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 Control charts aim to reduce variability in the process and monitor for out-of- 
control processes. So far, the process of monitoring quality is usually carried out 
partially, namely monitoring the mean process and process variability. This 
approach is less effective and time-consuming because two separate charts must 
be created simultaneously. One alternative is to analyze both parameters 
simultaneously, such as through the Progressive Max Chart method (Mixed-
Methods Research: Quantitative and Applied). The Progressive Max Chart is a 
control chart designed for monitoring both the mean and variability by considering 
the case of subgroup observations. This study uses a quantitative approach, 
combining primary data collection and simulations to generate findings through 
statistical analysis and quantifiable measurements. The purpose of this research is 
to compare methods such as the Progressive Max Chart, EWMA-Max, and Max 
Chart. The analysis results show that the Progressive Max Chart method performs 
better than the Max Chart and EWMA- Max Chart, both in terms of mean, variance, 
and mean-variance detection, for small shifts and large shifts. The control chart 
performance results provide optimal outcomes for monitoring out-of-control 
signals at subgroup sizes of n = 2, 3, 5. This is characterized by ARL₁ values that 
approach 1 more quickly. This method is applied to pH data from vannamei shrimp 
pond water located in Madura. The Progressive Max Chart method provides 
optimal results by maximizing the detection of in-control signals. Additionally, it is 
tested on synthesized data and demonstrates optimal performance in detecting 
both small and large shifts in mean, variance, and mean-variance. 
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A. INTRODUCTION  

In statistical process control (SPC), the control chart is a quite popular technique to monitor 

the process efficacy (Knoth et al., 2021). A control chart is a tool used to determine whether a 

process is in statistical control. The ultimate goal of statistical process control is to reduce 

variability in the process. Although this method cannot completely reduce variability, control 

charts are able to effectively minimize variability (Syarifah Nazia et al., 2023). Control charts 

aim to the simplicity of understanding them, while at the same time being efficient in detecting 

defects in production processes (Qiu, 2018). The Max- K̅Fa[ control chart is a technique used in 

monitoring process control by evaluating the stability of the process mean and variability using 

a single chart, and has the main advantage that using inspection attributes is easy to use and costs 

less than variable-type inspections that use true values. The Max-K̅Fa[ control chart is an alternative 

control chart with variable-type inspection (Rifki et al., 2025). The development of the control 

chart into Max-EWMAMS by taking the maximum value between the two absolute values of the 
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standard normal variable which is the estimator of the mean and variance of the process. Max 

EWMAMS charts generally detect mean shifts, variance increases and simultaneous changes in 

process mean and variability faster than the other two charts (Javaid et al., 2020). In the 

research (Javaid et al., 2020), it is proven that the proposed Max-HEWMA control diagram is 

more sensitive than the previous one, namely the AIB-Max EWMA control diagram. The Max-

HEWMA control diagram is proven to be efficient so that it monitors shifts in mean and variance 

based on Average Run Length (ARL) and Standard Deviation of the Run Length (SDRL). EWMA-

Max is superior to other existing simultaneous control charts in that it monitors small shifts in 

process parameters, it is also good at monitoring large shifts (Sanusi et al., 2020). 

On the other hand, the performance of an EWMA chart, characterized by unknown 

parameters, was analyzed through the application of quantiles of the average run length (ARL) 

and the standard deviation of the average run length (SDAR) (Saleh et al., 2015). The standard 

deviation of the run length (SDRL), which incorporates both average run length (ARL) and run 

chain length, is applicable solely for the performance analysis of a single control chart. As the 

average run chain length approaches the setpoint ARL0, particularly under unknown 

parameters, the standard deviation of the average run length (SDARL) diminishes, indicating 

that the performance of the control chart is more aligned with a known situation. A control 

chart designed for repeated monitoring of lognormal processes was developed, with its 

performance analyzed using average run length (ARL) and standard deviation as statistical 

performance indicators (Khoo et al., 2015). Additionally, the efectiveness of the control chart’s 

monitoring capabilities was verifed (Quinino et al., 2020). 

Furthermore, the development of the Maximum Exponentially Weighted Moving Average-

Max (EWMA-Max) control chart, an extension of the Max chart that applies the EWMA technique 

to its statistics, builds on comparisons showing that the Max-CUSUM chart outperformed the 

Max-MEWMA chart and the Alternate Variable Multivariate chart in detecting simultaneous 

small shifts in process mean and covariance, as well as in identifying mean shifts alone (Ajadi 

et al., 2021). 

Aslam, M. (2016) proposed the EWMA–CUSUM charts for monitoring correlated data using 

the Average Run Length, extra quadratic loss, and relative Average Run Length as criteria to 

measure the efficiency with Shewhart, CUSUM, EWMA, Shewhart-CUSUM, and Shewhart- 

EWMA charts. The newly proposed control charts have efficiency in detecting better than the 

compared charts. In 2017, Osei-Aning (2017) proposed the CUSUM‐EWMA chart to detect the 

change of variation in the process using the ARL, extra quadratic loss, and relative Average Run 

Length as criteria to measure the efficiency with Shewhart, EWMA and CUSUM charts. It was 

found that the CUSUM‐EWMA chart had better efficiency for detection than the control charts 

of Shewhart, CUSUM-S2, S2-EWMA, CS-EWMA, floating T-S2, floating U-S2, classical EWMA, and 

CUSUM charts (Lu, 2017). 

Previous research has compared two different methods for controlling water nutrient 

levels in non-circulating hydroponics based on the projected canopy area, using linear 

regression as the primary method, while hydroponics itself is a soilless cultivation technique 

that delivers nutrients to crops through a closed-loop irrigation system, typically submerging 

plant roots in the nutrient solution (Sulaiman et al., 2025). From this research, it has elaborated 

with Progressive Max Chart on the object of vannamei shrimp to test the quality of water PH 
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media (Setyastuti et al., 2023). 

Vannamei shrimp (Litopenaeus vannamei), a significant aquaculture species contributing 

to over 53% of total farmed crustacean production, has seen steadily rising cultivation and 

consumption globally (Kim et al., 2020). In Indonesia, ponds are among the most popular 

breeding grounds for this species. These man-made coastal systems, often utilizing brackish or 

seawater, are designed for cultivating aquatic animals like fish, shrimp, and shellfish. Vannamei 

shrimp farming is particularly favored due to its competitive pricing and adaptability to high-

density, intensive production systems, which aim to maximize output. However, exceeding the 

pond’s carrying capacity at a given biomass level can compromise shrimp survival, especially 

under excessively high stocking densities (Mustafa et al., 2023). 

Based on the description above, this research will develop a Progressive Max chart- based 

control diagram. It is expected that this chart will be able to efficiently monitor the mean and 

variability simultaneously and have better performance. The performance of the developed 

control chart will be compared with several other simultaneous control charts such as EWMA- 

Max and Max-chart. Furthermore, the Progressive Max control chart will be applied to monitor 

water pH in vannamei shrimp ponds. 

 

B. METHODS 

1. Data Source and Data Structure 

This research employs a quantitative research approach, utilizing both primary data 

collection and simulation methods. Quantitative research is a type of study that generates 

findings through statistical procedures or other quantifiable measurement techniques. The 

primary data was collected through direct observations conducted at vannamei shrimp ponds 

in Madura over a four-month period, from November 2022 to February 2023. Meanwhile, 

simulation data was generated using the R programming language, which allowed for 

computational modelling and analysis to supplement the empirical findings. By combining field 

observations with computational simulations, this research ensures a robust and 

comprehensive analysis of the subject matter. 

 

2. Data Source 

This research uses both primary data and simulated data. The simulated data were 

generated using the R programming package by creating data that represent an in-control 

process. These simulated data were used to evaluate the performance of the Progressive Max 

control chart. The primary data were collected from a vannamei shrimp pond in Madura 

between November 2022 and February 2023, consisting of 116 samples. To measure the pH 

level of the pond water, the process involved selecting pond Block A8 as the observation site, 

collecting water samples using a small plastic cup, immersing a pH meter (pH meter 10) into 

the cup, and pressing the meter’s button to obtain the pH value, as shown in Table 1. 
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Table 1. Data Source 

Samples 
pH of Water(𝑿) 
1 2 

1 𝑋11 𝑋12 
2 𝑋21 𝑋22 
3 𝑋31 𝑋32 

   
i  𝑋𝑖1 𝑋𝑖2 

   
𝑚 𝑋𝑚1 𝑋𝑚2 

 

3. Data Structure and Variables 

The data structure in this study consists of pH level measurements of pond water, with 𝑚 

observation units and a subgroup size of [ = 2 , representing measurements taken in the 

morning and at noon. The data structure used for the Progressive Max control chart is 

presented in Table 2. 

 

Table 2. Research Data Structure 

Samples 
pH of Water(𝑿) 

1 2 
1 𝑋11 𝑋12 
2 𝑋21 𝑋22 
3 𝑋31 𝑋32 

   
i  𝑋𝑖1 𝑋𝑖2 

   
𝑚 𝑋𝑚1 𝑋𝑚2 

 

Table 3. Re$se$arch Variable$s 

Variables Variable Name Specification Limit 
𝑋 Wate$r pH 7.5-9 

 

4. Progressive Mean Control Diagram 

Progressive Mean control charts are control charts in monitoring the process mean by 

considering the case of individual observations. Besides conventional Westgard rules, methods 

like Exponentially Weighted Moving Average (EWMA) and Cumulative Sum (CUSUM) assist 

laboratory professionals in identifying small shifts and trends, though Progressive Mean 

control charts are more effective than these Shewhart-type charts for monitoring process 

means in individual observations (Çubukçu, 2021). Progressive Mean control charts have 

excellent performance not only for small and medium shifts, but also show good performance 

for large shifts. If K𝑘, 𝑘 = 1,2,3, … , 𝑚 is a sequence of independent and identically distributed 

observations, then the Progressive Mean control chart is defined as the cumulative mean over 

time (Riaz et al., 2020). Mathematically, Progressive Mean is defined as follows. 

 

𝑃𝑀𝑖 =
∑ 𝑋𝑘

𝑖
𝑘=1

𝑖
,  𝑖 = 1,2, . . . , 𝑚 (1) 
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IF 𝑃𝑀𝑖  is an unbiase$d e$stimator of the$ sample$ me$an 𝜇0, and the$ variance$ is 
𝜎0

2

𝑖
, whe$re$ 𝜇0 is 

the$ me$an and 𝜎0
2 is the$ variance$. The$ following are$ the$ control limits of the$ Progre$ssive$ Me$an. 

 

𝐿𝐶𝐿 = 𝜇0 − ℎ
𝜎0

√𝑖
 (2) 

𝐶𝐿 = 𝜇0 (3) 

𝑈𝐶𝐿 = 𝜇0 + ℎ
𝜎0

√𝑖
 (4) 

 

5. Max Chart Control Diagram 

If Max control chart-XS othe$rwise$ known as Max Chart is a univariate$ simultane$ous control 

chart to monitor the$ me$an and variability of the$ proce$ss in one$ chart. Give$n X is a particular 

characte$ristic of a proce$ss, is the$ proce$ss me$an, and is the$ proce$ss standard de$viation. Give$n  

𝑋̄𝑖 =
(𝑋𝑖1+...+𝑋𝑖𝑛)

𝑛
 is the$ me$an of the$ i-th sample$ and 𝑆𝑖

2 =
∑ (𝑋𝑖𝑗−𝑋̄)

2𝑛
𝑗=1

(𝑛𝑖−1)
 is the$ variance$ of the$ i-th 

sample$. Thus, the$ simultane$ous control diagram is formulate$d as follows: 

 

𝑈𝑖 =
(𝑋̄𝑖 − 𝜇)

𝑠

√𝑛

, 𝑖 = 1,2, . . . , 𝑚 (5) 

 

𝑈𝑖 = transformation 𝑋̄𝑖  

𝑛   = subgroup size$ 

𝑚  = numbe$r of subgroups 

 

𝑉𝑖 = 𝛷−1 {𝐻 (
(𝑛 − 1)𝑆𝑖

2

𝜎2
; 𝑛 − 1)} (6) 

 

whe$re$ 𝛷(𝑧) = 𝑃(𝑍 ≤ 𝑧) for 𝑍 ∼ 𝑁(0,1), the$ standard normal distribution, 𝛷−1(. ) is 

the$ inve$rse$ function of 𝛷(. ), and 𝐻(𝑤, 𝑣) = 𝑃(𝑊 ≤ 𝑤|𝑣) for 𝑊 ∼ 𝜒𝑣
2, the$ chi-square$d 

distribution with v de$gre$e$s of fre$e$dom. 𝑈𝑖 and 𝑉𝑖  are$ transformations of 𝑋̄𝑖  and 𝑆𝑖
2, whe$n 𝑎 =

0 and 𝑏 = 1, 𝑈𝑖 ∼ 𝑁(0,1) and  𝑉𝑖 ∼ 𝑁(0,1). In particular, the$ statistics for simultane$ous control 

charts are$ de$fine$d as follows. 

 

𝑀𝑖 = 𝑚𝑎𝑥(|𝑈𝑖|, |𝑉𝑖|) , 𝑖 = 1,2, … 𝑚 (7) 

 

𝑈𝑖 : monitors shifts in the process mean 

I𝑖 : monitors shifts in the process variability 

 

The value of the te$st statistic M be$come$s large when the$ proce$ss shifts away from 𝜇 or 

when the proce$ss variability incre$ase$s or decreases. On the$ othe$r hand, the$ value$ of M shrinks 

when the proce$ss me$an and variability re$main close$ to the$ir re$spe$ctive$ targe$t value$s. 
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6. EWMA-Max Control Diagram 

The$ E$WMA-Max chart is an e$xte$nde$d control chart of the$ Max chart by applying the$ E$WMA 

te$chnique$ to the$ Max chart statistics. Give$n  𝑋1,𝑋2,…,𝑋𝑖 de$note$ the$ quality characte$ristics of a 

proce$ss with 𝜇 de$noting the$ proce$ss me$an and 𝜎 de$noting the$ proce$ss standard de$viation 

whe$re$ 𝑖 de$note$s the$ sample$ numbe$r inde$x. The$ E$WMA statistic with smoothing constant λ is 

shown in the$ following e$quation.  

 

𝑍𝑖 = (1 − λ)𝑍𝑖−1 + λ𝑋𝑖  (8) 

 

with 0 < 𝜆 ≤ 1. Whe$n the$ proce$ss is in-control, the$ me$an and variance$ of the$ E$WMA statistic 

are. 

 

𝐸(𝑍𝑖) = 𝜇0 (9) 

𝑉𝑎𝑟(𝑍𝑖) = 𝜎2
λ[1 − (1 − (1 − λ)2𝑖]

2 − λ
 (10) 

 

where 𝜇0  and 𝜎2 de$note$ the$ me$an and variance$ of targe$t 𝑋i, re$spe$ctive$ly. The$ E$WMA-Max 

statistic is de$fine$d in the$ following e$quation. 

 

𝐺𝑖 = (1 − λ)𝐺𝑖−1 + λ𝑀𝑖  (11) 

 

Given that the initial value 𝐺0 = 1,128379 , and assuming that 𝑈𝑖 and I𝑖 are mutually 

independent, when ÿ = 0 and þ = 1 , both 𝑈𝑖 and I𝑖 follow a standard normal distribution. 

𝑈𝑖~A(0,1) and I𝑖~A(0,1). The upper control limit (UCL) on the huber function for the EWMA- Max 

control diagram is given as follows (Malik et al., 2024). 

 

𝑈𝐶𝐿 = 1,128379 + 0,602810𝐿√
𝜆

(2 − 𝜆)
 (12) 

 

7. ARL (Average Run Length) 

ARL is the$ me$an of se$ve$ral obse$rvation points until the$ first out-of-control signal is found. 

The$re$ are$ two type$s of ARL0 and ARL1 in pe$rformance$ asse$ssme$nt of control charts. The$ ARL0 

formula is de$fine$d as follows: 

 

𝐴𝑅𝐿0 =
1

𝛼
 (13) 

𝐴𝑅𝐿1 =
1

1 − 𝛽
 (14) 

 

𝛼 refers to a Type I error, which is the probability of signaling that the process is out of control 

when it is actually operating normally. A typical value for alpha, often used when applying 3𝜎 

control limit is 0.0027 . Meanwhile, ý refers to a Type II error, which is the probability of failing 

to detect that the process is out of control when a shift has actually occurred. A control chart is 
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considered effective when it has a large value of 𝐴𝑅𝐿0, representing the average number of 

samples before a false alarm, and a small value of 𝐴𝑅𝐿1, indicating the average number of 

samples needed to detect a true shift in the process. 

 

C. RESULT AND DISCUSSION 

The control charts presented in this study are Progressive Max chart-based univariate 

control charts and Max chart control charts or conventional control charts. The first Max chart 

control diagram is to find the value of U and V which is the transformation of X̄ and S, then find 

the value of Mi. The next control diagram is to carry out a performance evaluation comparison 

against the Progressive Max chart control diagram using the ARL criterion. Progressive Max 

chart and Max chart control diagrams are implemented through monitoring the water pH 

characteristics data of Vannamei shrimp ponds located in Madura, Indonesia. 

1. Progressive Max Chart Statistics and Control Limits 

The$ statistics in the$ Progre$ssive$ Max chart control diagram propose$d in this study are$ a 

de$ve$lopme$nt of the$ pre$vious control diagram, name$ly the$ Max chart control diagram 

combine$d with the$ Progre$ssive$ Me$an control diagram from the$ re$se$arch. This control diagram 

is e$xpe$cte$d to be$ able$ to carry out good pe$rformance$ for small, me$dium and large$ shifts.  He$re$ 

is the$ mathe$matics of the$ Progre$ssive$ Max chart control diagram with the$ following e$quation. 

 

PrMi =
∑ Mk

i
k=1

i
,   i = 1,2, . . . , m (15) 

 

whe$re$ PrMi is the$ i-th Progre$ssive$ Max moving me$an of the$ Mi value$, the$ data e$le$me$nt move$s 

from k to i,, with i be$ing the$ numbe$r of subgroups from 1 to m, e$ach containing no n data. The$ 

control limit in the$ Progre$ssive$ Max chart control diagram study is the$ uppe$r control limit or 

Uppe$r Conttrol Limit (UCL) value$ found in the$ following e$quation. 

 

UCLi = μprm + h
σprm

√i
 (16) 

 

whe$re$ μprm is the$ me$an of obse$rvations which is 1.128379 and σprm is the$ standard de$viation 

of obse$rvations which is 0.60281, the$ value$ of h is a value$ de$signe$d to stop the$ ARL0 or in-

control proce$ss. ARL0 is the$ me$an of the$ numbe$r of obse$rvations that the$ plot is e$xpe$cte$d to 

first e$xit at the$ time$ of the$ in-control state$. The$ following ARL0 table$ with the$ parame$te$r h in 

ge$tting the$ ARL0 ≅370 value$ on the$ Progre$ssive$ Max chart control diagram. 

 

Table 4. Parame$te$r value$s of  (h) so as to obtain the$  

ARL value$ of ≅ 370 in subgroups (n = 2,3,5) 

Subgroup (g) h 
2 1.12 
3 1.122 
5 1.124 
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2. Performance of Progressive Max, EWMA-Max, and Max chart control charts 

a. Pe$rformance$ of Progre$ssive$ Max Control Diagram base$d on the$ Numbe$r of 

Characte$ristics 

The performance of this research was evaluated based on the 𝐴𝑅𝐿1 values derived from 

simulated data K~A(μ𝑠ℎ𝑖𝑓a, 𝜎𝑠ℎ𝑖𝑓a) , where the in-control average run length 𝐴𝑅𝐿0 was set at 

approximately 370, corresponding to a Type I error rate 𝛼 of 0.0027. The study assessed 

detection performance under different shift magnitudes, beginning at 0.25, across three 

scenarios: shifts in the mean with constant variability, shifts in variability with a stable 

mean, and simultaneous shifts in both mean and variance. The Progressive Max chart's 

effectiveness was examined using subgroup sizes of 2, 3, and 5. When evaluating mean 

shifts with constant variability, the results demonstrated varying 𝐴𝑅𝐿1 values depending 

on the subgroup size. For a subgroup size of [ = 2 the 𝐴𝑅𝐿0 at zero shift was 366.520. A 

mean shift of 0.25 reduced 𝐴𝑅𝐿1 to 180.080, while a shift of 0.5 led to a further decline 

to 24.627. At a larger shift of 2.5, 𝐴𝑅𝐿1dropped to its minimum value of 1. Similarly, for 

[ = 3 , a mean shift of 0.25 resulted in an 𝐴𝑅𝐿1of 89.101, which decreased to 11.952 at a 

shift of 0.5 and eventually reached 1 at a shift of 2.5. The trend continued with [ = 5 , where 

a shift of 0.25 yielded an 𝐴𝑅𝐿1 of 41.523, a shift of 0.5 reduced it to 6.260, and a shift of 

2.5 again brought it down to 1. These findings highlight how larger subgroup sizes 

improve detection sensitivity, as evidenced by the faster decline in 𝐴𝑅𝐿1 values with 

increasing shift magnitudes. Performance evaluation on mean shift with constant 

variability in large-scale processes as shown in Table 5. 

 

Table 5. ARL of Progre$ssive$ Max Diagram for n = 2,3,5 base$d on me$an shift 

Shift 
Progressive Max 

n = 2 n =3 n =5 
0 366.520 356.007 374.530 

0.25 180.080 89.101 41.523 
0.5 24.627 11.952 6.260 

0.75 7.304 4.038 2.370 
1 3.239 2.237 1.493 

1.25 2.250 1.573 1.200 
1.5 1.630 1.275 1.050 

1.75 1.300 1.098 1.012 
2 1.150 1.040 1.006 

2.25 1.091 1.017 1.000 
2.5 1.000 1.000 1.000 

 

Figure 1 is a visualization of the 𝐴𝑅𝐿1 values of the Progressive Max control chart with 

subgroup sizes of [ = 2, [ = 3, and [ = 5 when the mean shifts and variability remains 

constant. The larger the subgroup size used, the better the performance of the 

Progressive Max control chart, as indicated by the decreasing 𝐴𝑅𝐿1 values. When the 

mean shift is greater than 0.5, it can be observed that the 𝐴𝑅𝐿1 values for different 

subgroup sizes are approximately 1, indicating that the Progressive Max control chart is 

effective for monitoring large process mean shifts. 
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Figure 1.  ARL of Progre$ssive$ Max diagram monitoring 

me$an shift base$d on the$ numbe$r of times n 

 

b. Performance of Progressive Max, EWMA-Max, and Max chart control charts 

The performance evaluation of this study was conducted based on ARL1 values derived 

from simulated data following a normal distribution K ∼ A(μ𝑠ℎ𝑖𝑓a, 𝜎𝑠ℎ𝑖𝑓a), with the in-

control ARL0 maintained at approximately 370 (𝛼 = 0.0027). The assessment examined 

large shifts starting from 0.25 under three distinct scenarios: processes experiencing 

mean shifts with constant variability, processes with stable means but shifting 

variability, and processes where both mean and variance exhibited shifts. The analysis 

focused particularly on evaluating the effectiveness of the Progressive Max control chart 

using subgroup sizes of [ = 2, 3, and 5, with detailed results for mean shifts under 

constant variability presented in Table 6. 

The comparative analysis revealed significant performance variations across different 

subgroup sizes. For the smallest subgroup size ([ = 2), the Progressive Max chart 

demonstrated superior performance over both EWMA-Max and traditional Max charts, 

detecting a variance shift of 0.25 with an ARL1of 98.253. When employing a moderate 

subgroup size ([ = 3), the Progressive Max chart maintained its advantage, achieving an 

ARL1of 12.671 for the same magnitude of variance shift. Most notably, with the largest 

subgroup size examined ([ = 5), the Progressive Max chart exhibited its strongest 

performance, registering an ARL1 of 4.251 for the 0.25 variance shift. These results 

consistently demonstrate the Progressive Max chart's enhanced sensitivity in detecting 

process variability shifts compared to alternative control chart methods, with its 

detection capability showing particular improvement as subgroup size increases. The 

findings underscore the Progressive Max chart's effectiveness as a statistical process 

control tool, especially in scenarios requiring prompt identification of out-of-control 

conditions in process variability. 
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Table 6. ARL1 shift mean Progressive Max chart, EWMA-Max chart, and Max chart 
mean Shift Progressive Max chart EWMA-Max chart Max chart 
mean n=2 n=3 n=5 n=2 n=3 n=5 n=2 n=3 n=5 

0 366.52 356.007 374.53 378.378 382.05 336.317 349.248 341.116 348.477 
0.5 24.627 11.952 6.260 68.917 39.732 19.441 133.091 90.432 51.043 
1 3.239 2.237 1.493 10.946 6.944 4.208 25.663 13.94 6.030 

1.5 1.630 1.275 1.050 4.691 3.304 2.275 7.175 3.727 1.786 
2 1.150 1.040 1.006 2.955 2.191 1.596 2.819 1.621 1.133 

2.5 1 1 1 2.140 1.687 1.185 1 1 1 

 

3. Performance Evaluation Based on Variance Shift 

a. Performance of Progressive Max Control Diagram Based on Numbers of Characteristics 

Table 7 assessed performance through 𝐴𝑅𝐿1 values generated from simulated data K ∼ 

A(μ𝑠ℎ𝑖𝑓a, 𝜎𝑠ℎ𝑖𝑓a), maintaining an in-control ARL1 of approximately 370 (𝛼 = 0.0027). The 

evaluation examined substantial shifts beginning at 0.25, covering three key scenarios: 

mean shifts with stable variability, variability shifts with constant mean, and concurrent 

shifts in both mean and variance. The analysis focused on the Progressive Max chart's 

effectiveness using subgroup sizes of 2, 3, and 5. For mean shifts with constant 

variability, results demonstrated varying detection capabilities across subgroup sizes. 

The n=2 configuration showed gradual sensitivity improvement, with ARL1 decreasing 

from 233.370 to 98.253 for shifts of 0.25 to 0.50 respectively, eventually reaching perfect 

detection at 2.50 shift. Larger subgroups exhibited enhanced performance, particularly 

n=5 which achieved rapid detection with ARL1 values plunging from 34.802 to 4.251 for 

the same shift range. Similar patterns emerged in variability shift analysis, where larger 

subgroups consistently outperformed smaller ones in early anomaly detection. The 

Progressive Max chart demonstrated particular strength in identifying larger shifts 

(≥2.50) regardless of subgroup size, while showing graduated sensitivity to 

intermediate shifts based on subgroup dimensions. These findings highlight the chart's 

robust monitoring capabilities and the critical role of subgroup size selection in 

optimizing detection speed across different shift magnitudes and types, with larger 

subgroups generally providing superior performance in identifying out-of-control 

conditions. 

 

Table 7. ARL of Progressive Max Diagram for n = 2,3,5 based on variance shift 

Shift  Progressive Max 
 n = 2 n =3 n =5 

0 366.520 356.007 374.530 
0.25 180.080 89.101 41.523 
0.5 24.627 11.952 6.260 

0.75 7.304 4.038 2.370 
1 3.239 2.237 1.493 

1.25 2.250 1.573 1.200 
1.75 1.300 1.098 1.012 

2 1.150 1.040 1.006 
2.25 1.091 1.017 1.000 
2.5 1.000 1.000 1.000 
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Figure 2 visualizes the ARL1values of the Progressive Max control chart when process 

variability shifts while the mean remains constant. The results demonstrate that larger 

subgroup sizes significantly improve the chart's performance, as evidenced by 

progressively smaller ARL1 values. Notably, when variability shifts exceed 0.5, the 𝐴𝑅𝐿1 

values converge to approximately 1 across all subgroup sizes. This consistent 

performance at larger variability shifts confirms that the Progressive Max chart is 

particularly effective for monitoring substantial process variability changes, regardless 

of the subgroup dimension used. The visualization clearly shows the chart's enhanced 

detection capability with increased subgroup sizes while maintaining excellent 

sensitivity to detect major variability shifts in all configurations. 

 

 
Figure 2. ARL of Progressive Max diagram monitoring  

variance shift based on the number of times n 

 

b. Performance of Progressive Max, EWMA-Max, and Max chart control charts 

The performance evaluation of this study was conducted based on ARL1 values derived 

from simulated data following a normal distribution K ∼ A(μ𝑠ℎ𝑖𝑓a, 𝜎𝑠ℎ𝑖𝑓a), with the in-

control ARL0 maintained at approximately 370 (𝛼 = 0.0027). The assessment examined 

large shifts starting from 0.25 under three distinct scenarios: processes experiencing 

mean shifts with constant variability, processes with stable means but shifting 

variability, and processes where both mean and variance exhibited shifts. The analysis 

focused particularly on evaluating the effectiveness of the Progressive Max control chart 

using subgroup sizes of [ = 2, 3, and 5, with detailed results for mean shifts under 

constant variability presented in Table 8.  

The comparative analysis revealed significant performance variations across different 

subgroup sizes. For the smallest subgroup size ([ = 2), the Progressive Max chart 

demonstrated superior performance over both EWMA-Max and traditional Max charts, 

detecting a variance shift of 0.25 with an ARL1of 98.253. When employing a moderate 

subgroup size ([ = 3), the Progressive Max chart maintained its advantage, achieving an 

ARL1of 12.671 for the same magnitude of variance shift. Most notably, with the largest 

subgroup size examined ([ = 5), the Progressive Max chart exhibited its strongest 

performance, registering an ARL1 of 4.251 for the 0.25 variance shift. These results 
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consistently demonstrate the Progressive Max chart's enhanced sensitivity in detecting 

process variability shifts compared to alternative control chart methods, with its 

detection capability showing particular improvement as subgroup size increases. The 

findings underscore the Progressive Max chart's effectiveness as a statistical process 

control tool, especially in scenarios requiring prompt identification of out-of-control 

conditions in process variability. 

 

Table 8. ARL1 shift variance Progressive Max chart, EWMA-Max chart, and Max chart 

Shift  
Variance 

Progressive Max chart EWMA-Max chart Max chart 

n=2 n=3 n=5 n=2 n=3 n=5 n=2 n=3 n=5 

0 366.520 356.007 374.530 378.378 382.050 336.317 349.248 341.116 348.477 

0.5 98.253 12.671 4.251 155.603 41.622 13.908 195.334 109.991 43.205 

1 4.266 1.918 1.171 15.679 6.426 3.305 54.594 16.977 4.379 

1.5 1.673 1.085 1 5.538 6.426 1.958 17.181 4.126 1.350 

2 1 1 1 3.395 3.132 1.417 6.066 1.643 1.002 

2.5 1 1 1 2.497 2.151 1.030 2.636 1.038 1 

 

4. Combined Performance Evaluation of Mean and Variance Shift 

a. Performance of Progressive Max Control Diagram Based on Numbers of Characteristics 

This research evaluates performance using 𝐴𝑅𝐿1 metrics derived from simulated 

normally distributed data K ∼ A(μ𝑠ℎ𝑖𝑓a, 𝜎𝑠ℎ𝑖𝑓a), establishing a baseline 𝐴𝑅𝐿0 of 370 

(α=0.0027). The analysis investigates detection capabilities for substantial process 

deviations starting from 0.25𝜎 across three fundamental scenarios: isolated mean shifts, 

isolated variability shifts, and concurrent mean-variance shifts. The Progressive Max 

chart's effectiveness was systematically tested with subgroup sizes of 2, 3, and 5 

observations.  

The comparative analysis reveals distinct detection patterns across subgroup 

configurations. For the smallest subgroup ([ = 2), 𝐴𝑅𝐿1 values transition from 

180.080 (0.25𝜎 shift) to 24.627 (0.5𝜎 shift), demonstrating moderate sensitivity that 

improves significantly at larger shifts. Medium subgroups ([ = 3) show enhanced 

performance, with ARL₁ decreasing from 89.101 to 11.952 for the same shift range. 

Optimal detection occurs with [ = 5 subgroups, where 𝐴𝑅𝐿1 drops sharply from 

41.523 to 6.260, indicating superior sensitivity to moderate process changes. All 

configurations achieve perfect detection (𝐴𝑅𝐿1 = 1) at the maximum 2.5𝜎 shift 

magnitude, confirming the chart's robustness for identifying major process 

disturbances regardless of subgroup size.  

These findings highlight a crucial trade-off in statistical process control while larger 

subgroups ([ = 5) offer substantially better detection of minor to moderate shifts 

(0.25−0.5𝜎), even smaller subgroups become equally effective for major process 

deviations (≥ 2.5𝜎). The results provide practical guidance for quality engineers, 

suggesting that subgroup size selection should be based on the specific detection 

requirements and expected shift magnitudes in the target process. The Progressive Max 

chart demonstrate consistent reliability across all tested scenarios, with its performance 

scaling predictably with subgroup size. 
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Table 9. ARL of Progressive Max Diagram for Shifts n=2,3,5  

Based on Mean and Variance Shifts 

Shift  Progressive Max 
 𝐧 = 𝟐 𝐧 = Ñ 𝐧 = 𝟓 

0 366.52 356.007 374.53 
0.25 160.498 70.867 15.264 
0.5 13.484 5.296 2.467 

0.75 3.489 1.998 1.296 
1 1.965 1.362 1.055 

1.25 1.395 1.134 1.005 
1.5 1.202 1.018 1 

1.75 1.074 1.001 1 
2 1.013 1 1 

2.25 1 1 1 
2.5 1 1 1 

 

Figure 3 presents the visualization of 𝐴𝑅𝐿1values for the Progressive Max control chart 

when both mean and variability shifts occur. The results clearly demonstrate that larger 

subgroup sizes enhance the chart's detection performance, as reflected by 

progressively lower 𝐴𝑅𝐿1 values. Notably, when both mean and variability shifts 

exceed 0.5𝜎, the 𝐴𝑅𝐿1values converge to approximately 1 across all subgroup sizes. 

This consistent detection capability at larger shift magnitudes confirms the Progressive 

Max chart's effectiveness in monitoring significant simultaneous shifts in both process 

mean and variability. The visualization particularly highlights the chart's robust 

performance in detecting substantial process disturbances, regardless of the chosen 

subgroup dimension. The findings underscore that while larger subgroups ([ = 5) 

offer superior sensitivity to smaller shifts, even moderate subgroup sizes ([ = 2,3) 

become equally effective when monitoring more pronounced process deviations (≥ 

0.5𝜎). This makes the Progressive Max chart a reliable choice for detecting major shifts 

in industrial processes where both location and dispersion parameters may change 

simultaneously. 

 

 
Figure 3. ARL Progressive Max Diagram Monitors the Shift  

of Mean and Variance Based on the Number of n 
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b. Performance of Progressive Max, EWMA-Max, and Max Chart Control Charts 

The performance evaluation of this study was conducted based on ARL1 obtained from 

simulated data following a normal distribution K ∼ A(μ𝑠ℎ𝑖𝑓a, 𝜎𝑠ℎ𝑖𝑓a), with the in- control ARL0 

maintained at approximately 370 (α=0.0027). The assessment examined large shifts 

starting from 0.25 under three operational scenarios: processes with mean shifts under 

constant variability, stable means with shifting variability, and concurrent shifts in both 

mean and variance. The Progressive Max control chart's effectiveness was systematically 

evaluated using subgroup sizes of n=2, 3, and 5, with particular attention to mean shifts 

under constant variability as presented in Table 10. 

The comparative analysis revealed distinct performance characteristics across different 

subgroup configurations. For the smallest subgroup size ( [ = 2 ), the Progressive Max 

chart demonstrated superior detection capability compared to both EWMA-Max and 

conventional Max charts, registering an ARL1 of 13.484 for a combined mean and 

variance shift of 0.25. The performance advantage persisted with moderate subgroup 

sizes (n= 3), where the Progressive Max chart achieved a significantly lower ARL1 of 

5.296 for the same shift magnitude. Most notably, when employing the largest subgroup 

size ([ = 5), the Progressive Max chart exhibited its strongest performance with an ARL1 

of just 2.467, confirming its enhanced sensitivity in detecting process deviations. 

These results consistently demonstrate the Progressive Max chart's superior 

performance in identifying out-of-control conditions, particularly when monitoring 

concurrent shifts in both process mean and variability. 

 

Table 10. ARL1 shift mean and variance Progressive Max chart, EWMA-Max chart,  

and Max chart 

Shift  
mean and 
variance 

Progressive Max chart EWMA-Max chart Max chart 

n=2 n=3 n=5 n=2 n=3 n=5 n=2 n=3 n=5 

0 366.520 356.007 374.53 378.378 382.050 336.317 349.248 341.116 348.477 
0.5 13.484 5.296 2.467 68.917 17.897 8.094 101.934 58.303 26.509 
1 1.965 1.362 1.055 7.010 4.161 2.689 18.436 8.232 2.959 

1.5 1.202 1.018 1 3.501 2.459 1.831 5.276 2.209 1.139 
2 1.013 1 1 2.420 2.033 1.260 2.232 1.165 1 

2.5 1 1 1 1.962 1.506 1.009 1 1 1 

 

5. Application Comparison Progressive Max chart and Conventional Control 

Diagrams. 

Progressive Max consisting of subgroups including 2, 3 and 5 in monitoring synthesis data 

and water pH data in Vannamei shrimp ponds located in Madura, Indonesia. 

a. Application to Synthesized Data 

In this section, the Progressive Max control chart is applied to the synthesized data. 

There are random variables consisting of 3 subgroups and generated from the univariate 

normal distribution N(μ, Σ). Each random variable is generated as many as 100 samples 

and there are 3 scenarios. In Scenario I, there is a shift in the mean while the variance 

remains constant, where a total of 70% of the generated observations are used as in-

control data defined as Dataset 1 and the other part is used as out-of-control data 

defined as Dataset 2 for 30% of the observations. Dataset 1 is generated with Xin~N(0, 
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1), while for large shifts dataset 2 is generated with Xout~N(3, 1), medium shifts with 

Xout~N(2, 1), and small shifts with Xout~N(1.5, 1). The monitor results through the 

application of Progressive Max control charts with scenarios I with large shifts are shown 

in Figure 4. Based on the performance evaluation results in Figure 4, it can be seen that 

the value of the subgroup size (n = 3) with scenario I provides optimal performance 

at various levels of mean shift with the data Xin~N(0, 1) to Xout~N(3, 1). 
 

 
Figure 4. Progressive Max Control Diagram on size (n = 3) 

with scenario I (Mean shift) 

 

 
Figure 5. Progressive Max Control Diagram on size (n = 3) 

with scenario II (Variance shift) 

 

In Scenario II, there is a shift in the variance while the mean remains constant where a 

total of 70% of the generated observations are used as in-control data defined as Dataset 

1 and the other part is used as out-of-control data defined as Dataset 2 for 30% of the 

observations. Dataset 1 is generated with Xin~N(0, 1) , while for large shifts dataset 2 is 
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generated with Xout~N(0, 4), medium shifts with Xout~N(0, 3) , and small shifts with 

Xout~N(0, 2.5). The monitor results through the application of Progressive Max control 

charts with scenarios II with large shifts are shown in Figure 5. Based on the performance 

evaluation results in Figure 5, it can be seen that the value of the subgroup size (n = 3) 

with scenario I provides optimal performance at various levels of variance shift with 

the data Xin~N(0, 1) to Xout~N(0, 4). 

In Scenario III, there is a shift in the mean and variance where a total of 70% of the 

generated observations are used as in-control data defined as Dataset 1 and the other 

part is used as out-of-control data defined as Dataset 2 for 30% of the observations. 

Dataset 1 is generated with Xin~N(0, 1), while for large shifts dataset 2 is generated with 

Xout~N(3, 4), medium shifts with Xout~N(2, 3), and small shifts with Xout~N(1.5, 2.5). 

The monitor results through the application of Progressive Max control charts with 

scenarios III with large shifts are shown in Figure 6. Based on the performance evaluation 

results in Figure 6, it can be seen that the value of the subgroup size (n = 3) with scenario 

I provides optimal performance at various levels of mean and variance shift with the data 

Xin~N(0, 1) to Xout~N(3, 4). 
 

 
Figure 6. Progressive Max Control Diagram on size (n = 3) 

with scenario III (Mean and Variance shift) 

 

b. Application to PH Data 

In this section, the Progressive Max control diagram is applied to the pH data of 

Madura vannamei shrimp pond water. There is a random variable consisting of 2 

subgroups. The monitor results through the application of Progressive Max control 

diagram in detecting out-of-control signals are shown in Figure 7. Based on the 

performance evaluation results in Figure 7, it can be seen that the ([ = 2) subgroup size 

does not detect out-of-control signals on water pH data or data in an in-control state. 
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Figure 7. Application of Progressive Max Control Diagram on Water pH for (n = 2) 

 

From all the research explained, it can be concluded that this research demonstrates that 

the Progressive Max control chart performs superiorly compared to EWMA-Max chart 

and Max chart in detecting process shifts, whether in mean shifts, variance shifts, or 

combinations of both, particularly for large shifts above 0.25. Its control statistics 

employ a cumulative mean that progressively incorporates all measurement data while 

maintaining historical data, with the upper control limit (UCL) calculated based on 

specific parameters. When applied to pH data of vannamei shrimp pond water, all three 

control charts (Progressive Max chart, EWMA-Max chart, and Max chart) showed in- 

control results, indicating that the process remained in a controlled state. 

This research align with and build upon previous research by demonstrating the 

superiority of the Progressive Max control chart over other control charts in detecting 

process shifts. The researchers agree with previous research that highlighted the 

effectiveness of Max- based charts in monitoring mean and variability shifts. The 

Progressive Max chart's use of a cumulative mean that incorporates all measurement 

data while retaining historical data further refines the approach, supporting the trend in 

previous research toward more sensitive and efficient control charts. Additionally, the 

in-control results observed in the pH data of vannamei shrimp pond water are consistent 

with the practical applications noted in prior studies, reinforcing the reliability of these 

methods in real-world scenarios. Thus, the study's conclusions not only agree with but 

also advance the understanding of simultaneous control charts by introducing a more 

robust alternative. 

 

D. CONCLUSION AND SUGGESTIONS 

Progressive Max control charts work better than EWMA-Max and Max-chart control charts 

on small shifts in terms of mean, variance, and mean variance, and on large shifts in terms of 

mean, variance, and mean variance on Progressive Max control charts are also better than 

EWMA-Max and Max-chart control charts. This is characterized by the resulting ARL1value 

getting closer to the value of 1 based on shifts in mean, variance, and mean variance. The 

application of the pH condition of vannamei shrimp pond water to the Progressive Max chart, 
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EWMA-Max chart and Max chart control charts results in all in-control data or data in a 

controlled state. 
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