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 Precipitation can lead to disasters like droughts and floods, necessitating accurate 
interpolation methods. Traditional spatio-temporal kriging often struggles with 
outliers, which can reduce estimation reliability. This study develops spatio-
temporal median polish kriging, which separates spatial and temporal components 
to improve interpolation accuracy, particularly in handling outliers. Unlike 
conventional kriging, this method integrates median polish kriging for robust 
spatial interpolation and ARIMA for capturing temporal trends, making it more 
effective in dynamic precipitation pattern estimation. The study utilizes 
precipitation data from seven observation posts in East Kalimantan (2021–2023). 
The data is processed using a combination of spatial, temporal, and spatial-
temporal modeling approaches to capture precipitation variations accurately. For 
spatial interpolation, the study applies kriging in median polish spatial effects. The 
best semivariogram model for spatial effects is exponential, which is used to 
characterize spatial dependencies. To capture temporal effects of median polish, 
the study employs ARIMA(1,2,0), which models precipitation trends over time and 
helps manage temporal fluctuations. For residuals of median polish interpolation, 
the study applies spatio-temporal kriging, using a simple sum-metric model as the 
best approach to integrate both spatial and temporal dependencies. The 
semivariograms selected for spatial, temporal, and joint dependencies follow a 
gaussian structure. The interpolation results reveal that precipitation increases 
toward the west, with precipitation patterns also showing an increasing trend over 
time. These findings demonstrate the model’s capability in capturing spatial and 
temporal precipitation variations while addressing potential outliers through the 
median polish approach. By utilizing a robust statistical framework, the model 
reduces the influence of extreme values, leading to more reliable precipitation 
estimates. However, this study utilizes only seven observation posts. The limited 
number of observation posts may introduce uncertainty in regions distant from 
measurement stations and affect the model's accuracy. Therefore, further research 
should test this model by applying it to different geographical regions with a more 
extensive dataset. 
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A. INTRODUCTION  

Precipitation plays an essential role in the hydrological cycle, influencing the likelihood of 

floods and droughts in each area (Katipoğlu, 2022). Meteorological and climatological events, 

such as storms, atmospheric boundaries (air mass transitions), and local geography, can lead 

to substantial variations in precipitation over relatively small areas (Adiguna et al., 2021; 

Pertiwi et al., 2015). As a result, precipitation exhibits significant spatial and temporal 
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variability, often including extreme values or outliers that complicate accurate prediction and 

modeling (Zhang et al., 2020). 

East Kalimantan, as the province where the National Capital City (IKN) is being relocated, 

is undergoing extensive environmental changes due to rapid urbanization. The transformation 

of forests and open land into impervious surfaces alters hydrological processes, leading to 

increased surface runoff, reduced groundwater recharge, and heightened flood risks during 

extreme precipitation events (Yang et al., 2020). This is in line with research by Han et al. (2022) 

and Sari & Atsidiqi (2020), which states that the process of urbanization changes the 

characteristics of the earth's surface, contributing to phenomena such as the urban heat island 

(UHI), which can trigger changes in weather patterns and increase the likelihood of 

precipitation in urban areas. Additionally, deforestation reduces soil water retention capacity, 

further exacerbating flooding during heavy precipitation and increasing drought susceptibility 

during dry seasons (Sudinda, 2020). These environmental changes highlight the urgent need 

for a reliable precipitation interpolation method that can accommodate spatio-temporal 

variability and extreme values. 

Space-time kriging methods have been widely used for spatio-temporal interpolation; 

however, they are sensitive to outliers and often fail to provide robust predictions when dealing 

with highly variable precipitation data (Hengl et al., 2007). To address this limitation, Median 

Polish Kriging (MPK) has been introduced as an alternative approach that effectively handles 

outliers by decomposing data into trend and residual components with an additive structure 

by iteratively calculating the median values of rows and columns (Tutmez, 2014; Sun & Genton, 

2012). The median polish kriging method improves prediction accuracy by applying median 

polish, which reduces the influence of extreme values, followed by kriging interpolation on the 

residuals (Barbara & Wu, 2003).  

The research conducted by Tutmez (2014) demonstrated that the two-dimensional 

(longitude and latitude) median polish kriging can handle outliers by utilizing the median 

component. Martínez et al. (2017) extended median polish kriging to a four-dimensional spatio-

temporal framework (longitude, latitude, altitude, and time) by integrating the ARIMA model 

for temporal trends, achieving an improved precipitation interpolation with an 𝑅2 value of 0.75. 

However,  Martínez et al. (2017) modeled spatial effects separately, resulting in three distinct 

spatial effects. This approach complicated simultaneous predictions of spatial effects, as it 

required additional manual interpolation steps. 

To address these limitations, this study focuses on simultaneously modeling spatial effects 

to simplify interpolation. The proposed method, spatio-temporal median polish kriging (ST-

MPK), integrates kriging for simultaneous spatial effects and ARIMA for temporal effects within 

the median polish framework. Unlike conventional space-time kriging, which is highly sensitive 

to outliers, ST-MPK enhances robustness by systematically decomposing spatial and temporal 

trends before interpolation, reducing the influence of extreme values. Additionally, unlike the 

approach of Martínez et al. (2017), which treated spatial effects separately, this study enables 

a unified spatial modeling process,  

By overcoming these challenges, spatio-temporal median polish kriging with ARIMA 

integration offers a more accurate and resilient precipitation interpolation method, which is 

crucial for enhancing water conservation strategies and flood mitigation efforts in East 
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Kalimantan. Furthermore, this study advances spatio-temporal interpolation methodologies by 

providing a framework that can be adapted to other regions and climate variables, thereby 

supporting future research in hydroclimatology and environmental modeling. 

 

B. METHODS 

This study relies on secondary data sourced from the Meteorology, Climatology, and 

Geophysics Agency (BMKG) in Samarinda. The data includes longitude, latitude, and total 

monthly precipitation collected from seven observation points: Temindung Station 

(Samarinda), Sultan Aji Station (Balikpapan), Kalimarau Station (Berau), Sangkulirang Post 

(East Kutai), Kembang Jenggut Post (Kutai Kartanegara), Long Iram (West Kutai), and Gunung 

Telihan (Bontang) over the period from January 2021 to December 2023. The study employs a 

spatio-temporal median polish kriging, carried out through the following analytical procedures. 

1. Outliers Checking 

Outliers are data points that deviate significantly from most other values in a distribution. 

In this study, outlier detection is performed using the Z-Score method. The Z-Score measures 

how far a value is from the mean in terms of standard deviation units. A value is categorized as 

an outlier if it produces a z-score greater than +3 or less than -3 (McClave & Sincich, 2018). 

 

2. Spatio-Temporal Median Polish Modeling 

This study utilizes a two-way median polish model, which can be expressed as equation 

(1). 

𝜇(𝒔, 𝑡) = 𝜇 + 𝛼𝑠 + 𝜏𝑡 + 𝑒 (1) 

 

where:  {𝜇(𝒔, 𝑡), 𝑠 = 1, . . . , 𝑟;  𝑡 = 1, . . . , 𝑐;  𝛼𝑠 ∈ D|D ⊆ ℝ2, 𝜏𝑡 ∈ T}, 𝑥 ∈ 𝑅, 𝑟 ≥ 2 is the number of 

rows, 𝑐 ≥ 2 is the number of columns, 𝜇 represents the general effects, 𝛼𝑙 is the l-th row effects 

representing the spatial effects, dan 𝜏𝑡 is the t-th column effects representing the time effects, 

𝑒  is the error term in the median polish model. If the superscript in parentheses denotes the 

iteration cycle, 𝐴𝑠
(𝑚)

 and 𝐵𝑡
(𝑚)

 indicate the median estimates of the effects at various levels of spatial and 

time variables omitted in the iteration 𝑣 = (1,2, … , 𝑚), then the estimated effects of the variables can be 

determined as equation (2) (Martínez et al., 2017). 

 

�̂�𝑠 = ∑ 𝐴𝑠
(𝑣)

𝑚

𝑣=1

− 𝑚𝑒𝑑
𝑠

{∑ 𝐴𝑠
(𝑣)

𝑚

𝑣=1

} ;  �̂�𝑡 = ∑ 𝐵𝑡
(𝑣)

𝑚

𝑣=1

− 𝑚𝑒𝑑
𝑡

{∑ 𝐵𝑡
(𝑣)

𝑚

𝑣=1

} ;  

�̂� = 𝑚𝑒𝑑
𝑠

{∑ 𝐴𝑠
(𝑣)

𝑚

𝑣=1

} + 𝑚𝑒𝑑
𝑡

{∑ 𝐵𝑡
(𝑣)

𝑚

𝑣=1

} ;  𝑠 = 1,2, … , 𝑟; 𝑡 = 1,2, … , 𝑐 

(2) 

 

3. Kriging Modeling on Median Polish Spatial Effects 

Kriging is a method used to predict the value of a random function, 𝛼(𝒔), at one or more 

unobserved locations, based on 𝑛  observed values within the domain 𝐷 . The model can be 

expressed as equation (3) (Montero et al., 2015). 
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�̂�(𝒔0) = ∑ 𝜆𝑖α(𝒔𝑖)

𝑛

𝑖=1

   (3) 

 

where: 𝛼(𝒔𝒊) are the observed median polish spatial effects values at 𝑛 locations around 𝑠0 (the 

prediction point) dan 𝜆𝑖  are the kriging weights, determined by assuming a zero mean and 

minimizing the variance of the prediction errors. There are three general types of kriging: 

simple kriging, ordinary kriging, and universal kriging. 

a. Stationary in Spatial Data 

Spatial stationarity refers to the concept that the data depends only on the spatial 

characteristics and not on the specific locations 𝒔𝒊 and 𝒔𝒋. The semivariogram is a tool 

used to evaluate the non-stationarity of spatial data. Spatial trends can be identified by 

plotting data against longitude and latitude for each time step (Rohma et al., 2023). 

Spatial non-stationarity can be addressed using the Box-Cox transformation, with data 

requiring adjustment if 𝝀 ≠ 𝟏 or falls outside the 95% confidence interval. 

b. Empirical Semivariogram 

The semivariogram estimate derived using the method of moments is expressed in 

equation (4) (Verdin et al., 2016). 

 

�̂�𝛼(𝒉) =
1

2#𝑁(𝒉)
∑ (𝑍(𝛼𝑖 + 𝒉) − 𝑍(𝛼𝒊))

2

𝑁(𝒉)

 (4) 

 

where #𝑁(𝒉) is the number of location pairs separated by the vector 𝒉. 

c. Theoretical Semivariogram 

Some common ones semivariogram for precipitation cases are exponential and gaussian 

models with functions according to equations (5) and (6) (Montero et al., 2015). 

1) Exponential model 

𝛾𝛼(|𝒉|) = 𝑐0 + 𝑐 {1 − 𝑒𝑥𝑝 (−
|𝒉|

𝑎
)} (5) 

2) Gaussian model 

𝛾𝛼(|𝒉|) = 𝑐0 + 𝑐 {1 − 𝑒𝑥𝑝 (−
|𝒉|2

𝑎2
)} (6) 

where: 𝛾𝛼(|𝒉|) is semivariance at lag or distance h; 𝑐 is a priori variability of the 

autocorrelation process; 𝑐0 is nugget, representing spatially uncorrelated variance at 

distances smaller than the measurement error or sampling interval; 𝑎 is range, the 

distance over which spatial autocorrelation or dependence persists. Value closer than 

𝑎  are correlated, while those beyond 𝑎  are uncorrelated; and 𝑐0 + 𝑐  is sill, 

representing the point where the variance stabilizes at a constant value. 

 

d. Cross Validation 

A smaller forecast error indicates a better model for making predictions (Hu & Shu, 

2019). One criterion used to evaluate forecast errors in this study is the Sum of Squared 

Errors. 
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4. ARIMA Modeling on Median Polish Time Effects 

ARIMA (Autoregressive Integrated Moving Average) is a statistical algorithm used for 

forecasting univariate data. General form of ARIMA(p, d, q)(P, D, Q)S can be seen in equation (7) 

(Cryer & Chan, 2008). 

 

𝛷𝑃(𝐵𝑠)𝜙𝑝(𝐵)(1 − 𝐵)𝑑(1 − 𝐵)𝐷𝜏𝑡 = 𝜃0 + 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑆)𝑎𝑡 (7) 

with,  

 

𝜙𝑝(𝐵) = (1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝) is a non-seasonal AR polynomial orde p 

𝛷𝑃(𝐵𝑠) = (1 − 𝛷1𝐵𝑆 − ⋯ − 𝛷𝑃𝐵𝑃𝑠) is a seasonal AR polynomial orde P 

𝜃𝑞(𝐵) = (1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞) is a non-seasonal MA polynomial orde q 

𝛩𝑄(𝐵𝑠) = (1 − 𝛩1𝐵 − ⋯ − 𝛩𝑄𝐵𝑄𝑠) is a seasonal MA polynomial orde Q 

t=1,2,3,…, T, where T is the number of observations 

(1-B)d  : non-seasonal differentiation with order d 

(1-B)D : seasonal differentiation with order D 

𝑎𝑡   : residual at time-t 

 

The steps that need to be taken in forming an ARIMA model consist of several stages 

starting from creating stationary data to forecasting (Ning et al., 2022). 

a. Creating Stationary Data 

1) Stationary in variance 

Non-stationarity in variance can be overcome using the Box-Cox transformation. Data 

needs to be transformed if 𝜆 ≠ 1 or if not at the 95% confidence interval. 

2) Stationary in mean 

The test that can be used to check the non-stationarity of data in mean is the unit root 

test (Augmented Dickey-Fuller Test) (Sarker & Khan, 2020). If the data is not 

stationary in mean, then it can be done differencing (∆𝜏𝑡 = 𝜏𝑡 − 𝜏𝑡−1) . 

 

b. Plotting ACF, PACF, and Model Identification 

ACF is a linear relationship between one variable and itself. PACF is used to see the 

correlation between variables at timet and variable in time 𝑡 − 𝑘 . ARIMA model 

identification is done by looking at significant ACF and PACF plot patterns to identify the 

order p, q, P, dan Q. 

c. Parameter Estimation 

ARIMA parameter estimation can be done using maximul likelihood estimation methods.   

d. Parameter significance 

The parameter significance test aims to test the feasibility of the model parameters.  

e. Diagnostics residuals 

1) Residuals are normally distributed 

Residual normality testing can use Shapiro Wilk test.  

2) Non autocorrelation in residuals 

Non-autocorrelation testing between residuals can use the Ljung Box test. 
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f. Model Accuracy and Forcasting 

The smaller the forecast error value produced by a model, the better it will be used to 

predict future periods. The forecasting error criteria that can be used are RMSE (Mean 

Square Error) and MAPE (Mean Absolute Percentage Error) (Islam et al., 2024). Model 

accuracy can be seen from the MAPE value which can be interpreted or interpreted into 

4 categories, namely: <10% = very accurate, 10-20% = good, 20-50% = worthy, and >50% 

= inaccurate (Ruslana et al., 2024). Predictions for 𝑡 the next stage correspond to the 

model produced with the equation (8) (Cryer & Chan, 2008). 

 

�̂�𝑡 = 𝜙1𝜏𝑡−1 + 𝜙2𝜏𝑡−2 + ⋯ + 𝜙𝑝𝜏𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 (8) 

 

5. Spatio Temporal Kriging Modeling on Median Polish Residuals 

Spatio-temporal kriging is used to predict the unknown residual value 𝑒(𝑠0, 𝑡0)  at an 

unobserved median polish residual spatial and time point (𝑠0, 𝑡0). This prediction utilizes all 

available data related to regional variables, either from points across the entire domain or from 

smaller subsets, referred to as neighborhoods. A spatio-temporal random function is defined as 

{𝑒(𝒔, 𝑡), 𝒔 ∈ 𝐷, 𝑡 ∈ 𝑇} where 𝐷 ⊆ ℝ2 and 𝑇 ⊆ ℝ, and it is assumed that median polish residual 

have been observed at 𝑛 spatial data × 𝑇 time data = 𝑁  spatio-temporal data points 

{𝑒(𝑠1, 𝑡1), … , 𝑒(𝑠𝑁, 𝑡𝑁)}. To estimate the value of a spatio-temporal median polish residual at the 

unobserved point (𝑠0, 𝑡0), a linear predictor, as given in equation (9), is employed (Montero et 

al., 2015). 

�̂�(𝒔0, 𝑡0) = ∑ 𝜆𝑙𝑒(𝒔𝑙 , 𝑡𝑙)

𝑁

𝑙=1

 (9) 

 

Here, �̂�(𝒔0, 𝑡0)  represents the predicted value at the unobserved point (𝒔0, 𝑡0) ,  𝜆𝑖  are the 

spatio-temporal kriging weights, and  𝑒(𝒔𝑙 , 𝑡𝑙) are the observed values at known points. The 

weights in the spatio-temporal ordinary kriging model, which assumes an unknown mean and 

stationary data, can be determined using equation (10). 

 

(

𝜆1

⋮
𝜆𝑁

Σ

) = (

𝛾(𝒔1 − 𝒔1, 𝑡1 − 𝑡1) ⋯ 𝛾(𝒔1 − 𝒔𝑛, 𝑡1 − 𝑡𝑛) 1
⋮ ⋱ ⋮ ⋮

𝛾(𝒔𝑁 − 𝒔1, 𝑡𝑁 − 𝑡1) ⋯ 𝛾(𝒔𝑁 − 𝒔𝑁, 𝑡𝑁 − 𝑡𝑁) 1
1 ⋯ 1 0

)

−1

(

𝛾𝑒(𝒔1 − 𝒔0, 𝑡1 − 𝑡0)
⋮

𝛾𝑒(𝒔𝑁 − 𝒔0, 𝑡𝑁 − 𝑡0)
1

) (10) 

 

where 𝑁 represents the number of spatial points in 𝐷, 𝑡 is the time component, 𝛾𝑒(𝒔𝑖 − 𝒔𝑗 , 𝑡𝑖 −

𝑡𝑗) denotes the semivariogram between two observed spatio-temporal median polish residual,  

𝛾𝑒(𝒔𝑗 − 𝒔0, 𝑡𝑗 − 𝑡0) is the semivariogram between an observed median polish residual (𝒔𝑖 , 𝑡𝑖) 

and the unobserved median polish residual (𝒔0, 𝑡0), and Σ is lagrange multiplier that associated 

with the condition of unbiasedness (∑ 𝜆𝑖
𝑁
𝑖=1 = 1). 

a. Stationary Data 

Stationarity implies that the data depends only on spatial and temporal lags, without 

being influenced by specific spatials 𝒔𝒊 and 𝒔𝒋 or the specific times 𝒕𝒊 and 𝒕𝒋 (Shand & Li, 

2017). 
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1) Stationarity in spatial data 

The assessment of spatial stationarity for spatio-temporal data follows the same 

procedure as for purely spatial data (as described in Subsection 3, point a) and is 

conducted for each time step. 

2) Stationarity in temporal data 

The temporal stationarity test is performed solely on the time component. To assess 

non-stationarity in panel data, the Im-Pesaran-Shin (IPS) unit root test can be utilized. 

The IPS statistic is calculated based on the average value of the Dickey-Fuller statistic 

for the 𝑛 panel units (Murthy & Okunade, 2018). Im et al. (2003) provide the expected 

value and standard deviation for 𝐷𝐹𝑏𝑎𝑟 . If the data is found to be non-stationary, 

differencing (∆𝑍𝑡 = 𝑍𝑡 − 𝑍𝑡−1) can be applied to achieve stationarity. 

 

b. Empirical Spatio-Temporal Semivariogram 

The semivariogram estimate derived using the method of moments is given in equation 

(11) (de Medeiros et al., 2019). 

 

�̂�𝑒(𝒉(𝑙), 𝑢(𝑘)) =
1

2#𝑁(𝒉(𝑙), 𝑢(𝑘))
∑ (𝑒(𝒔𝑖 , 𝑡𝑖) − 𝑒(𝒔𝑗 , 𝑡𝑗))

2

(𝒔𝑖,𝑡𝑖),(𝒔𝑗,𝑡𝑗)∈𝑁(𝒉(𝑙),𝑢(𝑘))

 (11) 

 

where,  𝑁(𝒉(𝑙), 𝑢(𝑘)) = {(𝒔𝑖 , 𝑡𝑖)(𝒔𝑗 , 𝑡𝑗): 𝒔𝑖 − 𝒔𝑗 ∈ 𝑇(𝒉(𝑙)), 𝑡𝑖 − 𝑡𝑗 ∈ 𝑇(𝑢(𝑘))}, T(𝒉(𝑙)) is 

the tolerance area in ℝ𝑑 around 𝒉(𝑙) and T(𝑢(𝑘)) is the tolerance area in ℝ around 𝑢(𝑘). 

#𝑁(𝒉(𝑙), 𝑢(𝑘)) represents the number of distinct elements in the set 𝑁(𝒉(𝑙), 𝑢(𝑘)), with 

𝑙 = 1,2 … , 𝐿 and 𝑘 = 1,2, … , 𝐾. 

c. Theoretical Spatio-Temporal Semivariogram 

Several semivariogram models used in this study are as follows (Montero et al., 2015). 

1) Product model or separable model 

The separable model is defined by equation (12). 

 

𝛾𝑒(𝒉, 𝑢) = 𝐶𝑡(𝟎)𝛾𝑠(𝒉) + 𝐶𝑠(𝟎)𝛾𝑡(𝑢) − 𝛾𝑠(𝒉)𝛾𝑡(𝑢)), (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ (12) 

 

2) Product-sum model 

The product-sum model is expressed as equation (13). 

 

𝛾𝑒(𝒉, 𝑢) = (𝑘2 + 𝑘1𝐶𝑡(𝟎))𝛾𝑠(𝒉) + (𝑘3 + 𝑘1𝐶𝑠(𝟎))𝛾𝑡(𝑢) − 𝑘1𝛾𝑠(𝒉)𝛾𝑡(𝑢) (13) 

 

where, 𝐶𝑠 and 𝐶𝑡  is a covariance function, 𝛾𝑠 and 𝛾𝑡 is the semivariogram, 𝑘1, 𝑘2, 𝑘3 >

0  and 𝑘1 + 𝑘2 + 𝑘3 > 0  are constants. 𝐶𝑠(𝟎)  and 𝐶𝑡(𝟎)  are the sills from 𝛾𝑠  and 𝛾𝑡 , 

respectively. 

3) Metric model 

The metric model is defined as equation (14). 

 

𝛾𝑒(𝒉, 𝑢) = 𝛾√‖𝒉‖2 + (𝑘. |𝑢|)2,   (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ, 𝑐 > 0 (14) 
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where ‖𝒉‖ + 𝑐|𝑢| represents the distance in ℝ𝑑 × ℝ and 𝑐 is a positive contant. 

4) Sum-metric model 

The semivariogram for the sum-metric model is given by equation (15). 

 

𝛾𝑒(𝒉, 𝑢) = 𝛾𝑠(𝒉) + 𝛾𝑡(𝑢) + 𝛾√‖𝒉‖2 + (𝑘. |𝑢|)2, (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ, 𝑐 > 0 (15) 

 

5) Simple sum-metric model 

The simple sum-metric model follows a separable form, as shown in equation (16). 

 

𝛾𝑒(𝒉, 𝑢) = 𝑐0 + 𝛾𝑠(𝒉) + 𝛾𝑡(𝑢) + 𝛾√‖𝒉‖2 + (𝑘. |𝑢|)2, (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ, 𝑐 > 0 (16) 

 

d. Cross Validation 

The optimal model is determined by the forecast error value, with smaller errors 

indicating better predictive performance. A common criterion for evaluating forecast 

error is the Root Mean Square Error (RMSE) (Islam et al., 2024).  

 

6. Spatio Temporal Median Polish Kriging with ARIMA Integration Modeling 

This model integrates spatial effects (via kriging) and time effects (via ARIMA), allowing 

for robust prediction and handling of spatio-temporal data by incorporating the spatio-

temporal structure of the median polish model and spatio-temporal kriging, as described in 

equation (9), the spatial effects are added to the median polish model based on the kriging 

model (equation 3). Similarly, the time effects are incorporated into the median polish model 

based on the ARIMA model (equation 7). This results in the spatio-temporal median polish 

kriging model with ARIMA integration, expressed as equation (17). 

 

�̂�(𝒔𝟎, 𝑡0) = �̂� + ∑ 𝜆𝑖α(𝒔𝑖)

𝑛

𝑖=1

+ �̂�𝑡 + ∑ ∑ 𝜆𝑖𝑡𝑒(𝑠𝑖, 𝑡𝑡)

𝑇

t=1

𝑛

𝑖=1

   (17) 

 

with  �̂�𝑡 =
�̂�0+�̂�𝑞(𝐵)�̂�𝑄(𝐵𝑆)𝑎𝑡

�̂�𝑃(𝐵𝑠)�̂�𝑝(𝐵)(1−𝐵)𝑑(1−𝐵)𝐷, 𝑒(𝑠𝑖, 𝑡𝑖) is the residuals from the median polish model. The 

flow chart presented in Figure 1 below shows the flow of the research method.  
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Figure 1.  Flow Chart 

 

C. RESULT AND DISCUSSION 

1. Outlier Checking 

Using the Z-Score method, precipitation in West Kutai in May 2022 was identified as an 

outlier, with a Z-Score of 4.247 exceeding the outlier threshold of 3. Outliers in precipitation 

data can significantly impact interpolation accuracy, especially in models that assume 

normality, such as ordinary kriging. The presence of extreme values may lead to biased 

estimates, reducing the reliability of spatial and temporal predictions. To address this issue, 

median polish kriging was adopted due to its robustness against outliers. By decomposing the 

data into additive components and applying a median-based approach, this method minimizes 

the influence of extreme values while preserving the underlying spatio-temporal patterns of 

precipitation. This makes it particularly suitable for datasets with high variability, such as 

precipitation observations 

 

2. Spatio-Temporal Median Polish 

Median polish was applied by iteratively subtracting the median of each row and column 

until the median value reached zero. The results yielded a general mean (𝜇) of 230.775 mm, 

with spatial effects, time effects, and residuals presented in Table 1, 2, and 3, respectively.  

 

 Table 1. Median Polish Spatial Effects (𝛼𝑠) 

Location 
Temindung 

Station 

Sultan 
Aji 

Station 

Kalima-
rau 

Station 

Sangkuli-
rang Post 

Kembang 
Jenggut 

Post 

Long 
Iram 
Post 

Gunung 
Telihan 

Post 
Precipitation 
Effect (mm) 

-12.400 -1.700 -32.375 -65.525 8.725 69.175 -0.85 
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Table 2. Median Polish Time Effects (𝜏𝑡) 

Time 1* 2 3 4 5 6 
Precipitation 
Effect (mm) 

-184 -279.575 -220.725 -265.725 -247.875 -321.725 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
Time 31 32 33 34 35 36** 

Precipitation 
Effect (mm) 

-311.875 -375.275 -314.850 -320.275 -254.925 -230.775 

*January 2021; **December 2023 

 

Table 3. Median Polis Residuals (𝑒) 

Residuals (mm) 
Time 

1 2 3 4 ⋯ 36 

Location 

Temindung 
Station 

103.850 -21.575 45.575 72.575 ⋯ -59.675 

Sultan Aji 
Station 

-25.450 -44.875 -72.125 -34.325 ⋯ 37.625 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
Gunung 
Telihan 

Post 
0 12.575 123.225 -0.675 ⋯ 50.075 

 

After applying median polish, an outlier was identified in the residuals. Specifically, the 

residuals of precipitation in West Kutai during May 2022 yielded a Z-score of 3.581. This 

indicates that median polish does not entirely eliminate extreme outliers, but can mitigate their 

impact on the model. 

 

3. Kriging Modeling on Median Polish Spatial Effects 

Kriging was applied to the median polish spatial effects data presented in Table 1. The 

results, illustrated in Figure 2, indicate a trend in the precipitation spatial effects based on 

longitude (Easting), where the spatial effects decrease progressively further eastward. Given 

this coordinate-based trend, universal kriging was selected as the appropriate method. These 

findings demonstrate that median polish can addresses trends or non-stationary data in spatio-

temporal datasets by decomposing their components. 

 

 

Figure 2.  Median Polish Spatial Effects Based on Longitude and Latitude 
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The kriging results are highly dependent on the selected semivariogram model. Table 4 

shows the parameter estimates and SSE generated from the three models used. 

 

Table 4. Fit Semivariogram Model for Location Effects Median Polish 

Model Nugget Partial sill Effective Range SSE 
Spherical 164.844 251.272 46,328.610 0.000056 

Eksponential 284.452 214.431 166,796.600 0.000048 
Gaussian 265.098 151.734 68,613.150 0.000051 

 

Based on the SSE value shown in Table 4, exponential model produced the lowest sum of 

squares error. Using this model, the following parameters were obtained: 

a. Nugget (284.452): (1) a relatively high nugget value in this study (284.452 m) indicates 

significant precipitation variability at small scales or noise in the data that cannot be 

captured by the exponential semivariogram model; and (2) high nugget value may 

cause the interpolation results to be smoother as the model balances between small-

scale variability and larger spatial correlation. 

b. Sill (499): (1) a high sill value indicates considerable differences in precipitation 

between locations, but there is still a spatial pattern that can be analyzed before 

reaching the maximum range; and (2) high sill value indicates significant precipitation 

variability in the study area, leading to higher variation in interpolation predictions 

between locations. 

c. Effective Range and Range (166,796.6 and 55,598.867): (1) in the exponential model, 

the effective range is calculated as 3𝑎, where 𝑎 represents the range. This implies that 

if two locations are within 55,59 km of each other, their precipitation measurements 

are still strongly correlated. However, beyond this distance, spatial correlation is no 

longer significant, making kriging predictions less accurate for locations far from 

observation points; and (2) a large range suggests that precipitation has a broad spatial 

pattern, allowing interpolation to be performed while considering spatial relationships 

over long distances. 

 

Based on the parametre estimation that has been obtained, a semivariogram model can be 

formed as follows. 

 

𝛾𝛼(|𝒉|) = 499 {1 − 𝑒𝑥𝑝 (−
|𝒉|

55,589.867 
)} (18) 

 

The theoretical exponential semivariogram is depicted in Figure 3, while the kriging results 

are visualized in Figure 3. 
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Figure 3.  Theoretical Semivariogram 

 
Figure 4.  Contour of The Spatial Effects  

 

The contour plot in Figure 4 highlights that precipitation increases westward, likely due to 

the region's distance from the ocean. Consistent with the water vapor theory, clouds carrying 

water vapor are pushed toward areas of higher altitude and lower air pressure, leading to 

greater precipitation in the western, more mountainous regions. 

 

4. ARIMA Modelling on Median Polish Time Effects 

Based on the median polish time effects plot in Figure 5, the median polish time effects 

fluctuate from January 2021 to December 2023, showing a decreasing trend from early to mid-

year and an increase towards the end of the year. However, this pattern does not consistently 

repeat each year, indicating the absence of a stable seasonal pattern. Further analysis using 6-

month and 12-month intervals presented in Figures 6 and Figure 7, also reveals no periodically 

recurring pattern. Median polish time effects fluctuations between periods do not exhibit the 

regularity characteristic of seasonal patterns. Although the 12-month interval shows a general 

trend of increase and decrease, the variations remain irregular. An examination with the Auto 

Correlation Function (ACF) in Figure 8 also does not indicate a strong seasonal pattern. There 

are no significant correlation spikes at repeated lags, which should be expected if an annual 

seasonal pattern were present. Most lags show a decreasing correlation without a recurring 

pattern, confirming that median polish time effects variations are influenced more by variables 

other than seasonality. 

 

 
Figure 5.  Plot of the Median Polish Time 

Effects 

 
Figure 6.  Plot of Median Polish Time Effects at 6-

Months Interval 
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Figure 7.  Plot of Median Polish Time Effects at 

12-Months Interval 

 
Figure 8.  ACF of Median Polish Time Effects 

 

 

The time effects obtained from the median polish results in Table 2 were forecasted using 

ARIMA. A prerequisite for ARIMA modeling is that the data must be stationary. The Box-Cox 

transformation confirmed stationarity in variance, but the Augmented Dickey-Fuller (ADF) test 

revealed non-stationarity in the mean. After applying second-order differencing, the data 

became stationary. The ACF and PACF plots in Figure 9 show that the PACF is significant only 

at lag 1, and the ACF exhibits a sinusoidal pattern without seasonality. Consequently, 

ARIMA(1,2,0) was chosen as the most suitable model. The estimated AR parameter 𝜙 was −

0.881, allowing the ARIMA model for the time effects of median polish to be written as follows. 

 

𝜏𝑡 = 2𝜏𝑡−1 − 𝜏𝑡−2 − 0.881(𝜏𝑡−1 − 2𝜏𝑡−2 + 𝜏𝑡−3) + 𝑎𝑡  (19) 

 

 
(a) 

 
(b) 

Figure 9.  (a) ACF (b) PACF of Stationary Time Effects 

 

The AR parameter was statistically significant (p < 0.05), residuals followed a normal 

distribution, and no autocorrelation was present, confirming the model's appropriateness for 

forecasting time effects derived from the median polish process. With a MAPE of 31%, the 

model demonstrated good predictive performance. The forecasts are visualized in Figure 10. 
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Figure 10.  Realization vs Forcasting of Median Polish Time Effects 

 

5. Spatio Temporal Kriging Modelling on Median Polish Model Residuals 

Spatio-temporal kriging was applied to the stationary residuals from the median polish 

model. Spatial stationarity was confirmed through longitude and latitude plots and regression 

tests, revealing no significant trends across all observation times. This finding supports the 

premise that median polish can addresses non-stationary data. Among the various 

combinations of spatial, temporal, and joint semivariogram models, the simple sum-metric 

model with spatial, temporal, and joint semivariogram follow gaussian model emerged as the 

best-fitting semivariogram, producing the lowest RMSE of 2668.869. The parameters derived 

from this model are as follows: 

a. Spatial component: (1) partial sill: 760,222.3, indicating the proportion of the total 

variance (sill) attributed to spatial autocorrelation. This reflects the degree to which 

nearby locations exhibit similar precipitation values; and (2) effective range: 4,800,758 

m (approximately 4801 km), signifying the maximum distance over which spatial 

correlation exists between two locations. 

b. Temporal Component: (1) partial sill: 0, indicating no autocorrelated spatial variability 

within the data over specific temporal distances; (2) effective range: 1,128,942 m 

(approximately 1129 km), signifying the maximum temporal distance over which spatial 

correlation exists. 

c. Joint Component: (1) partial sill: 0, indicating no significant spatial or temporal 

variability captured jointly; and (2) effective range: 96,507 m (approximately 96.5 km), 

with a similar interpretation to the spatial and temporal components. 

 

Additional parameters include: 

a. Nugget: 6993.967 m, representing unexplained variability at a distance of zero, such as 

measurement error or micro-scale variability. 

b. Anisotropy Correction: 3229.449 m, which adjusts for the disparity between spatial and 

temporal correlation scales. This suggests that one temporal unit is equivalent to a 

spatial distance of approximately 3.229 km. 
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In the Gaussian model, there is a relationship between the effective range and the 

parameter 𝑎 (range) expressed as: effective range = 𝑎√3. Using the derived parameters, the 

semivariogram model can be formulated as follows: 

 

𝛾𝑒(𝒉, 𝑢) = 6993.967 + 𝛾𝑠(𝒉) + 𝛾𝑡(𝒖) + 𝛾𝑠𝑡 (√‖𝒉‖2 + (3229.449|𝑢|)2) (20) 

with, 

𝛾𝑠(|𝒉|) = 760,222.3 {1 − 𝑒𝑥𝑝 (−
|𝒉|2

2,771,718.92
)} 

𝛾𝑡(𝒖) = 0 {1 − 𝑒𝑥𝑝 (−
|𝑢|2

651,794.972
)} 

𝛾𝑠𝑡 (√‖𝒉‖2 + (3229.449|𝑢|)2) = 0 {1 − 𝑒𝑥𝑝 (−
‖𝒉‖2 + (3229.449|𝑢|)2

55,718.342
)} 

 

The empirical and theoretical semivariograms for this model are depicted in Figure 11. 

 

 
Figure 11.  Sample and Simple Sum-Metric Semivariogram 

 

Figure 12.  Contour of Median Polish Residuals 
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Interpolation using the best semivariogram produced the contours in Figure 12, which 

indicate that precipitation distribution patterns remain consistent annually. Precipitation 

increases westward, aligning with the spatial effects trend. 

 

6. Spatio Temporal Median Polish Kriging with ARIMA Integration Modeling 

Spatio-temporal median polish kriging with ARIMA integration combined kriging results 

for general mean of 230.775, median polish spatial effects modeled using the semivariogram in 

equation (18), ARIMA forecasts for median polish time effects presented in equation (19), and 

spatio-temporal kriging for median polish residuals using the semivariogram model in equation 

(20). The final model is expressed in equation (21) and produces the interpolated precipitation 

for East Kalimantan, as shown in Figure 13.  

 

�̂�(𝒔𝟎, 𝑡0) = 230.775 + ∑ 𝜆𝑖𝑍(𝒔𝑖)

7

𝑖=1

+ 2𝜏𝑡−1 − 𝜏𝑡−2 − 0.881(𝜏𝑡−1 − 2𝜏𝑡−2 + 𝜏𝑡−3) + 𝑎𝑡 + 

�̂�(𝒔𝟎, 𝑡0) = ∑ 𝜆𝑙𝑒(𝑠𝑙, 𝑡𝑙)

252

𝑙=1

 

(21) 

 

The final interpolated results (Figure 13) reveal that precipitation increases spatially 

toward the west, while latitude shows no significant effect, resulting in relatively uniform 

precipitation along the same latitude. Temporally, precipitation demonstrates an upward trend, 

with fewer regions experiencing low to medium precipitation (0–300 mm). 

 

 

Figure 13.  Contour of Precipitation 
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D. CONCLUSION AND SUGGESTIONS 

This study concludes that median polish can reduces the influence of outliers. The optimal 

kriging model identified for spatio-temporal median polish kriging consists of an exponential 

model for spatial kriging and a simple sum-metric model for spatio-temporal kriging, with 

spatial, temporal, and joint semivariograms following the gaussian model. Additionally, the best 

ARIMA model for median polish time effects in this study is ARIMA(1,2,0). The results indicate 

that western East Kalimantan experiences higher precipitation compared to the eastern region. 

By December 2024, precipitation levels in East Kalimantan are projected to increase, 

necessitating proactive mitigation measures to reduce the risks of flooding and landslides. 

Furthermore, effective water conservation strategies must be implemented to minimize the 

potential adverse impacts of increased precipitation. However, this study has certain 

limitations. The use of only seven observation posts may lead to increased uncertainty in 

interpolated values, especially in areas far from measurement stations. This could reduce the 

reliability of precipitation estimates in regions with high variability. Additionally, the chosen 

semivariogram model may not fully capture complex spatial and temporal dependencies, 

potentially introducing bias in kriging predictions. Alternative semivariogram models, such as 

Matérn or Cauchy models, could be explored to better accommodate long-range spatial 

correlations and anisotropic patterns. The use of ARIMA for modeling the time effects may lead 

to less accurate predictions, as it does not account for the influence of other variables affecting 

the median polish time effects. Furthermore, incorporating additional climate variables, such 

as wind speed, humidity, and sea surface temperature, could enhance model performance by 

accounting for key meteorological drivers of precipitation variability. These limitations suggest 

careful interpretation of results, particularly in data-sparse areas. Future research should 

expand the dataset, explore alternative semivariogram models, integrate additional climate 

variables to improve model accuracy by using time series models that consider predictor 

variables, such as the ARIMAX model. 
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