝛼 + 𝛼2)|𝐷𝑛−2(𝑧)| − 2(𝑧𝛼2 + 𝛼3)|𝐷𝑛−3(𝑧)| + 𝛼4|𝐷𝑛−4(𝑧)|               (28) 

 

Further, obtained the determinant of matrix 𝐵𝑛(𝑧) using cofactor expansion as follows: 

 

|𝐵𝑛(𝑧)| = (𝑧2 + 2𝑧𝛼 + 𝛼2)|𝐷𝑛−2(𝑧)| − 2(𝑧𝛼2 + 𝛼3)|𝐷𝑛−3(𝑧)| + 𝛼4|𝐷𝑛−4(𝑧)|           (29) 

 

Therefore, based on the determinant results of matrices 𝐵𝑛(𝑧) and 𝐷𝑛(𝑧) in Equations (28) and 

(29), the following relationship is obtained: 

 

|𝐵𝑛(𝑧)| = (𝑧 + 2𝛼)|𝐷𝑛−1(𝑧)|. 

 

Hence, the determinant of matrix 𝐵𝑛(𝑧) is 

 

|𝐵𝑛(𝑧)| = (𝑧 + 2𝛼)|𝐷𝑛−1(𝑧)| 

 

Based on equation (15) then obtained: 

 

|𝐵𝑛(𝑧)| = (𝑧 + 2𝛼) ∙ 𝛼𝑛−1𝑈𝑛−1 (
𝑧

2𝛼
)  ∎. 

 

Based on the solution of the recurrence relation the form 𝑈𝑛(𝑥), the determinant of matrix 

𝐵𝑛(𝑧) as follows: 

 

det(𝐵𝑛(𝑧)) =
𝑧 + 2𝛼

2𝑛√𝑧2 − 4𝛼2
((𝑧 + √𝑧2 − 4𝛼2)

𝑛

− (𝑧 − √𝑧2 − 4𝛼2)
𝑛

). 

 

In the following the determinant of a special form circulant matrix with Chebyshev polynomial 

of the first kind is given. 
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Theorem 7 Let matrix 𝐶𝑛(𝑧) be a special form circulant matrix of size 𝑛 × 𝑛, with 

 

𝐶𝑛(𝑧) =

[
 
 
 
 
 

𝑧 −𝛼 0 0 ⋯ −𝛼
−𝛼 𝑧 −𝛼 0 ⋯ 0
0 −𝛼 𝑧 −𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝛼 𝑧 −𝛼

−𝛼 0 ⋯ 0 −𝛼 𝑧 ]
 
 
 
 
 

 

 

for all 𝑧, 𝛼 ∈ ℝ and 𝑛 ∈ ℕ, 𝑛 ≥ 3, then the determinant is 

 

 det(𝐶𝑛(𝑧)) = 2𝛼𝑛 (𝑇𝑛 (
𝑧

2𝛼
) − 1) (30) 

 

Proof. The form of the circulant matrix 𝐶𝑛(𝑧) is as follows: 

 

𝐶𝑛(𝑧) =

[
 
 
 
 
 

𝑧 −𝛼 0 0 ⋯ −𝛼
−𝛼 𝑧 −𝛼 0 ⋯ 0
0 −𝛼 𝑧 −𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝛼 𝑧 −𝛼

−𝛼 0 ⋯ 0 −𝛼 𝑧 ]
 
 
 
 
 

 

 

The form of the tridiagonal matrix 𝐵𝑛(𝑟) is as follows: 

 

𝐵𝑛(𝑟) =

[
 
 
 
 
 

𝑟 −𝛼 0 0 ⋯ 0
−𝛼 𝑟 −𝛼 0 ⋯ 0
0 −𝛼 𝑟 −𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝛼 𝑟 −𝛼
0 0 ⋯ 0 −𝛼 𝑟 ]

 
 
 
 
 

 

 

Based on the cofactor expansion steps of matrix 𝐵𝑛(𝑟) in Theorem 5, the recurrence relation 

for the determinant of matrix 𝐵𝑛(𝑟) is obtained |𝐵𝑛(𝑟)| = 𝑟|𝐵𝑛−1(𝑟)| − 𝛼2|𝐵𝑛−2(𝑟)|. Supposes 

𝑟 = 𝑧, then 

 

|𝐵𝑛(𝑧)| = 𝑧|𝐵𝑛−1(𝑧)| − 𝛼2|𝐵𝑛−2(𝑧)| (31) 

 

The next step is to sum Equation (31) with (−𝛼2|𝐵𝑛−2(𝑧)| − 2𝛼𝑛) as follows: 

 

|𝐵𝑛(𝑧)| − 𝛼2|𝐵𝑛−2(𝑧)| − 2𝛼𝑛 = 𝑧|𝐵𝑛−1(𝑧)| − 2𝛼2|𝐵𝑛−2(𝑧)| − 2𝛼𝑛 (32) 

 

Further, obtained the determinant of matrix 𝐶𝑛(𝑧) using cofactor expansion as follows: 

 

|𝐶𝑛(𝑧)| = 𝑧|𝐵𝑛−1(𝑧)| − 2𝛼2|𝐵𝑛−2(𝑧)| − 2𝛼𝑛 (33) 
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Therefore, based on the determinant results of matrices 𝐶𝑛(𝑧) and 𝐵𝑛(𝑟) in Equations (32) and 

(33), the following relationship is obtained: 

 

|𝐶𝑛(𝑧)| = |𝐵𝑛(𝑧)| − 𝛼2|𝐵𝑛−2(𝑧)| − 2𝛼𝑛 

 = 𝛼𝑛𝑈𝑛 (
𝑧

2𝛼
) − 𝛼2 ∙ 𝛼𝑛−2𝑈𝑛−2 (

𝑧

2𝛼
) − 2𝛼𝑛 

 = 𝛼𝑛𝑈𝑛 (
𝑧

2𝛼
) − 𝛼𝑛𝑈𝑛−2 (

𝑧

2𝛼
) − 2𝛼𝑛 

 = 𝛼𝑛 (𝑈𝑛 (
𝑧

2𝛼
) − 𝑈𝑛−2 (

𝑧

2𝛼
) − 2) 

 

Based on the relationship between Chebyshev polynomials 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥), namely 2𝑇𝑛(𝑥) =

𝑈𝑛(𝑥) − 𝑈𝑛−2(𝑥), then 

 

|𝐶𝑛(𝑧)| = 𝛼𝑛 (2𝑇𝑛 (
𝑧

2𝛼
) − 2) 

 = 2𝛼𝑛 (𝑇𝑛 (
𝑧

2𝛼
) − 1)   ∎. 

 

Based on the solution of the recurrence relation the form Chebyshev polynomial 𝑇𝑛(𝑥), the 

determinant of matrix 𝐶𝑛(𝑧) as follows: 

 

det(𝐶𝑛(𝑧)) =
1

2𝑛
((𝑧 + √𝑧2 − 4𝛼2)

𝑛

+ (𝑧 − √𝑧2 − 4𝛼2)
𝑛

− 2𝑛+1𝛼𝑛). 

 

Theorem 8 Let matrix 𝐷𝑛(𝑧) be a special form circulant matrix of size 𝑛 × 𝑛, with 

𝐷𝑛(𝑧) =

[
 
 
 
 
 
𝑧 0 𝛼 𝛼 ⋯ 0
0 𝑧 0 𝛼 ⋯ 𝛼
𝛼 0 𝑧 0 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
𝛼 ⋯ 𝛼 0 𝑧 0
0 𝛼 ⋯ 𝛼 0 𝑧]

 
 
 
 
 

 

 

for all 𝑧, 𝛼 ∈ ℝ, 𝑧 ≠ 3𝛼 and 𝑛 ∈ ℕ, 𝑛 ≥ 3, then the determinant is 

 

det(𝐷𝑛(𝑧)) =
2𝛼𝑛(𝑧 + 𝑛𝛼 − 3𝛼)

𝑧 − 3𝛼
(𝑇𝑛 (

𝑧 − 𝛼

2𝛼
) − 1) (34) 

 

Proof. Simplify and perform elementary row operations on matrix 𝐷𝑛(𝑧) to form matrix 𝐶𝑛(𝑧) 

based on Theorem 7 by applying matrix properties and matrix determinant properties.  

 

det(𝐷𝑛(𝑧)) = det

[
 
 
 
 
 
𝑧 0 𝛼 𝛼 ⋯ 0
0 𝑧 0 𝛼 ⋯ 𝛼
𝛼 0 𝑧 0 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
𝛼 ⋯ 𝛼 0 𝑧 0
0 𝛼 ⋯ 𝛼 0 𝑧]
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Add each row 𝑖, 𝑖 = 2,3, . . . , 𝑛 to row 1, obtained as follows: 

 

 

= det

[
 
 
 
 
 
𝑧 + 𝑛𝛼 − 3𝛼 𝑧 + 𝑛𝛼 − 3𝛼 𝑧 + 𝑛𝛼 − 3𝛼 𝑧 + 𝑛𝛼 − 3𝛼 ⋯ 𝑧 + 𝑛𝛼 − 3𝛼

0 𝑧 0 𝛼 ⋯ 𝛼
𝛼 0 𝑧 0 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
𝛼 ⋯ 𝛼 0 𝑧 0
0 𝛼 ⋯ 𝛼 0 𝑧 ]

 
 
 
 
 

 

= (𝑧 + 𝑛𝛼 − 3𝛼) det

[
 
 
 
 
 
1 1 1 1 ⋯ 1
0 𝑧 0 𝛼 ⋯ 𝛼
𝛼 0 𝑧 0 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
𝛼 ⋯ 𝛼 0 𝑧 0
0 𝛼 ⋯ 𝛼 0 𝑧]

 
 
 
 
 

 

 

Then, by applying the elementary row operations, the following matrix form is obtained: 

 

det(𝐷𝑛(𝑧)) =
𝑧 + 𝑛𝛼 − 3𝛼

𝑧 − 3𝛼
det

[
 
 
 
 
 
𝑧 − 𝛼 −𝛼 0 0 ⋯ −𝛼
−𝛼 𝑧 − 𝛼 −𝛼 0 ⋯ 0
0 −𝛼 𝑧 − 𝛼 −𝛼 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝛼 𝑧 − 𝛼 −𝛼

−𝛼 0 ⋯ 0 −𝛼 𝑧 − 𝛼]
 
 
 
 
 

 

 

Based on Theorem 7, obtained 

 

det(𝐷𝑛(𝑧)) =
𝑧 + 𝑛𝛼 − 3𝛼

𝑧 − 3𝛼
× 2𝛼𝑛 (𝑇𝑛 (

𝑧 − 𝛼

2𝛼
) − 1) 

 =
2𝛼𝑛(𝑧 + 𝑛𝛼 − 3𝛼)

𝑧 − 3𝛼
(𝑇𝑛 (

𝑧 − 𝛼

2𝛼
) − 1)∎. 

 

Based on the solution of the recurrence relation the form Chebyshev polynomial of first kind, 

the determinant of matrix 𝐷𝑛(𝑧) as follows: 

 

det(𝐷𝑛(𝑧)) =
𝑧 + 𝑛𝛼 − 3𝛼

2𝑛(𝑧 − 3𝛼)
((𝑧 − 𝛼 + √𝑧2 − 2𝑧𝛼 − 3𝛼2)

𝑛

+ (𝑧 − 𝛼 − √𝑧2 − 2𝑧𝛼 − 3𝛼2)
𝑛

− 2𝑛+1 ∙ 𝛼𝑛). 

 

D. CONCLUSION AND SUGGESTIONS 

By using Chebyshev polynomials of the first and second kinds, this research succeeds in 

systematically constructing and verifying determinant formulas for tridiagonal and circulant 

matrices with special forms. Calculating the determinant of the special form of the tridiagonal 

matrix 𝑇𝑛  using the second kind of Chebyshev polynomial (𝑈𝑛(𝑥)) , as for the form of the 

determinant of the tridiagonal matrix det(𝒜𝑛(𝑧)) = (𝑧 − 𝛼) ∙ 𝛼𝑛−1𝑈𝑛−1 (
𝑧+𝛼

2𝛼
)  for all 𝑧, 𝛼 ∈
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ℝ, 𝑧 ≠ −3𝛼, 𝑧 ≠ 𝛼 and 𝑛 ∈ ℕ, 𝑛 ≥ 2  and det(𝐵𝑛(𝑧)) = (𝑧 + 2𝛼) ∙ 𝛼𝑛−1𝑈𝑛−1 (
𝑧

2𝛼
)  for all 𝑧, 𝛼 ∈

ℝ, 𝑧 ≠ −2𝛼, 𝑧 ≠ 2𝛼 and 𝑛 ∈ ℕ, 𝑛 ≥ 2. 

Calculating the determinant of the special form of the circulant matrix 𝐶𝑛 using the first 

type of Chebyshev polynomial (𝑇𝑛(𝑥)), as for the form of the determinant of the circulant 

matrix det(𝐶𝑛(𝑧)) = 2𝛼𝑛 (𝑇𝑛 (
𝑧

2𝛼
) − 1)  for all  𝑧, 𝛼 ∈ ℝ  and 𝑛 ∈ ℕ, 𝑛 ≥ 3  and det(𝐷𝑛(𝑧)) =

2𝛼𝑛(𝑧+𝑛𝛼−3𝛼)

𝑧−3𝛼
(𝑇𝑛 (

𝑧−𝛼

2𝛼
) − 1) for all 𝑧, 𝛼 ∈ ℝ , 𝑧 ≠ 3𝛼 and 𝑛 ∈ ℕ, 𝑛 ≥ 3. These formulas show that 

Chebyshev polynomials can be directly related to matrix determinants and provide a simpler 

and more efficient way to calculate determinants. 
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