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 This study aims to identify key factors influencing high school dropout rates in 
Indonesia by applying advanced statistical modeling that accounts for complex data 
characteristics. Dropout data often display overdispersion (variability greater than 
expected) and excess zeros (many students not dropping out), which, if ignored, 
can bias conclusions.  To address this, we compare parametric models, Zero-
Inflated Poisson Mixed Model (ZIPMM), Zero-Inflated Generalized Poisson Mixed 
Model (ZIGPMM), and Zero-Inflated Negative Binomial Mixed Model (ZINBMM), 
with their semiparametric counterparts (SZIPMM, SZIGPMM, SZINBMM). The 
semiparametric models use B-spline functions to capture nonlinear relationships 
between predictors and dropout rates, with flexibility. Model performance was 
evaluated using Akaike Information Criterion (AIC) and Root Mean Square Error 
(RMSE) across 100 simulation repetitions to ensure robustness. Results show that 
the semiparametric ZIGPMM (SZIGPMM) outperformed other models, achieving 
the lowest average AIC (18969.62), suggesting the best trade-off between model fit 
and complexity. The optimal spline configuration used knot point 2 and order 3, 
with a Generalized Cross-Validation (GCV) score of 9.4107. Key predictors of 
dropout include school status (public or private), student-teacher ratio, distance 
from home to school, parental education level, parental employment status, and 
number of siblings. These findings provide actionable insights for education 
policymakers, emphasizing the need to address structural and socioeconomic 
barriers to reduce dropout rates effectively. 
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A. INTRODUCTION  

Regression analysis is a fundamental statistical method for modelling the relationship a 

response variable and one or more explanatory variables. It can be categorized into three main 

approaches: parametric, nonparametric, and semiparametric regression. Parametric 

regression specifies a predefined functional form, whereas nonparametric regression makes 

minimal assumptions and captures patterns directly from the data (Mahmoud, 2021). 

Semiparametric regression combines the strengths of both by incorporating flexible smoothing 

techniques such as splines along with fixed parametric components. Spline regression, 

particularly basis splines (B-splines) and penalized splines, is widely used in semiparametric 

modelling due to its flexibility and numerical stability. B-spline functions are advantageous for 

managing high spline orders and dense knot placements, which often cause numerical 

instability (Beccari & Casciola, 2021; Chudy & Woźny, 2022).  

Semiparametric methods, such as kernel, spline regression, local polynomials, have been 

applied in various studies. For example, local polynomial semiparametric for longitudinal data 
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(Utami et al., 2024)  and truncated spline model to analyze factors influencing the growth of a 

cashless society (Pramaningrum et al., 2024). Furthermore, mixed-effects models can be 

integrated into semiparametric frameworks to account for hierarchical or multilevel structures 

within data, such as regional or institutional clusters. Belloc et al. (2011) employed a 

semiparametric mixed-effects model to assess individual-level dropout determinants in Italian 

universities. Masci et al. (2022) proposed a semiparametric multinomial mixed-effects model, 

allowing for flexible modeling of hierarchical educational data with unobserved heterogeneity 

across academic programs.  

Count data, such as school dropouts often exhibit overdispersion and excess zeros. Two 

characteristics that violating Poisson model assumpsions of equidispersion (the variance 

equals the mean) (Agresti, 2015). However, this assumption often does not hold in real-world 

settings. Overdispersion occurs when the empirical variance in the data is greater than that 

predicted by the model (Dean & Lundy, 2016). It may result from unobserved heterogeneity, 

outliers, data clustering, or an excessive number of zero counts (Hardin & Hilbe, 2018). While 

Negative Binomial (NB) models address overdispersion, and Zero-Inflated models like Zero-

Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) handle excess zeros. 

However, ZINB models are known to suffer from convergence issues when misapplied to 

equidispersed data, leading to biased regression coefficient estimates and overestimation of 

predictor significance (Fernandez & Vatcheva, 2022). The Zero-Inflated Generalized Poisson 

(ZIGP) model offers greater flexibility in handling both issues. Recent studies highlight that 

semiparametric extensions of zero-inflated models further improve performance, especially 

with hierarchical and nonlinear data structures (Almasi et al., 2016; Aráujo et al., 2023; 

Mahmoodi et al., 2016). Despite their relevance, few studies have applied these advanced 

modeling frameworks to social indicators such as education.  

 Dropout rates are critical indicators of educational access and quality, influenced by 

socio-economic, regional, and policy-related factors. According to Sustainable Development 

Goal Target 4.1, every child should have access to free, equitable, and quality education 

(UNESCO, 2025). However, dropout rates remain a challenge, especially in developing 

countries. Studies have shown that despite the implementation of tuition-free education 

policies, dropout remains prevalent due to factors such as absenteeism, household economic 

hardship, and policy implementation gaps (Gbaguidi & Adetou, 2024; Ole Kinisa, 2019). In 

Indonesia, despite the implementation of 12-year compulsory education, dropout rates persist 

at concerning levels, particularly at the senior secondary level. In 2022, dropout rates in 

provinces like  West Nusa Tenggara (0.88%), Papua (0.59%), and Gorontalo (0.54%) were 

notably higher than the national average (MoECRT, 2022).  

Dropout data are typically non-negative integers, right-skewed, zero-inflated, 

overdispersed, and hierarchical structured by region and school level. Additionally, the 

relationship between predictors such as economic status or geographical location and dropout 

likelihood may be nonlinear. Therefore, this study proposes the use of parametric and 

semiparametric zero-inflated mixed models, particularly the ZIP, ZIGP, and ZINB frameworks, 

to model dropout rates in Indonesian high schools. This approach is expected to provide more 

accurate estimates and policy-relevant insights into the determinants of school dropouts. 
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B. METHODS 

1. Overdispersion 

Overdispersion is a condition in which the variance of the response variable  exceeds its 

mean (Agresti, 2013). This violates the assumption of equidispersion in Poisson regression. 

According to Hilbe (2011), applying Poisson regression in the presence of overdispersion may 

lead to underestimated standard errors. Consequently, this increases the risk of incorrectly 

rejecting the null hypothesis. Overdispersion can be detected by calculating the deviance 

divided by the model's degrees of freedom (Myers et al., 2010). A ratio greater than one 

indicates the presence of overdispersion. 

 

2. ZIP, ZIGP, and ZINB Distribution 

This study focuses on three count data distributions: ZIP, ZIGP, and ZINB. The probability 

mass functions for each distribution are presented below within the context of a two-level 

hierarchical framework. 

 

 𝑷(𝒚𝒊𝒋|𝝁𝒊𝒋, 𝒑𝒊𝒋) = {

𝒑𝒊𝒋 + (𝟏 − 𝒑𝒊𝒋)𝒆
−𝝁𝒊𝒋   , 𝒚𝒊𝒋 = 𝟎 

(𝟏 − 𝒑𝒊𝒋)
𝒆
−𝝁𝒊𝒋𝝁𝒊𝒋

𝒚𝒊𝒋

𝒚𝒊𝒋!
         , 𝒚𝒊𝒋 > 𝟎 

    (1) 

𝑃(𝑦𝑖𝑗|𝜇𝑖𝑗 , 𝛼, 𝑝𝑖𝑗) = {

𝑝𝑖𝑗 + (1 − 𝑝𝑖𝑗) exp (−
𝜇𝑖𝑗

1+𝛼𝜇𝑖𝑗
)                                   , 𝑦𝑖𝑗 = 0

(1 − 𝑝𝑖𝑗) (
𝜇𝑖𝑗

1+𝛼𝜇𝑖𝑗
)
𝑦𝑖𝑗 (1+𝛼𝑦𝑖𝑗)

𝑦𝑖𝑗−1

𝑦𝑖𝑗!
exp [

−𝜇𝑖𝑗(1+𝛼𝑦𝑖𝑗)

1+𝛼𝜇𝑖𝑗
] , 𝑦𝑖𝑗 > 0 

 (2) 

𝑃(𝑦𝑖𝑗|𝜇𝑖𝑗 , 𝛼, 𝑝𝑖𝑗) =

{
 
 

 
 𝑝𝑖𝑗 + (1 − 𝑝𝑖𝑗) (

1

1+𝛼𝜇𝑖𝑗
)

1

𝛼
                        , 𝑦𝑖𝑗 = 0

(1 − 𝑝𝑖𝑗)
Γ(𝑦𝑖𝑗+

1

𝛼
)

Γ(𝑦𝑖𝑗+1)Γ(
1

𝛼
)
(

1

1+𝛼𝜇𝑖𝑗
)

1

𝛼
(1 −

1

1+𝛼𝜇𝑖𝑗
)
𝑦𝑖𝑗

, 𝑦𝑖𝑗 > 0 

 (3) 

 

Here, 𝑝𝑖𝑗 denotes the probability of an excess zero, where 𝑖 = 1,… , 𝑛𝑗 and 𝑗 = 1,… ,𝑚. The 

parameter 𝛼 represents the overdispersion. 

 

3. Linear Mixed Model (LMM) 

LMM extends the linear model by incorporating random effects to account for variability 

across groups. The general form of the mixed model can be expressed as follows: 

 

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝜺     (4) 

 

Let 𝒚 be an 𝑛 × 1 vector of observed responses. The matrix 𝑿 is the 𝑛 × 𝑝 design matrix for fixed 

effects, where 𝑝  is the number of fixed predictors, and 𝜷  is the 𝑝 × 1  vector of fixed effect 

parameters. The matrix 𝒁 is the 𝑛 × 𝑘 design matrix of random effects, where 𝑘 is the number 

of random effects, 𝒖 is the corresponding 𝑛 × 𝑘 vector of random effect parameter. The residual 

error is denoted by 𝜀, an 𝑛 × 1 vector. It is assumed that 𝒖~𝑁(0, 𝑮) and 𝜺~𝑁(0, 𝑹), with 𝒖 and 

𝜺 being independent. Here, 𝑮 = 𝑉𝑎𝑟(𝒖) and 𝑹 = 𝑉𝑎𝑟(𝜺) are variance-covariance matrices that 
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involve unknown dispersion or variance component (𝜎2). Under this model, the expected value 

and variance-covariance structure of 𝒚 are given by:  

 

𝐸(𝒚) = 𝑿𝜷,  𝑉𝑎𝑟(𝒚) = 𝑹 + 𝒁𝑮𝒁′ 

 

Parameter estimation in the Linear Mixed Model is typically carried out using the Maximum 

Likelihood Estimation (MLE) method. The log-likelihood function for the model is given by: 

 

log(𝐿) = (𝒚 − 𝑿𝜷 − 𝒁𝒖)′𝑹−𝟏(𝒚 − 𝑿𝜷− 𝒁𝒖) + 𝒖′𝑮   (5) 

 

The estimators for the fixed and random effects are obtained as follows: 

 

�̂� = (𝑿′𝑽−𝟏𝑿)−𝟏𝑿′𝑽−𝟏𝒚      (6) 

�̂� = 𝑮𝒁′𝑽−𝟏(𝒚 − 𝑿�̂�) 

 

The variance components are estimated using the maximum likelihood approach with the 

following log-likelihood function:  

 

log(𝐿)𝑀𝐿 = −
1

2
[log|𝑽| + 𝒚′𝑽−𝟏(𝑰 − 𝑿[𝑿′𝑽−𝟏𝑿]−𝟏𝑿′𝑽−𝟏)𝒚] −

𝑛

2
log(2𝜋) (7) 

 

However, estimation of variance components using MLE tends to be biased. Therefore, the 

Restricted Maximum Likelihood (REML) method is preferred. The REML log-likelihood function 

is given by: 

 

𝐥𝐨𝐠(𝑳)𝑹𝑬𝑴𝑳 = 𝐥𝐨𝐠(𝑳)𝑴𝑳 −
𝟏

𝟐
𝐥𝐨𝐠|𝑿′𝑽−𝟏𝑿| +

𝒑

𝟐
𝐥𝐨𝐠 (𝟐𝝅)   (8) 

 

(Jiang & Nguyen, 2021; Ruíz et al., 2023). 

 

4. B-Spline 

B-Spline functions are constructed from a set of smooth and flexible basis functions, making 

them suitable for modeling nonlinear relationships. A regression model incorporating a B-

Spline of order 𝑚 with 𝑘 knots can be expressed as follows: 

 

𝑦𝑖 = ∑ 𝛽𝑗
𝑚+𝑘
𝑗=1 𝐵(𝑗−𝑚),𝑚(𝑥𝑖) + 𝜀𝑖 ,      𝑖 = 1,2,… , 𝑛    (9) 

 

where 𝑦𝑖 is the response variable; 𝛽𝑗 denotes the regression coefficient associated with the B-

Spline basis; 𝐵(𝑗−𝑚),𝑚(𝑥𝑖) is the B-Spline basis function of order 𝑚; 𝑡1, … , 𝑡𝑘the knot points; and 

𝜀 is the random error term. To construct a B-Spline function of order 𝑚 with 𝑘 internal knot 

points 𝑡1, … , 𝑡𝑘, where 𝑎 < 𝑡1 < ⋯ < 𝑡𝑘 < 𝑏, an additional 2𝑚 boundary knots are introduced. 

These are defined by repeating the boundary values 𝑎 and 𝑏, each 𝑚 times, to ensure that the 

basis functions are well-defined over the entire domain. 
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𝑡−(𝑚−1), … , 𝑡−1, 𝑡0, 𝑡𝑘+1, … , 𝑡𝑘+𝑚 

 

Specifically, the additional boundary knots are defined as 𝑡−(𝑚−1) = ⋯ = 𝑡0 = 𝑎  and 

𝑡𝑘+1, … , 𝑡𝑘+𝑚 = 𝑏 , where 𝑎  and 𝑏  represent the lower and upper bounds of the domain, 

respectively. This extension ensures that the B-spline basis functions are properly defined and 

continuous across the entire interval [𝑎, 𝑏]. According to Perperoglou et al. (2019), the basis of 

a B-Spline function of order 𝑚 with 𝑘 knot points 𝑡1, … , 𝑡𝑘 can be defined recursively as follows: 

 

𝐵𝑗,𝑚(𝑥) =
𝑥−𝑡1

𝑡𝑗+𝑚−1−𝑡𝑗
𝐵𝑗,𝑚−1(𝑥) + 

𝑡𝑗+𝑚−𝑥

𝑡𝑗+𝑚−𝑡𝑗+1
𝐵𝑗+1,𝑚−1(𝑥)   (10) 

 

for 𝑗 = −(𝑚 − 1), … , 𝑘 , the zeroth-order (piecewise constant) B-spline basis functions are 

defined as: 

 

𝐵𝑗,1(𝑥) = {
1,   if 𝑡𝑗 ≤ 𝑥 < 𝑡𝑗+1
0,                      other

 

 

The B-Spline function of order  𝑚  with 𝑘  knot points, where 𝜆 = {𝑡1, 𝑡2, … , 𝑡𝑘}  then be 

expressed as: 

 

𝑓𝜆 = ∑ 𝛽𝜆𝑗𝐵𝜆𝑗−𝑚,𝑚(𝑥𝑖)
𝑚+𝑘
𝑗=1  

 

The B-Spline regression model can be expressed as follows: 

 

𝑦𝑖   = ∑ 𝛽𝜆𝑗𝐵𝜆𝑗−𝑚,𝑚(𝑥𝑖) + 𝜀𝑖
𝑚+𝑘
𝑗=1     (11) 

 

Equation (11), when expressed in matrix form, becomes: 

 

𝒚 = 𝑩𝝀𝜷𝝀 + 𝜺 

 

The parameter 𝜷𝝀 is estimated using the least squares method. The estimator �̂�𝝀  is obtained 

by minimizing the Residual Sum of Squares (RSS), defined as: 

 

�̂�𝝀 = (𝑩𝝀
𝑻𝜷𝝀)

−𝟏
𝑩𝝀
𝑻𝒚 

 

In nonparametric regression, the model estimation using B-Spline basis functions can be 

written as: 

 

�̂� = 𝜷𝝀�̂�𝝀 = 𝜷𝝀(𝑩𝝀
𝑻𝜷𝝀)

−𝟏
𝑩𝝀
𝑻 = 𝑺𝝀𝒚    (12) 

 

with 𝑺𝝀 = 𝜷𝝀(𝑩𝝀
𝑻𝜷𝝀)

−𝟏
𝑩𝝀
𝑻 is a symmetric and positive definite matrix. 
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5. SZIPMM, SZIGPMM, SZINBMM 

The SZIPMM, SZIGPMM, and SZINBMM are semiparametric multilevel models designed for 

analizing count data, particularly in the presence of zero-inflation. The log function for the 

mean of these three models can be formulated as follows: 

 

𝐥𝐨𝐠(𝝁𝒊𝒋) = 𝜼𝒊𝒋 = 𝜷𝟎 + 𝜷𝟏𝒙𝒊𝒋𝟏 +⋯+ 𝜷𝒌𝒙𝒊𝒋𝒌 + 𝒇(𝒙𝒊𝒋) + 𝒖𝒋   (13) 

 

where 𝝁𝒊𝒋 is the mean response, 𝒙𝒊𝒋 is the explanatory variable for the 𝒊-th observation within 

the 𝒋-th group, with corresponding parameter 𝜷, 𝒇(𝒙𝒊𝒋) is the nonparametric function ( spline) 

that models the nonlinear relationship between 𝒙𝒊𝒋  and 𝝁𝒊𝒋 , and 𝒖𝒋  is the random effect for 

group 𝒋, assumed to follow anormal distribution: 𝒖𝒋~𝑵(𝟎,𝝈𝒖
𝟐) . The model for zero-inflated 

probabilities is: 

 

𝒍𝒐𝒈𝒊𝒕(𝒑𝒊𝒋) = 𝐥𝐨𝐠 (
𝒑𝒊𝒋

𝟏−𝒑𝒊𝒋
) = 𝜸𝟎 + 𝜸𝟏𝒛𝒊𝒋𝟏 +⋯+ 𝜸𝒌𝒛𝒊𝒋𝒌 + 𝒈(𝒛𝒊𝒋) + 𝒗𝒋   (14) 

 

The log-likelihood function for a semiparametric multilevel model for zero-inflated data, 

which accounts for both fixed and random effects as well as nonparametric (spline) 

components, can be formulated as follows: 

 

log 𝐿(𝛽, 𝛾, 𝑢, 𝑣) =∑∑log𝑃(𝑌𝑖𝑗 = 𝑦𝑖𝑗|𝑋𝑖𝑗 , 𝑍𝑖𝑗, 𝑢𝑗 , 𝑣𝑗)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

−
𝜆

2
𝐵𝑇𝐷𝛽 −

𝜆

2
𝛾𝑇𝐷𝛾 

                                        −
1

2
∑ (

𝑢𝑗
2

𝜎𝑢
2 +

𝑣𝑗
2

𝜎𝑣
2)

𝑚
𝑗=1                  (15) 

with 𝑃(𝑌𝑖𝑗 = 𝑦𝑖𝑗|𝑋𝑖𝑗 , 𝑍𝑖𝑗 , 𝑢𝑗 , 𝑣𝑗) = {
𝑝𝑖𝑗 + (1 − 𝑝𝑖𝑗)𝑓(0|𝜇𝑖𝑗 , 𝛼),    𝑗𝑖𝑘𝑎 𝑦𝑖𝑗 = 0

(1 − 𝑝𝑖𝑗)𝑓(𝑦𝑖𝑗|𝜇𝑖𝑗, 𝛼),              𝑗𝑖𝑘𝑎 𝑦𝑖𝑗 > 0
 

 

Equation (15) estimates the parameters using the Penalized Maximum Likelihood Estimation 

(PMLE) and the Expectation-Maximization (EM) algorithm. 

 

6. Data 

The data utilized in this study are secondary data obtained from the Ministry of Education, 

Culture, Research, and Technology (MoECRT) in 2022. The data were sourced sourced from the 

Educational Data System (EDS), an official platform for managing educational data and 

statistics in Indonesia. The hierarchical structure of the dataset comprises two levels: level 1 

units represent senior high schools, which are nested within level 2 units corresponding to the 

34 provinces of Indonesia. In this study, random effects are specified at the provincial level, 

which delegates the responsibility for managing secondary education to provincial 

governments rather than to district authorities (Law Number 23 of 2014 on Regional 

Government), as shown in Table 1. 
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Table 1. List of Variables Used in The Study 

Variable Description Measurement Data Source 
𝑌 The number of school dropouts (per 100 students) Count EDS, MoECRT 
𝑋1 School status (1: Public; 2: Private) Categorical EDS, MoECRT 
𝑋2 Student-teacher ratio Ratio EDS, MoECRT 
𝑋3 Percentage of students whose home-to-school 

distance exceeds 5 km 
Percentage EDS, MoECRT 

𝑋4 Percentage of students receiving KIP (government 
financial aid) 

Percentage EDS, MoECRT 

𝑋5 Percentage of students whose father’s education 
level is below high school 

Percentage EDS, MoECRT 

𝑋6 Percentage of students whose fathers are 
unemployed 

Percentage EDS, MoECRT 

𝑋7 Percentage of students with more than three siblings Percentage EDS, MoECRT 
𝑢𝑗 Province (Level 2) Categorical EDS, MoECRT 

𝑢𝑖𝑗 School (Level 1) Categorical EDS, MoECRT 

 

7. Research Procedures 

a. Data exploration and data testing. 

b. Determining the best number of knots and order of B-Spline (nonparametric 

component). Optimization based on the minimum Generalized Cross Validation (GCV) 

score. 

𝐺𝐶𝑉(𝜆) =
𝑛−1𝑅𝑆𝑆(𝜆)

(𝑛−1𝑡𝑟𝑎𝑐𝑒[𝑰 − 𝑺𝝀])2
 

 

c. Splitting data into training (90%) and testing (10%). 

d. Modeling the data using training data with parametric models: ZIPMM, ZIGPMM, 

ZINBMM, and semiparametric models: SZIPMM, SZIGPMM, SZINBMM. 

1) Calculating Akaike Information Criterion (AIC) for each model. 

 

𝐴𝐼𝐶 = −2 ln 𝐿 + 2𝑘 

 

with 𝐿 is the likelihood of the model and 𝑘 is the number of the parameters. 

2) Predicting the response variable for both training and testing data.  

3) Computing the Root Mean Square Error (RMSE) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)
𝑛
𝑖=1

2
  

 

e. Repeating steps 3-4, 100 times. Evaluate models based on average AIC and RMSE. A 

model with the lowest average AIC and RMSE is the best model. 

f. Estimating the parameters and testing the significance of the model parameters based 

on the best model. 
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C. RESULT AND DISCUSSION 

1. Data Exploration 

The descriptive statistics of high school dropout data in 2022 are presented in Table 2. A 

total of 14,210 high schools across 34 provinces and 514 districts were analized. The table 

indicates  that the average number of dropouts is  low, close to zero, suggesting the presence of 

excess zeros in the data. Additional, the relatively low variance implies that most data points 

are concentrated around zero, with a few notable outliers. Several variables, such as X₂, X₃, X₆, 

and X₇, display a right-skewed distribution, as evidenced by their mean values exceeding their 

medians. Variables X₅, X₆, and X₇ exhibit high variance, suggesting a broad range of values or 

the presence of significant outliers, as shown in Table 2. 

 
Table 2. Descriptive Statistics of All Variables 

Variable Min Median Mean Max Var 
𝑌 0.00 0.00 0.51 100.00 9.45 
𝑋2 0.00 14.00 15.35 324.00 120.42 
𝑋3 0.00 1.07 1.84 46.48 7.97 
𝑋4 0.00 0.00 0.25 100.00 2.87 
𝑋5 0.00 52.31 54.10 100.00 824.12 
𝑋6 0.00 13.43 16.67 100.00 210.32 
𝑋7 0.00 2.73 9.40 100.00 219.21 

 

Excess zeros in the response variable are assessed descriptively through the histogram 

shown in Figure 1. The distribution reveals that 81.69% of cases report no dropout incidents, 

indicating the presence of excess zeros. This suggests that excess zeros should be accounted for 

in the analysis. 

 

 
Figure 1. Histogram of the Number of High School Dropouts in Indonesia 

  

Thematic mapping is used to visualize school dropout rates by province. Figure 2 illustrates 

the distribution of high school dropouts per 10,000 students across 34 provinces in Indonesia. 

The highest dropout rates are observed in West Nusa Tenggara (83 students), Papua (56 

students), and Gorontalo (54 students). In contrast, D.I. Yogyakarta (1 student), Bali (2 

students), and Central Java (4 students). This variation in dropout rates highlights regional 

disparities in educational outcomes, which may be influenced by differences in socio-economic 

conditions, access to education, infrastructure, and local government policies. Provinces with 
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higher dropout rates often face challenges such as limited educational resources, higher 

poverty rates, or geographical barriers. Understanding these spatial patterns is essential for 

developing targeted interventions aimed at reducing school dropout rates and promoting 

educational equity across regions. 

 

 
Figure 2. Thematic Map of the Number of High School  

Dropouts per 10,000 Students in Each Province 

 

Figure 3 presents the scatter plot between the explanatory variables and the response 

variable. The variable X₁ is a categorical, indicating school status, with public and private 

schools comprising 49.2% and 50.8%, respectively. The variables 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, and 𝑋7  are 

numeric. The plots reveal that the relationships between these numeric variables and the 

response variable do not follow a clear linear trend. Due to the absence of consistent parametric 

patterns, a semiparametric approach is applied for further analysis.  

 

 
Figure 3. Scatter Plot of Response Variables and Explanatory Variables 

  

As shown in Table 3, all variables have low Variance Inflation Factor (VIF) values (none 

exceeding 10), indicating the absence of multicollinearity among the explanatory variables. 

Therefore, the variables are suitable for further analysis. 
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Table 3. VIF Value of Explanatory Variables 

Variable VIF 
𝑋1 1.075 
𝑋2 1.005 
𝑋3 1.011 
𝑋4 1.005 
𝑋5 1.283 
𝑋6 1.219 
𝑋7 1.142 

 

2. Zero Inflation and Overdispersion Test 

The zero inflation was assessed using a score test. As presented in Table 4, the test yielded 

a p-value of <2.22e-16, leading to the rejects the null hypothesis at a 5% significance level. This 

result provides strong evidence of excess zeros in the response variable. 

 
Table 4. Zero Inflation Test 

Chi-square p-value 
11947.999 < 2.22e-16 

 

Furthermore, overdispersion was tested to determine whether the data exhibits variability 

greater than expected. As shown in Table 5, the test produced a p-value of 0, which is below the 

5% significance level. This indicates the presence of overdispersion in the data. 

 

Table 5. Overdispersion Test 

Obs.Var/Theor.Var Statistic p-value 
18.469 262429.8 0 

 

3. Optimization of the Number of B-Spline Knots 

The variables selected as the nonparametric component is 𝑋5. The optimal number and 

order of knots were determined based on the minimum Generalized Cross-Validation (GCV) 

score. Knot combinations were evaluated from one to ten knots and orders ranging from one 

to three. As shown in Table 6, the optimal configuration is two knots with order three, yielding 

the lowest GCV score of 9.4107. The optimal knot locations are at 15.92 and 95.24, 

corresponding to the 0.1 and 0.9 quantiles. 

 

Table 6. Knot, Order, and GCV Optimal 

Knot Order GCV Knot Position Knot Quantiles 
2 2 9.4126 15.92, 95.24 0.1, 0.9 
2 3 9.4107 15.92, 95.24 0.1, 0.9 
3 3 9.4116 15.92, 52.31, 95.24 0.1, 0.5, 0.9 
4 3 9.4128 15.92, 40, 66.67, 95.24 0.1, 0.37, 0.64, 0.9 
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4. Model Comparison 

The next stage involves modeling using both parametric and semiparametric approaches. 

To account for variability due to random data partitioning, each model is repeated 100 times. 

This repetition ensures that the results are more stable and not influenced by a single instance 

of data splitting. The significance of the explanatory variable parameters is evaluated using the 

Wald Test. Table 7 presents the parameter estimates and the percentage of significance for the 

parametric models, including ZIPMM, ZIGPMM, and ZINBMM. Meanwhile, Table 8 summarizes 

the results for the semiparametric models: SZIPMM, SZIGPMM, and SZINBMM. The result from 

ZIPMM and SZIPMM indicate that all parameters are statistically significant. This is due to the 

use of both models when dealing with overdispersed data, tends to result in the significance 

test rejecting the null hypothesis.  

 

Table 7. Parameters Estimation for Parametric Models 

Parameter ZIPMM % Sig ZIGPMM % Sig ZINBMM % Sig 
𝛽0 0.295* 88% -1.039* 100% -1.786* 100% 

𝛽1 (𝑃𝑟𝑖𝑣𝑎𝑡𝑒) 0.974* 100% -0.367* 100% 0.430* 100% 
𝛽2 -0.025* 100% 0.008* 100%         0.001_ 13% 
𝛽3 0.019* 100% 0.025* 100% 0.049* 100% 
𝛽4 -0.060* 89% -0.022_ 0% -0.064* 91% 
𝛽5 0.006* 100% 0.003* 100% 0.009* 100% 
𝛽6 0.004* 88% 0.004* 92% 0.010* 98% 
𝛽7 -0.007* 100% 0.003_ 46%        -0.001_ 1% 

Random Effect       
Province 

(Intercept) 
0.187_  0.157_  0.240_  

Zero-Inflation 
(Intercept) 

1.275* 100% -18.517_ 0% -18.003_ 0% 

* significant at the 5% level 

 

Table 8. Parameters Estimation for Semiparametric Models 

Parameter SZIPMM % Sig SZIGPMM % Sig SZINBMM % Sig 
𝛽0 2.819* 100% -1.950* 100% -1.093* 100% 

𝛽1 (𝑃𝑟𝑖𝑣𝑎𝑡𝑒) 0.999* 100% -0.344* 100% 0.458* 100% 
𝛽2 -0.019* 100% 0.008* 100% 0.001_ 10% 
𝛽3 0.020* 100% 0.023* 100% 0.045* 100% 
𝛽4 -0.066* 99% -0.021_ 0% -0.066* 97% 
𝛽51 -3.386* 100% 0.587_ 2% -1.446* 94% 
𝛽52 -1.814* 100% 1.554* 100% 0.509_ 13% 
𝛽53 -2.310* 100% 0.949* 82% -0.357_ 11% 
𝛽54 2.241* 100% 1.221* 100% -0.058_ 7% 
𝛽55 -1.074* 100% 1.198* 100% 0.860* 87% 
𝛽6 0.003* 76% 0.004* 97% 0.010* 100% 
𝛽7 -0.005* 99% 0.003* 85%         0.001_ 0% 

Random Effect 
Province 

(Intercept) 

       0.147_             0.153_   
0.217_ 

 

Zero-Inflation 
(Intercept) 

1.261* 100% -18.534_ 0% -17.988_ 0% 

* significant at the 5% level 
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Each model generates a different spline curve (Figure 4), ilustrating how each model 

captures the relationship between 𝑋5 (the percentage of students whose fathers' education 

level is below high school) and the model’s output (school dropout rates). The SZINBMM and 

SZIPMM models exhibit similar patterns, although SZIPMM displays a sharper nonlinear effect. 

The value of 𝑓(𝑋5) decreases significantly until around 𝑋5 ≈ 10 and then gradually increases. 

The value of 𝑓(𝑋5) remains negative across most of the 𝑋5 range, indicating that this variable 

primarily contributes to a decrease in the response variable. In contrast, the SZIGPMM model 

shows an increasing trend, with 𝑓(𝑋5) remaining relatively stable after 𝑋5 ≈ 25. The changes 

are more gradual compared to the other models, suggesting that the effect of the variable 𝑋5  in 

this model is more stable. The variable 𝑋₅ tends to have a positive relationship with school 

dropout rates. This means that as the percentage of students whose fathers have less than a 

high school education increases, the likelihood of dropping out tends to increase. 

 

 
Figure 4. Spline Functions for 𝑋5 

 

Model comparison is conducted using the average of AIC, the average of RMSE for  training  

and testing data. The best model is selected based on the lowest AIC and RMSE values. As shown 

in Table 9, the SZIGPMM model achieves the lowest AIC, while the RMSE values across all 

models are relatively close, indicating comparable predictive accuracy. This suggests that all 

models are suitable for prediction. However, SZIGPMM is considered the best model due to its 

optimal trade-off between model fit and complexity, as evidenced by the lowest AIC and a stable 

spline curve. 

 

Table 9. Model Comparison 

Model AIC RMSE Train RMSE Test 
ZIPMM 26009.95 3.073 2.841 
ZIGPMM 18988.38 3.078 2.829 
ZINBMM 19382.18 3.067 2.825 
SZIPMM 25349.87 3,107 2,920 
SZIGPMM 18969.62 3,079 2,829 
SZINBMM 19327.25 3,061 2,823 
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Based on the significant variables, modeling using SZIGPMM can be expressed as follows: 

 

�̂� = exp(−1.950 − 0.344(𝑋1 = 𝑝𝑟𝑖𝑣𝑎𝑡𝑒) + 0.008𝑋2 + 0.023𝑋3 + 1.554𝐵−1,2(𝑋5 ) 

                     + 0.949𝐵0,2(𝑋5) + 1.221𝐵1,2(𝑋5) + 1.198𝐵2,2(𝑋5) + 0.004𝑋6 + 0.003𝑋7)  

 

The negative coefficients for 𝑋1 (private schools) indicate that, on average private schools have 

lower dropout rates than public schools, holding other variables constant. X₂ (student-teacher 

ratio), X₃ (distance from home to school), X₆ (parental employment status) and X₇ (number of 

siblings), all have positive coefficients, indicating that as these variables increase, the expected 

dropout rate also increases. The basis spline coefficients for X₅ (parental education level) are 

all positive, indicating a nonlinear but overall positive relationship between X₅ and dropout 

rates. Suggesting that the higher the percentage of parents with education below high school, 

the higher the tendency for school dropout rates. Overall, these findings imply that 

socioeconomic and school-level factors significantly influence dropout rates, with both linear 

and nonlinear effects captured in the model. 

The significant factors influencing dropout rates include school status (public or private), 

student-teacher ratio, distance to school, parental education, employment status, and the 

number of siblings. This is consistent with research from Mubarokah et al. (2016) that shows 

that the student-teacher ratio significantly affects dropout rates. Rahma & Arcana (2019) 

identify several significant factors influencing the risk of school dropout among adolescents in 

Papua: the employment status of household heads, the education level of household heads, and 

the number of household members. 

 

D. CONCLUSION AND SUGGESTIONS 

The analysis revealed that the SZIGPMM model is the best choice for modeling high school 

dropout rates in Indonesia, as indicated by the lowest AIC and the stability of the spline 

components. This model effectively addressed overdispersion and excess zeros in the count 

data, confirming the advantages of semiparametric multilevel models combined with B-Splines 

for capturing nonlinear effects.  One limitation of this study is the complexity of the resulting 

model. This may pose challenges for interpretation and practical application by policymakers 

without statistical expertise. Beyond the technical performance, the findings highlight several 

significant factors contributing to high school dropout rates. These include school status (public 

or private), student-teacher ratio, distance from home to school, parental education level, 

parental employment status, and the number of siblings. These factors suggest that both 

institutional conditions and family background play a crucial role in influencing students 

decisions to remain in school. The results emphasize the need for targeted educational policies 

that address these underlying issues to reduce dropout rates and improve educational 

attainment across regions. 
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