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partially, namely monitoring the mean process and process variability. This
approach is less effective and time-consuming because two separate charts must
be created simultaneously. One alternative is to analyze both parameters
simultaneously, such as through the Progressive Max Chart method (Mixed-

;gg;;izus Control Methods Research: Quantitative and Applied). The Progressive Max Chart is a
Chart; control chart designed for monitoring both the mean and variability by considering
Progressive Max Chart; the case of subgroup observations. This study uses a quantitative approach,
Max Chart; combining primary data collection and simulations to generate findings through
EWMA-Max Chart; statistical analysis and quantifiable measurements. The purpose of this research is
Water PH. to compare methods such as the Progressive Max Chart, EWMA-Max, and Max

Chart. The analysis results show that the Progressive Max Chart method performs
better than the Max Chart and EWMA- Max Chart, both in terms of mean, variance,
and mean-variance detection, for small shifts and large shifts. The control chart
performance results provide optimal outcomes for monitoring out-of-control
signals at subgroup sizes of n = 2, 3, 5. This is characterized by ARL; values that
approach 1 more quickly. This method is applied to pH data from vannamei shrimp
pond water located in Madura. The Progressive Max Chart method provides
optimal results by maximizing the detection of in-control signals. Additionally, it is
tested on synthesized data and demonstrates optimal performance in detecting
both small and large shifts in mean, variance, and mean-variance.
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A. INTRODUCTION

In statistical process control (SPC), the control chart is a quite popular technique to monitor
the process efficacy (Knoth et al., 2021). A control chart is a tool used to determine whether a
process is in statistical control. The ultimate goal of statistical process control is to reduce
variability in the process. Although this method cannot completely reduce variability, control
charts are able to effectively minimize variability (Syarifah Nazia et al., 2023). Control charts
aim to the simplicity of understanding them, while at the same time being efficient in detecting
defects in production processes (Qiu, 2018). The Max- KFl control chart is a technique used in
monitoring process control by evaluating the stability of the process mean and variability using
asingle chart, and has the main advantage that using inspection attributes is easy to use and costs
less than variable-type inspections that use true values. The Max-KFl control chart is an alternative
control chart with variable-type inspection (Rifki et al., 2025). The development of the control
chart into Max-EWMAMS by taking the maximum value between the two absolute values of the
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standard normal variable which is the estimator of the mean and variance of the process. Max
EWMAMS charts generally detect mean shifts, variance increases and simultaneous changes in
process mean and variability faster than the other two charts (Javaid et al., 2020). In the
research (Javaid et al., 2020), it is proven that the proposed Max-HEWMA control diagram is
more sensitive than the previous one, namely the AIB-Max EWMA control diagram. The Max-
HEWMA control diagram is proven to be efficient so that it monitors shifts in mean and variance
based on Average Run Length (ARL) and Standard Deviation of the Run Length (SDRL). EWMA-
Max is superior to other existing simultaneous control charts in that it monitors small shifts in
process parameters, it is also good at monitoring large shifts (Sanusi et al., 2020).

On the other hand, the performance of an EWMA chart, characterized by unknown
parameters, was analyzed through the application of quantiles of the average run length (ARL)
and the standard deviation of the average run length (SDAR) (Saleh et al,, 2015). The standard
deviation of the run length (SDRL), which incorporates both average run length (ARL) and run
chain length, is applicable solely for the performance analysis of a single control chart. As the
average run chain length approaches the setpoint ARLO, particularly under unknown
parameters, the standard deviation of the average run length (SDARL) diminishes, indicating
that the performance of the control chart is more aligned with a known situation. A control
chart designed for repeated monitoring of lognormal processes was developed, with its
performance analyzed using average run length (ARL) and standard deviation as statistical
performance indicators (Khoo et al., 2015). Additionally, the efectiveness of the control chart’s
monitoring capabilities was verifed (Quinino et al., 2020).

Furthermore, the development of the Maximum Exponentially Weighted Moving Average-
Max (EWMA-Max) control chart, an extension of the Max chart that applies the EWMA technique
to its statistics, builds on comparisons showing that the Max-CUSUM chart outperformed the
Max-MEWMA chart and the Alternate Variable Multivariate chart in detecting simultaneous
small shifts in process mean and covariance, as well as in identifying mean shifts alone (Ajadi
etal, 2021).

Aslam, M. (2016) proposed the EWMA-CUSUM charts for monitoring correlated data using
the Average Run Length, extra quadratic loss, and relative Average Run Length as criteria to
measure the efficiency with Shewhart, CUSUM, EWMA, Shewhart-CUSUM, and Shewhart-
EWMA charts. The newly proposed control charts have efficiency in detecting better than the
compared charts. In 2017, Osei-Aning (2017) proposed the CUSUM-EWMA chart to detect the
change of variation in the process using the ARL, extra quadratic loss, and relative Average Run
Length as criteria to measure the efficiency with Shewhart, EWMA and CUSUM charts. It was
found that the CUSUM-EWMA chart had better efficiency for detection than the control charts
of Shewhart, CUSUM-S2, S2-EWMA, CS-EWMA, floating T-S2, floating U-S2, classical EWMA, and
CUSUM charts (Lu, 2017).

Previous research has compared two different methods for controlling water nutrient
levels in non-circulating hydroponics based on the projected canopy area, using linear
regression as the primary method, while hydroponics itself is a soilless cultivation technique
that delivers nutrients to crops through a closed-loop irrigation system, typically submerging
plant roots in the nutrient solution (Sulaiman et al., 2025). From this research, it has elaborated
with Progressive Max Chart on the object of vannamei shrimp to test the quality of water PH
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media (Setyastuti et al., 2023).

Vannamei shrimp (Litopenaeus vannamei), a significant aquaculture species contributing
to over 53% of total farmed crustacean production, has seen steadily rising cultivation and
consumption globally (Kim et al., 2020). In Indonesia, ponds are among the most popular
breeding grounds for this species. These man-made coastal systems, often utilizing brackish or
seawater, are designed for cultivating aquatic animals like fish, shrimp, and shellfish. Vannamei
shrimp farming is particularly favored due to its competitive pricing and adaptability to high-
density, intensive production systems, which aim to maximize output. However, exceeding the
pond’s carrying capacity at a given biomass level can compromise shrimp survival, especially
under excessively high stocking densities (Mustafa et al., 2023).

Based on the description above, this research will develop a Progressive Max chart- based
control diagram. It is expected that this chart will be able to efficiently monitor the mean and
variability simultaneously and have better performance. The performance of the developed
control chart will be compared with several other simultaneous control charts such as EWMA-
Max and Max-chart. Furthermore, the Progressive Max control chart will be applied to monitor
water pH in vannamei shrimp ponds.

B. METHODS
1. Data Source and Data Structure

This research employs a quantitative research approach, utilizing both primary data
collection and simulation methods. Quantitative research is a type of study that generates
findings through statistical procedures or other quantifiable measurement techniques. The
primary data was collected through direct observations conducted at vannamei shrimp ponds
in Madura over a four-month period, from November 2022 to February 2023. Meanwhile,
simulation data was generated using the R programming language, which allowed for
computational modelling and analysis to supplement the empirical findings. By combining field
observations with computational simulations, this research ensures a robust and
comprehensive analysis of the subject matter.

2. Data Source

This research uses both primary data and simulated data. The simulated data were
generated using the R programming package by creating data that represent an in-control
process. These simulated data were used to evaluate the performance of the Progressive Max
control chart. The primary data were collected from a vannamei shrimp pond in Madura
between November 2022 and February 2023, consisting of 116 samples. To measure the pH
level of the pond water, the process involved selecting pond Block A8 as the observation site,
collecting water samples using a small plastic cup, immersing a pH meter (pH meter 10) into
the cup, and pressing the meter’s button to obtain the pH value, as shown in Table 1.
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Table 1. Data Source

samples pH of Water(X)
1 2
1 X11 X12
2 X21 X22
3 X31 X3
! Xin Xio
m Xml sz
3. Data Structure and Variables

The data structure in this study consists of pH level measurements of pond water, with m
observation units and a subgroup size of [ = 2, representing measurements taken in the
morning and at noon. The data structure used for the Progressive Max control chart is
presented in Table 2.

Table 2. Research Data Structure

samples pH of Water(X)
1 2
1 X1 X1z
2 Xo1 X22
3 X31 X32
! Xi1 Xi2
m Xml sz

Table 3. Research Variables

Variables Variable Name Specification Limit
X Watesr pH 7.5-9

4. Progressive Mean Control Diagram

Progressive Mean control charts are control charts in monitoring the process mean by
considering the case of individual observations. Besides conventional Westgard rules, methods
like Exponentially Weighted Moving Average (EWMA) and Cumulative Sum (CUSUM) assist
laboratory professionals in identifying small shifts and trends, though Progressive Mean
control charts are more effective than these Shewhart-type charts for monitoring process
means in individual observations (Cubuk¢u, 2021). Progressive Mean control charts have
excellent performance not only for small and medium shifts, but also show good performance
for large shifts. If Kk, k = 1,2,3, ..., mis a sequence of independent and identically distributed
observations, then the Progressive Mean control chart is defined as the cumulative mean over
time (Riaz et al., 2020). Mathematically, Progressive Mean is defined as follows.

_ Xk=1%k
- .
l

PM; i=12,...,m (1)
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2
IF PM; is an unbiased estimator of the sample. mean p,, and the variance. is GT" where. y is

the. mean and o¢ is the variance. The. following are. the control limits of the. Progressive. Mean.

LCL = py — p2e (2)
Vi

UCL = p, + p2o (4)
Vi

5. Max Chart Control Diagram
If Max control chart-XS otherwise known as Max Chart is a univariate. simultane.ous control
chart to monitor the mean and variability of the process in one. chart. Given X is a particular
characteristic of a process, is the process mean, and is the. process standard deviation. Given
Z?=1(Xij_x)2
(n;i—1)
sample. Thus, the simultaneous control diagram is formulated as follows:

G (Xil +---+Xin)

X, = — is the. mean of the. i-th sample and S;* = is the. variance. of the. i-th

% —
UFM: i=12,...,m (5)

Vn

U; = transformation X;
n =subgroup size.
m =number of subgroups

v, =¢‘1{H(M;n—1>} (6)

g2

where. @(z) = P(Z <2z) for Z~ N(0,1), the standard normal distribution, @~ 1(.) is
the. inverse function of ®(.), and H(w,v) = P(W < w|v) for W ~ x2, the chi-squared
distribution with v degrees of freedom. U; and V; are. transformations of X; and S?, when a =
Oandb =1,U; ~ N(0,1) and V; ~ N(0,1). In particular, the. statistics for simultane.ous control
charts are. defined as follows.

M; = max(|U;],[Vi]),i = 1,2,..m (7)

U: : monitors shifts in the process mean
Ii : monitors shifts in the process variability

The value of the test statistic M becomes large when the. process shifts away from p or
when theprocess variability increases or decreases. On the. other hand, the value. of M shrinks
when the process mean and variability remain close. to their respective. target values.
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6. EWMA-Max Control Diagram

The EWMA-Max chartis an extended control chart of the Max chart by applying the EWMA
technique. to the. Max chart statistics. Given X1,X2,...Xi denote. the quality characteristics of a
process with u denoting the process mean and o denoting the. process standard deviation
where. i denotes the sample number index. The. EWMA statistic with smoothing constant A is
shown in the following equation.

Zi=(1 -2z, +XX; (8)

with 0 < A < 1. When the process is in-control, the. mean and variance. of the. EWMA statistic
are.

E(Z) = uo _ 9)
Var(Z;) = o* A1 - (12__(; —Ml (10)

where po and o2 denote the mean and variance. of target Xi, respectively. The. EWMA-Max
statistic is defined in the following equation.

Gi = (1 - A)Gi—l + AML (11)

Given that the initial value Go = 1,128379, and assuming that U: and I; are mutually
independent, when jy = 0 and p = 1, both U: and I; follow a standard normal distribution.
Ui~A(0,1) and Ii~A(0,1). The upper control limit (UCL) on the huber function for the EWMA- Max
control diagram is given as follows (Malik et al., 2024).

UCL = 1,128379 + 0,602810L (12)

2-2

7. ARL (Average Run Length)

ARL is the. mean of several observation points until the. first out-of-control signal is found.
There are two types of ARLoand ARL1in performance assessment of control charts. The. ARLo
formula is defined as follows:

ARL, = (13)

e

ARL, = (14)

1-p

a refers to a Type I error, which is the probability of signaling that the process is out of control
when it is actually operating normally. A typical value for alpha, often used when applying 3o
control limit is 0.0027 . Meanwhile, y refers to a Type Il error, which is the probability of failing
to detect that the process is out of control when a shift has actually occurred. A control chart is
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considered effective when it has a large value of ARLo, representing the average number of
samples before a false alarm, and a small value of ARL1, indicating the average number of
samples needed to detect a true shift in the process.

C. RESULT AND DISCUSSION

The control charts presented in this study are Progressive Max chart-based univariate
control charts and Max chart control charts or conventional control charts. The first Max chart
control diagram is to find the value of U and V which is the transformation of X and S, then find
the value of Mi. The next control diagram is to carry out a performance evaluation comparison
against the Progressive Max chart control diagram using the ARL criterion. Progressive Max
chart and Max chart control diagrams are implemented through monitoring the water pH
characteristics data of Vannamei shrimp ponds located in Madura, Indonesia.
1. Progressive Max Chart Statistics and Control Limits

The statistics in the. Progressive. Max chart control diagram proposed in this study are. a
development of the previous control diagram, namely the Max chart control diagram
combined with the Progressive Mean control diagram from the. research. This control diagram
is expected to be. able. to carry out good performance. for small, medium and large. shifts. Here.
is the. mathematics of the Progressive Max chart control diagram with the. following equation.

_ Tk=1 Mk | = (15)

where PrM; is the. i-th Progressive. Max moving mean of the. M; value, the data element moves
from k to i,, with i being the number of subgroups from 1 to m, each containing no n data. The.
control limit in the Progressive. Max chart control diagram study is the. upper control limit or
Upper Conttrol Limit (UCL) value. found in the. following equation.

Oprm

Vi

UCL; = Pprm +h (16)

where. W, is the mean of observations which is 1.128379 and oy, is the standard deviation
of observations which is 0.60281, the. value. of h is a value designed to stop the. ARLo or in-
control process. ARLo is the. mean of the. number of observations that the. plot is expected to
first exit at the time of the. in-control state. The. following ARLo table with the parameter h in
getting the ARLo =370 value. on the Progressive Max chart control diagram.

Table 4. Paramegstesr valuegs of (h) so as to obtain theg
ARL valueg of = 370 in subgroups (n = 2,3,5)

Subgroup (g) h
2 1.12
3 1.122

5 1.124
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2. Performance of Progressive Max, EWMA-Max, and Max chart control charts

a. Performance. of Progressive. Max Control Diagram based on the. Number of
Characteristics
The performance of this research was evaluated based on the ARL1 values derived from
simulated data K~A(Wshifa, Oshifa) , where the in-control average run length ARLo was set at
approximately 370, corresponding to a Type [ error rate a of 0.0027. The study assessed
detection performance under different shift magnitudes, beginning at 0.25, across three
scenarios: shifts in the mean with constant variability, shifts in variability with a stable
mean, and simultaneous shifts in both mean and variance. The Progressive Max chart's
effectiveness was examined using subgroup sizes of 2, 3, and 5. When evaluating mean
shifts with constant variability, the results demonstrated varying ARL1 values depending
on the subgroup size. For a subgroup size of [ = 2 the ARLo at zero shift was 366.520. A
mean shift of 0.25 reduced ARL1 to 180.080, while a shift of 0.5 led to a further decline
to 24.627. At a larger shift of 2.5, ARLidropped to its minimum value of 1. Similarly, for
[=3, amean shift of 0.25 resulted in an ARL10f 89.101, which decreased to 11.952 ata
shift of 0.5 and eventually reached 1 at a shift of 2.5. The trend continued with [ =5, where
a shift of 0.25 yielded an ARL1 0f 41.523, a shift of 0.5 reduced it to 6.260, and a shift of
2.5 again brought it down to 1. These findings highlight how larger subgroup sizes
improve detection sensitivity, as evidenced by the faster decline in ARL1 values with
increasing shift magnitudes. Performance evaluation on mean shift with constant
variability in large-scale processes as shown in Table 5.

Table 5. ARL of Progressive. Max Diagram for n = 2,3,5 based on mean shift
. Progressive Max
Shift n=2 n =3 n=>5
0 366.520 356.007 374.530
0.25 180.080 89.101 41.523
0.5 24.627 11.952 6.260
0.75 7.304 4.038 2.370

1 3.239 2.237 1.493
1.25 2.250 1.573 1.200
1.5 1.630 1.275 1.050
1.75 1.300 1.098 1.012

2 1.150 1.040 1.006
2.25 1.091 1.017 1.000
2.5 1.000 1.000 1.000

Figure 1 is a visualization of the ARL1 values of the Progressive Max control chart with
subgroup sizes of [ = 2, [ = 3, and [ = 5 when the mean shifts and variability remains
constant. The larger the subgroup size used, the better the performance of the
Progressive Max control chart, as indicated by the decreasing ARL1 values. When the
mean shift is greater than 0.5, it can be observed that the ARL1 values for different
subgroup sizes are approximately 1, indicating that the Progressive Max control chart is
effective for monitoring large process mean shifts.
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i —&— n=2

—B— n=3
-4-n=5

300

200

ARL

100

0 025 05 075 1 125 15 175 2 225 25
Shift

Figure 1. ARL of Progressive. Max diagram monitoring
mean shift based on the. number of times n

b. Performance of Progressive Max, EWMA-Max, and Max chart control charts

The performance evaluation of this study was conducted based on ARL1 values derived
from simulated data following a normal distribution K ~ A(shifa, Oshifa), with the in-
control ARLo maintained at approximately 370 (« = 0.0027). The assessment examined
large shifts starting from 0.25 under three distinct scenarios: processes experiencing
mean shifts with constant variability, processes with stable means but shifting
variability, and processes where both mean and variance exhibited shifts. The analysis
focused particularly on evaluating the effectiveness of the Progressive Max control chart
using subgroup sizes of [ = 2, 3, and 5, with detailed results for mean shifts under
constant variability presented in Table 6.

The comparative analysis revealed significant performance variations across different
subgroup sizes. For the smallest subgroup size ([ = 2), the Progressive Max chart
demonstrated superior performance over both EWMA-Max and traditional Max charts,
detecting a variance shift of 0.25 with an ARL1of 98.253. When employing a moderate
subgroup size ([ = 3), the Progressive Max chart maintained its advantage, achieving an
ARLiof 12.671 for the same magnitude of variance shift. Most notably, with the largest
subgroup size examined ([ = 5), the Progressive Max chart exhibited its strongest
performance, registering an ARL1 of 4.251 for the 0.25 variance shift. These results
consistently demonstrate the Progressive Max chart's enhanced sensitivity in detecting
process variability shifts compared to alternative control chart methods, with its
detection capability showing particular improvement as subgroup size increases. The
findings underscore the Progressive Max chart's effectiveness as a statistical process
control tool, especially in scenarios requiring prompt identification of out-of-control
conditions in process variability.
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Table 6. ARL1 shift mean Progressive Max chart, EWMA-Max chart, and Max chart

mean Shift Progressive Max chart EWMA-Max chart Max chart
mean n=2 n=3 n=5 n=2 n=3 n=5 n=2 n=3 n=5
0 366.52 356.007374.53 378.378 382.05 336.317  349.248 341.116 348477
0.5 24627 11952 6.260 68.917 39.732  19.441 133.091 90.432 51.043

1 3.239 2237 1.493 10946  6.944 4.208 25.663 13.94 6.030

1.5 1.630 1.275 1.050 4.691 3.304 2.275 7.175 3.727 1.786
2 1.150 1.040 1.006 2.955 2.191 1.596 2.819 1.621 1.133
2.5 1 1 1 2.140 1.687 1.185 1 1 1

3. Performance Evaluation Based on Variance Shift

a. Performance of Progressive Max Control Diagram Based on Numbers of Characteristics
Table 7 assessed performance through ARL1 values generated from simulated dataK ~
A(Ushifa, Oshifa), maintaining an in-control ARL1 of approximately 370 (@ = 0.0027). The
evaluation examined substantial shifts beginning at 0.25, covering three key scenarios:
mean shifts with stable variability, variability shifts with constant mean, and concurrent
shifts in both mean and variance. The analysis focused on the Progressive Max chart's
effectiveness using subgroup sizes of 2, 3, and 5. For mean shifts with constant
variability, results demonstrated varying detection capabilities across subgroup sizes.
The n=2 configuration showed gradual sensitivity improvement, with ARL1 decreasing
from 233.370 to 98.253 for shifts of 0.25 to 0.50 respectively, eventually reaching perfect
detection at 2.50 shift. Larger subgroups exhibited enhanced performance, particularly
n=>5 which achieved rapid detection with ARL1 values plunging from 34.802 to 4.251 for
the same shift range. Similar patterns emerged in variability shift analysis, where larger
subgroups consistently outperformed smaller ones in early anomaly detection. The
Progressive Max chart demonstrated particular strength in identifying larger shifts
(22.50) regardless of subgroup size, while showing graduated sensitivity to
intermediate shifts based on subgroup dimensions. These findings highlight the chart's
robust monitoring capabilities and the critical role of subgroup size selection in
optimizing detection speed across different shift magnitudes and types, with larger
subgroups generally providing superior performance in identifying out-of-control
conditions.

Table 7. ARL of Progressive Max Diagram for n = 2,3,5 based on variance shift

Shift Progressive Max
n=2 n =3 n=5

0 366.520 356.007 374.530

0.25 180.080 89.101 41.523
0.5 24.627 11.952 6.260
0.75 7.304 4.038 2.370
1 3.239 2.237 1.493
1.25 2.250 1.573 1.200
1.75 1.300 1.098 1.012
2 1.150 1.040 1.006
2.25 1.091 1.017 1.000

2.5 1.000 1.000 1.000
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Figure 2 visualizes the ARLivalues of the Progressive Max control chart when process
variability shifts while the mean remains constant. The results demonstrate that larger
subgroup sizes significantly improve the chart's performance, as evidenced by
progressively smaller ARL1 values. Notably, when variability shifts exceed 0.5, the ARL1
values converge to approximately 1 across all subgroup sizes. This consistent
performance at larger variability shifts confirms that the Progressive Max chart is
particularly effective for monitoring substantial process variability changes, regardless
of the subgroup dimension used. The visualization clearly shows the chart's enhanced
detection capability with increased subgroup sizes while maintaining excellent
sensitivity to detect major variability shifts in all configurations.

400 —8— n=2
—B— n=3
% - n=5

300
= 200
=

100

0 025 05 075 1 125 15 175 2 225 25
Shift

Figure 2. ARL of Progressive Max diagram monitoring
variance shift based on the number of times n

b. Performance of Progressive Max, EWMA-Max, and Max chart control charts

The performance evaluation of this study was conducted based on ARL1 values derived
from simulated data following a normal distribution K ~ A(pshifa, gshifa), with the in-
control ARLo maintained at approximately 370 (a = 0.0027). The assessment examined
large shifts starting from 0.25 under three distinct scenarios: processes experiencing
mean shifts with constant variability, processes with stable means but shifting
variability, and processes where both mean and variance exhibited shifts. The analysis
focused particularly on evaluating the effectiveness of the Progressive Max control chart
using subgroup sizes of [ = 2, 3, and 5, with detailed results for mean shifts under
constant variability presented in Table 8.

The comparative analysis revealed significant performance variations across different
subgroup sizes. For the smallest subgroup size ([ = 2), the Progressive Max chart
demonstrated superior performance over both EWMA-Max and traditional Max charts,
detecting a variance shift of 0.25 with an ARL1of 98.253. When employing a moderate
subgroup size ([ = 3), the Progressive Max chart maintained its advantage, achieving an
ARLiof 12.671 for the same magnitude of variance shift. Most notably, with the largest
subgroup size examined ([ = 5), the Progressive Max chart exhibited its strongest
performance, registering an ARL1 of 4.251 for the 0.25 variance shift. These results
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consistently demonstrate the Progressive Max chart's enhanced sensitivity in detecting
process variability shifts compared to alternative control chart methods, with its
detection capability showing particular improvement as subgroup size increases. The
findings underscore the Progressive Max chart's effectiveness as a statistical process
control tool, especially in scenarios requiring prompt identification of out-of-control
conditions in process variability.

Table 8. ARL: shift variance Progressive Max chart, EWMA-Max chart, and Max chart

Shift Progressive Max chart EWMA-Max chart Max chart
Variance n=2 n=3 n=5 n=2 n=3 n=5 n=2 n=3 n=5
0 366.520 356.007 374.530 378378 382.050 336.317 349.248 341.116 348.477
0.5 98.253 12.671 4.251 155.603  41.622 13.908 195.334 109.991 43.205
1 4.266 1918 1.171 15.679 6.426 3.305 54.594 16.977 4.379
1.5 1.673 1.085 1 5.538 6.426 1.958 17.181 4126 1.350
2 1 1 1 3.395 3.132 1.417 6.066 1.643 1.002
25 1 1 1 2.497 2.151 1.030 2.636 1.038 1

4. Combined Performance Evaluation of Mean and Variance Shift

a. Performance of Progressive Max Control Diagram Based on Numbers of Characteristics
This research evaluates performance using ARL1 metrics derived from simulated
normally distributed data K ~ A(pshifa, Oshifa), establishing a baseline ARLo of 370
(a=0.0027). The analysis investigates detection capabilities for substantial process
deviations starting from 0.250 across three fundamental scenarios: isolated mean shifts,
isolated variability shifts, and concurrent mean-variance shifts. The Progressive Max
chart's effectiveness was systematically tested with subgroup sizes of 2, 3, and 5
observations.
The comparative analysis reveals distinct detection patterns across subgroup
configurations. For the smallest subgroup ([ = 2), ARL1 values transition from
180.080 (0.25¢ shift) to 24.627 (0.50 shift), demonstrating moderate sensitivity that
improves significantly at larger shifts. Medium subgroups ([ = 3) show enhanced
performance, with ARL; decreasing from 89.101 to 11.952 for the same shift range.
Optimal detection occurs with [ =5 subgroups, where ARL1 drops sharply from
41.523 to 6.260, indicating superior sensitivity to moderate process changes. All
configurations achieve perfect detection (ARL1 = 1) at the maximum 2.5¢ shift
magnitude, confirming the chart's robustness for identifying major process
disturbances regardless of subgroup size.
These findings highlight a crucial trade-off in statistical process control while larger
subgroups ([ = 5) offer substantially better detection of minor to moderate shifts
(0.25-0.50), even smaller subgroups become equally effective for major process
deviations (= 2.50). The results provide practical guidance for quality engineers,
suggesting that subgroup size selection should be based on the specific detection
requirements and expected shift magnitudes in the target process. The Progressive Max
chart demonstrate consistent reliability across all tested scenarios, with its performance
scaling predictably with subgroup size.
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Table 9. ARL of Progressive Max Diagram for Shifts n=2,3,5
Based on Mean and Variance Shifts

Shift Progressive Max
n=2 n=N n=>5

0 366.52 356.007 374.53
0.25 160.498 70.867 15.264
0.5 13.484 5.296 2.467
0.75 3.489 1.998 1.296
1 1.965 1.362 1.055
1.25 1.395 1.134 1.005
15 1.202 1.018 1
1.75 1.074 1.001 1
2 1.013 1 1
2.25 1 1 1
2.5 1 1 1

Figure 3 presents the visualization of ARLivalues for the Progressive Max control chart
when both mean and variability shifts occur. The results clearly demonstrate that larger
subgroup sizes enhance the chart's detection performance, as reflected by
progressively lower ARL1 values. Notably, when both mean and variability shifts
exceed 0.50, the ARL1values converge to approximately 1 across all subgroup sizes.
This consistent detection capability at larger shift magnitudes confirms the Progressive
Max chart's effectiveness in monitoring significant simultaneous shifts in both process
mean and variability. The visualization particularly highlights the chart's robust
performance in detecting substantial process disturbances, regardless of the chosen
subgroup dimension. The findings underscore that while larger subgroups ([ = 5)
offer superior sensitivity to smaller shifts, even moderate subgroup sizes ([ = 2,3)
become equally effective when monitoring more pronounced process deviations (=
0.50). This makes the Progressive Max chart a reliable choice for detecting major shifts
in industrial processes where both location and dispersion parameters may change
simultaneously.

400

Lt
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ﬁ 200

100

0 025 05 075 1 125 15 175 2 2% 25
Shift

Figure 3. ARL Progressive Max Diagram Monitors the Shift
of Mean and Variance Based on the Number of n
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b. Performance of Progressive Max, EWMA-Max, and Max Chart Control Charts

The performance evaluation of this study was conducted based on ARL:1 obtained from
simulated data following a normal distribution K ~ A(ushifa, Oshifa), with the in- control ARLo
maintained at approximately 370 («=0.0027). The assessment examined large shifts
starting from 0.25 under three operational scenarios: processes with mean shifts under
constant variability, stable means with shifting variability, and concurrent shifts in both
mean and variance. The Progressive Max control chart's effectiveness was systematically
evaluated using subgroup sizes of n=2, 3, and 5, with particular attention to mean shifts
under constant variability as presented in Table 10.

The comparative analysis revealed distinct performance characteristics across different
subgroup configurations. For the smallest subgroup size ( [= 2 ), the Progressive Max
chart demonstrated superior detection capability compared to both EWMA-Max and
conventional Max charts, registering an ARL1 of 13.484 for a combined mean and
variance shift of 0.25. The performance advantage persisted with moderate subgroup
sizes (n= 3), where the Progressive Max chart achieved a significantly lower ARL1 of
5.296 for the same shift magnitude. Most notably, when employing the largest subgroup
size ([=5), the Progressive Max chart exhibited its strongest performance with an ARL1
of just 2.467, confirming its enhanced sensitivity in detecting process deviations.
These results consistently demonstrate the Progressive Max chart's superior
performance in identifying out-of-control conditions, particularly when monitoring
concurrent shifts in both process mean and variability.

Table 10. ARL; shift mean and variance Progressive Max chart, EWMA-Max chart,
and Max chart

Shift Progressive Max chart EWMA-Max chart Max chart
T::igz:g n=2 n=3 n=>5 n=2 n=3 n=5 n=2 n=3 n=>5
0 366.520 356.007 374.53 378.378 382.050 336.317 349.248 341.116 348.477
0.5 13.484 5.296 2467 68917 17.897 8.094 101934 58.303  26.509
1 1.965 1.362 1.055 7.010 4.161 2.689 18.436 8.232 2.959
1.5 1.202 1.018 1 3.501 2.459 1.831 5.276 2.209 1.139
2 1.013 1 1 2.420 2.033 1.260 2.232 1.165 1
2.5 1 1 1 1.962 1.506 1.009 1 1 1

5. Application Comparison Progressive Max chart and Conventional Control
Diagrams.
Progressive Max consisting of subgroups including 2, 3 and 5 in monitoring synthesis data
and water pH data in Vannamei shrimp ponds located in Madura, Indonesia.
a. Application to Synthesized Data
In this section, the Progressive Max control chart is applied to the synthesized data.
There are random variables consisting of 3 subgroups and generated from the univariate
normal distribution N(, X). Each random variable is generated as many as 100 samples
and there are 3 scenarios. In Scenario I, there is a shift in the mean while the variance
remains constant, where a total of 70% of the generated observations are used as in-
control data defined as Dataset 1 and the other part is used as out-of-control data
defined as Dataset 2 for 30% of the observations. Dataset 1 is generated with Xin~N(0,
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1), while for large shifts dataset 2 is generated with Xout~N(3, 1), medium shifts with
Xout~N(2, 1), and small shifts with Xout~N(1.5, 1). The monitor results through the
application of Progressive Max control charts with scenarios [ with large shifts are shown
in Figure 4. Based on the performance evaluation results in Figure 4, it can be seen that
the value of the subgroup size (n = 3) with scenario I provides optimal performance
atvarious levels of mean shift with the data Xin~N(0, 1) to Xout~N(3, 1).

"

Figure 4. Progressive Max Control Diagram on size (n = 3)
with scenario I (Mean shift)

Figure 5. Progressive Max Control Diagram on size (n = 3)
with scenario Il (Variance shift)

In Scenario 11, there is a shift in the variance while the mean remains constant where a
total of 70% of the generated observations are used as in-control data defined as Dataset
1 and the other part is used as out-of-control data defined as Dataset 2 for 30% of the
observations. Dataset 1 is generated with Xin~N(O0, 1), while for large shifts dataset 2 is
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generated with Xour~N(0, 4), medium shifts with Xout~N(0, 3) , and small shifts with
Xout~N(0, 2.5). The monitor results through the application of Progressive Max control
charts with scenarios Il with large shifts are shown in Figure 5. Based on the performance
evaluation results in Figure 5, it can be seen that the value of the subgroup size (n = 3)
with scenario I provides optimal performance at various levels of variance shift with
the data Xin~N(0, 1) to Xoutr~N(0, 4).

In Scenario IlI, there is a shift in the mean and variance where a total of 70% of the
generated observations are used as in-control data defined as Dataset 1 and the other
part is used as out-of-control data defined as Dataset 2 for 30% of the observations.
Dataset 1 is generated with Xin~N(0, 1), while for large shifts dataset 2 is generated with
Xout~N(3, 4), medium shifts with Xout~N(2, 3), and small shifts with Xout~N(1.5, 2.5).
The monitor results through the application of Progressive Max control charts with
scenarios I1l with large shifts are shown in Figure 6. Based on the performance evaluation
results in Figure 6, it can be seen that the value of the subgroup size (n = 3) with scenario
[ provides optimal performance at various levels of mean and variance shift with the data
Xin~N(0, 1) to Xout~N(3, 4).

"t

s, il b
-“'...‘...- e

Figure 6. Progressive Max Control Diagram on size (n = 3)
with scenario III (Mean and Variance shift)

b. Application to PH Data
In this section, the Progressive Max control diagram is applied to the pH data of
Madura vannamei shrimp pond water. There is a random variable consisting of 2
subgroups. The monitor results through the application of Progressive Max control
diagram in detecting out-of-control signals are shown in Figure 7. Based on the
performance evaluation results in Figure 7, it can be seen that the ([ = 2) subgroup size
does not detect out-of-control signals on water pH data or data in an in-control state.
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v

Figure 7. Application of Progressive Max Control Diagram on Water pH for (n = 2)

From all the research explained, it can be concluded that this research demonstrates that
the Progressive Max control chart performs superiorly compared to EWMA-Max chart
and Max chart in detecting process shifts, whether in mean shifts, variance shifts, or
combinations of both, particularly for large shifts above 0.25. Its control statistics
employ a cumulative mean that progressively incorporates all measurement data while
maintaining historical data, with the upper control limit (UCL) calculated based on
specific parameters. When applied to pH data of vannamei shrimp pond water, all three
control charts (Progressive Max chart, EWMA-Max chart, and Max chart) showed in-
control results, indicating that the process remained in a controlled state.

This research align with and build upon previous research by demonstrating the
superiority of the Progressive Max control chart over other control charts in detecting
process shifts. The researchers agree with previous research that highlighted the
effectiveness of Max- based charts in monitoring mean and variability shifts. The
Progressive Max chart's use of a cumulative mean that incorporates all measurement
data while retaining historical data further refines the approach, supporting the trend in
previous research toward more sensitive and efficient control charts. Additionally, the
in-control results observed in the pH data of vannamei shrimp pond water are consistent
with the practical applications noted in prior studies, reinforcing the reliability of these
methods in real-world scenarios. Thus, the study's conclusions not only agree with but
also advance the understanding of simultaneous control charts by introducing a more
robust alternative.

D. CONCLUSION AND SUGGESTIONS

Progressive Max control charts work better than EWMA-Max and Max-chart control charts
on small shifts in terms of mean, variance, and mean variance, and on large shifts in terms of
mean, variance, and mean variance on Progressive Max control charts are also better than
EWMA-Max and Max-chart control charts. This is characterized by the resulting ARLivalue
getting closer to the value of 1 based on shifts in mean, variance, and mean variance. The
application of the pH condition of vannamei shrimp pond water to the Progressive Max chart,
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EWMA-Max chart and Max chart control charts results in all in-control data or data in a
controlled state.
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