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 Precipitation variability presents significant challenges for disaster risk reduction 
and water resource management, particularly in flood and drought-prone regions 
such as East Kalimantan. This study aims to develop and evaluate two statistical 
approaches for spatio-temporal precipitation modeling: spatio-temporal kriging 
(ST-Kriging) and spatio-temporal median polish kriging (ST-MPK). Using monthly 
precipitation data obtained from seven observation stations provided by BMKG 
and BPS for the period 2021 to 2023, both models were assessed using 
performance metrics. ST-Kriging employed a simple sum-metric semivariogram 
model that combines exponential spatial and Gaussian temporal components. This 
model achieved an RMSE of 84.05, MAE of 69.95, and MAPE of 52.67%. Meanwhile, 
ST-MPK model, incorporating robust median polish decomposition and ST-Kriging 
of residuals, produced a lower MAPE of 44.83% with higher RMSE (122.44) and 
MAE (91.35). This suggests that while ST-Kriging offers better absolute error 
performance, ST-MPK provides greater relative accuracy and improved robustness 
to outliers, critical advantages for modeling precipitation in regions undergoing 
environmental shifts, where anomalies and extremes are increasingly common. 
These findings highlight ST-MPK’s potential to produce more reliable forecasts 
under irregular precipitation conditions, supporting early warning systems and 
informed water resource planning. Scientifically, this research contributes a robust 
modeling framework suitable for data-scarce and outlier-prone contexts. 
Practically, it can aid policymakers in designing adaptive flood mitigation strategies 
and sustainable water management policies tailored to the evolving climate 
realities of East Kalimantan. 
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A. INTRODUCTION  

East Kalimantan has undergone a major transformation following its designation as the 

relocation site for Indonesia’s new National Capital (IKN). This transition has triggered large-

scale land use and land cover (LULC) changes, such as deforestation and urban expansion, 

which can directly impact regional precipitation patterns (Yang et al., 2020). Specifically, the 

replacement of forested areas with impervious surfaces (e.g., asphalt and concrete) alters the 

surface energy balance, disrupts evapotranspiration processes, and modifies local convection 

patterns factors known to influence cloud formation and precipitation distribution (Sari & 

Atsidiqi, 2020; Sudinda, 2020). As a result, hydrological cycles in the region may become more 

variable, increasing the frequency and intensity of extreme weather events, including localized 

heavy precipitation and flooding (Adiguna et al., 2021; Pertiwi et al., 2015). 
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Understanding how these environmental changes affect precipitation dynamics is essential 

for supporting sustainable development in IKN. Accurate spatio-temporal modeling of 

precipitation is a critical component of flood risk management, infrastructure planning, and the 

long-term sustainability of water resources. It enables the identification of high-risk zones and 

supports proactive interventions such as green infrastructure and land restoration (Chen et al., 

2021; Olanrewaju et al., 2017; Zhang et al., 2020). Precipitation patterns often demonstrate 

strong spatial and temporal heterogeneity due to atmospheric events, local geography, and 

microclimates, which complicates prediction and modeling (Katipoğlu, 2022; Varouchakis et 

al., 2021; Zhang et al., 2020). Therefore, advanced geostatistical and time-series modeling 

techniques are required to ensure high prediction accuracy in both observed and unobserved 

areas. 

To address this, advanced modeling techniques are required. Spatio-temporal kriging (ST-

Kriging) is widely recognized in hydrology for its capacity to produce smooth and continuous 

precipitation surfaces over space and time, especially when observational data are sparse. It 

leverages the semivariogram to model spatial autocorrelation and incorporates temporal 

variation, offering a statistically rigorous approach to estimating unmeasured values (Abdullah 

et al., 2018; Liu & Tung, 2020; Verdin et al., 2016). The method has evolved into ST-Kriging, 

which integrates spatial and temporal dimensions to improve prediction accuracy in datasets 

with dynamic changes over time and space (Varouchakis et al., 2021). Its use is particularly 

relevant in East Kalimantan where rapid urban development introduces high spatial variability 

in precipitation that must be captured accurately for decision-making. Prior investigations have 

confirmed the method's ability to deliver precise and reliable interpolation outcomes. For 

instance, Raja et al. (2017) demonstrated that ST-Kriging effectively characterizes precipitation 

variability patterns, generating smoother and more consistent predictions than methods 

limited to spatial interpolation alone. Furthermore, the technique facilitates the detection of 

anomalies and long-term precipitation trends, which are vital components in managing water 

resources and preparing for natural disasters. Complementary findings by De Carvalho et al. 

(2016) also emphasized that ST-Kriging offers more accurate daily precipitation estimates, as 

indicated by reduced mean square error and improved correlation between observed and 

predicted values when compared to traditional kriging and cokriging methods. These 

advantages underscore the potential of ST-Kriging in analyzing precipitation dynamics across 

space and time, thereby supporting more precise planning for flood prevention and sustainable 

water management. 

Nevertheless, a key limitation of ST-Kriging is its sensitivity to extreme values (outliers), 

both of which are common in tropical precipitation datasets due to intense and erratic 

precipitation events (O’Leary et al., 2016). In response to these limitations, Jannah et al. (2025) 

proposed the Spatio-Temporal Median Polish Kriging (ST-MPK), which combines robust 

median polish decomposition for trend extraction, kriging for spatial interpolation, and ARIMA 

for temporal modeling. This method enhances robustness by using median-based estimators, 

which are less influenced by outliers, and is particularly suited to precipitation modeling in 

regions experiencing frequent hydrometeorological extremes (X. L. Sun et al., 2019). Despite its 

innovation, the ST-MPK method has not been empirically validated against ST-Kriging using 

real-world precipitation data. Jannah et al. (2025) focused on methodological development 
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without conducting a model performance comparison, leaving a critical gap in the literature. 

Consequently, it remains unclear whether ST-MPK provides superior predictive accuracy or 

robustness in practical applications, particularly in transitional urban-environmental contexts 

like East Kalimantan. 

To fill this research gap, the present study aims to construct and compare the accuracy of 

two precipitation modeling techniques: ST-Kriging and ST-MPK, using the same dataset of 

monthly precipitation observations in East Kalimantan from 2021 to 2023. This comparative 

evaluation is designed to provide empirical evidence on which method yields better prediction 

performance across multiple statistical metrics. Given the region’s evolving climatic and land-

use dynamics, selecting an optimal modeling approach is crucial for generating reliable 

precipitation forecasts, which are essential for effective flood mitigation planning and 

sustainable water resource management in East Kalimantan. 

 

B. METHODS 

This study is a quantitative study employing a spatio-temporal modeling approach to 

analyze precipitation patterns in East Kalimantan. The study compares the predictive 

performance of two models: spatio-temporal kriging (ST-Kriging) and spatio-temporal median 

polish kriging (ST-MPK). All statistical analyses were conducted using R software.  

1. Data Description 

The study utilizes secondary monthly precipitation data from the Meteorological, 

Climatological, and Geophysical Agency (BMKG) of Samarinda. The dataset includes: 

a. Total monthly precipitation (mm), 

b. Geographic coordinates (latitude and longitude), 

c. Time span: January 2021 to December 2023, 

d. Seven observation stations located in Samarinda, Balikpapan, Berau, East Kutai, Kutai 

Kartanegara, West Kutai, and Bontang. 

 

2. Stationarity Testing 

Spatio-temporal stationarity implies that data variation is influenced only by spatial and 

temporal lags, not by specific locations or time points. Stationarity testing purpose to detect 

whether precipitation values vary systematically by location and to determine the existence of 

a unit root and decide whether differencing is required. One common approach to evaluating 

spatio-temporal non-stationarity is through semivariogram analysis, which facilitates the 

identification of spatial and temporal trends or irregularities in the dataset (Shand & Li, 2017). 

a. Stationarity in spatial data 

Spatial non-stationarity occurs when observations vary with geographic coordinates. 

This can be identified by plotting data against longitude and latitude for each time step 

(Rohma et al., 2023), and confirmed using regression analysis. If trends are detected, a 

Box-Cox transformation is recommended, particularly when 𝜆 ≠ 1 or lies outside the 

95% confidence interval. 
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b. Stationarity in temporal data 

To test temporal stationarity, especially in panel data, the Im-Pesaran-Shin (IPS) unit 

root test is applied. This method uses the average of Dickey-Fuller statistics across 

panels (Murthy & Okunade, 2018). Differencing (∆𝑍𝑡 = 𝑍𝑡 − 𝑍𝑡−1)  is used if non-

stationarity is present. 

 

3. Spatio-Temporal Semivariogram Modeling 

The semivariogram characterizes the degree of spatial and temporal autocorrelation as a 

function of lag distance and time difference, which is essential for determining weights in 

kriging interpolation.  

a. Empirical Semivariogram 

The empirical semivariogram is estimated using the method of moments, which 

computes the average squared difference between paired observations within defined 

spatial and temporal lag tolerances (Yang et al., 2020). 

b. Theoretical Semivariogram Models 

To facilitate kriging, theoretical semivariogram functions were fitted to the empirical 

semivariograms. The exponential and gaussian models were employed independently 

for spatial and temporal components. In the spatial component, which uses distance ℎ, 

the equation model is as follows. 

1) Exponential model 

 

𝛾(|𝒉|) = 𝑐0 + 𝑐 {1 − 𝑒𝑥𝑝 (−
|𝒉|

𝑎
)} (1) 

  

2) Gaussian model 

 

𝛾(|𝒉|) = 𝑐0 + 𝑐 {1 − 𝑒𝑥𝑝 (−
|𝒉|2

𝑎2
)} (2) 

where: 

𝛾(|𝒉|): semivariance at lag or distance h 

𝑐 : a priori variability of the autocorrelation process 

𝑐0  : nugget, a spatially uncorrelated semivariance representation at distances 

smaller than the measurement error and sampling interval 

𝑎  : range, the distance over which spatial autocorrelation or dependence persists. 

There is a correlation between values at distance closer than 𝑎, but no correlation 

between those at greater distance 

𝑐0 + 𝑐 : sill, representing the point where the large diversity reaches a constant value 

 

The same equation model is applied to the temporal component using the temporal 

distance or lag u. For joint spatio-temporal structures, several models are used: 

1) Metric model 

Account for space-time interactions by combining spatial and temporal lags into a 

single metric whose semivariogram function is shown in equation (3). 
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𝛾(𝒉, 𝑢) = 𝛾√‖𝒉‖2 + (𝑘. |𝑢|)2,   (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ, 𝑐 > 0 (3) 

 

where ‖𝒉‖ + 𝑐|𝑢| is the distance on ℝ𝑑 × ℝ and 𝑐 is a positive contant. 

 

2) Sum-metric model 

In semivarogram terms, the combined metric-sum model is given by equation (4). 

 

𝛾(𝒉, 𝑢) = 𝛾𝑠(𝒉) + 𝛾𝑡(𝑢) + 𝛾√‖𝒉‖2 + (𝑘. |𝑢|)2, (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ, 𝑐 > 0 (4) 

 

3) Simple sum-metric model 

Includes a nugget effect and adds spatial, temporal, and joint lag terms with the 

semivariogram function shown in equation (5). 

 

𝛾(𝒉, 𝑢) = 𝑐0 + 𝛾𝑠(𝒉) + 𝛾𝑡(𝑢) + 𝛾√‖𝒉‖2 + (𝑘. |𝑢|)2, (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ, 𝑐 > 0 (5) 

 

4. Spatio-Temporal Kriging 

ST-Kriging is employed to estimate the unknown value 𝑍(𝑠0, 𝑡0)  at a location and time 

where data are not observed (𝑠0, 𝑡0). This prediction uses available observations from across 

the region or within selected neighborhoods. The process is based on a spatio-temporal random 

field  {𝑍(𝒔, 𝑡), 𝒔 ∈ 𝐷, 𝑡 ∈ 𝑇} , with 𝐷 ⊆ ℝ2  and 𝑇 ⊆ ℝ , and assumes that values have been 

recorded at 𝑛  spatio-temporal locations {𝑍(𝑠1, 𝑡1), … , 𝑍(𝑠𝑛, 𝑡𝑛)} . The predicted value is 

calculated as a weighted sum of observations (Montero et al., 2015). 

 

�̂�(𝒔0, 𝑡0) = ∑ 𝜆𝑖𝑍(𝒔𝑖 , 𝑡𝑖)

𝑛

𝑖=1

 (6) 

 

where �̂�(𝒔0, 𝑡0) is the value at a location and time that is not observed, 𝑍(𝒔𝑖 , 𝑡𝑖) are the value at 

an observed location and time, and 𝜆𝑖 are the weights derived under the assumption of second-

order stationarity. The weights are obtained by solving a system based on the semivariogram 

between observed points and between observed and target locations. 

 

5. Spatio-Temporal Median Polish Kriging Modeling 

ST-MPK enhances robustness in modeling by decomposing the precipitation data matrix 

into additive components representing spatial, temporal, and residual effects. This 

decomposition helps isolate systematic trends and reduce the influence of outliers commonly 

found in precipitation data.  

a. Median Polish Decomposition 

Median polish is employed due to its robustness against outliers and its nonparametric 

nature, making it well-suited for environmental data that often exhibit non-normal 

distributions and extreme values. By using medians rather than means, the method 

minimizes the impact of anomalous observations while effectively separating systematic 

variations attributable to spatial and temporal effects. This separation allows for better 



 Friendtika Miftaqul Jannah, Modeling Spatio-Temporal Precipitation Patterns...    1045 

 

 

modeling of localized deviations and interaction effects through the residuals. The two-

way median polish model is used to separate spatial and temporal effects, which can be 

showed as equation (7). 

 

𝑍(𝒔, 𝑡) = 𝜇 + 𝛼𝑙 + 𝜏𝑡 + 𝑒 (7) 

 

𝜇 represents the general effect, 𝛼𝑙 is the l-th row effect representing the spatial effect, 

dan 𝜏𝑡  is the t-th column effect representing the time effect, 𝑒  is the error term. The 

effects 𝛼𝑙  (spatial) and 𝜏𝑡  (temporal) are obtained through iterative procedures and 

residual medians (Martínez et al., 2017). 

b. Median Polish Spatial Effects Modeling with Kriging 

Kriging is used to model the spatial effects 𝛼𝑙  with weights 𝜆𝑖  calculated based on a 

semivariogram. Theoretical semivariogram models such as exponential and Gaussian 

are applied according to the characteristics of the precipitation data. 

c. Median Polish Time Effects Modeling with ARIMA 

The temporal effects 𝜏𝑡 are modeled using 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑆, through the stages 

of stationarity checking, model identification, parameter estimation, and diagnostic 

testing. Forecasting is performed for future values based on the best-selected model. 

d. Median Polish Residuals Modeling with Spatio-Temporal Kriging 

The residuals from the median polish model are modeled using ST-Kriging. Various 

spatio-temporal semivariogram models are considered, including the product-sum, 

metric, and sum-metric models. 

e. Spatio-Temporal Median Polish Kriging  

The final model combines all components: 

 

�̂�(𝒔𝟎, 𝑡0) = �̂� + ∑ 𝜆𝑖𝛼(𝒔𝑖)

𝑛

𝑖=1

+ �̂�𝑡 + ∑ 𝜆𝑖𝑒(𝑠𝑖, 𝑡𝑖)

𝑛

𝑖=1

   (8) 

 

with �̂� is general mean,  𝜆𝑖 are weights, 𝛼(𝒔𝑖) are the data at an observed locations and 

times, τ̂t =
�̂�0+�̂�𝑞(𝐵)�̂�𝑄(𝐵𝑆)𝑎𝑡

�̂�𝑃(𝐵𝑠)�̂�𝑝(𝐵)(1−𝐵)𝑑(1−𝐵)𝐷 , 𝑒(𝑠𝑖, 𝑡𝑖)  are the residuals from the median polish 

model. This model enables prediction at unobserved locations and times by integrating 

the spatio-temporal structure of the median polish, kriging, and ARIMA methods. 

 

6. Model Performance 

The model is evaluated using RMSE (Root Mean Square Error), MAE (Mean Absolute Errors), 

and MAPE (Mean Absolute Percentage Error) (Islam et al., 2024; Ruslana et al., 2024). 
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C. RESULT AND DISCUSSION 

1. Stationary Data 

Descriptive analysis shows that precipitation in East Kalimantan is spatially stationary, as 

indicated by the random distribution across coordinates and the empirical semivariogram 

(Figure 1 & Figure 3), which shows no spatial trend. Regression tests on easting and northing 

yield 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 >  0.05, indicating no significant spatial effect. Temporally, the data is also 

stationary, supported by the average Dickey-Fuller statistic of −4.80 and IPS test statistic of 

−9.742 with a p-value of 1,0 × 10−6 , thus rejecting the null hypothesis of non-stationarity. 

Since the mean precipitation is unknown, the spatio-temporal ordinary kriging model is 

appropriate. Long Iram station recorded the highest precipitation, likely due to orographic 

effects and local vegetation (Figure 2).  

 

 
Figure 1. Precipitation based on longitude (easting) and latitude (northing) 

 

 
Figure 2. Precipitation for each observation point 
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2. Spatio-Temporal Kriging 

ST-Kriging modeling uses a semivariogram to account for the variability between data 

points, as well as the relationships between spatial, temporal, and joint spatio-temporal 

distances. The results of matching various theoretical models to the empirical semivariogram 

produce the RMSE presented in Table 1.  The simple sum-metric model, where the spatial 

semivariogram follows an exponential model while temporal and joint semivariogram models 

follow a gaussian model, is identified as the best spatio-temporal semivariogram model, 

producing the lowest RMSE of 2493.687. 

 

Table 1. RMSE Spatio-Temporal Semivariogram Model 

RMSE Spatio-
Temporal Model 

Joint 
Model 

Spatial and Temporal Semivariogram Model Joint Model 
Exp+Exp Exp+Gau Gau+Exp Gau+Gau Exp Gau 

Metric ∙ ∙ ∙ ∙ ∙ 2523.381 2523.475 

Sum-metric 
Exp 2522.348 2522.350 2522.352 2522.349 ∙ ∙ 
Gau 2502.212 2501.695 2501.505 2493.735 ∙ ∙ 

Simple sum-
metric 

Exp 2523.751 2523.756 2523.756 2523.756 ∙ ∙ 
Gau 2493.839 2493.687 2493.738 2493.721 ∙ ∙ 

*Exp+Gau means spatial semivariogram follows an exponential model and the temporal semivariogram 

follows a gaussian model 

 

The simple sum-metric model provides the best fit for the spatio-temporal semivariogram, 

with the spatial component following an exponential model, while the temporal and joint 

components follow a Gaussian model. This model yields the lowest RMSE of 2493.687, 

indicating the best performance among the tested models. The fitted semivariogram model is: 

 

𝛾(𝒉, 𝑢) = 7317.03 + 𝛾𝑠(𝒉) + 𝛾𝑡(𝑢) + 𝛾 (√‖𝒉‖2 + (84,458.50|𝑢|)2) (9) 

 

with component functions: 

𝛾𝑠(|𝒉|) = 1664.27 {1 − 𝑒𝑥𝑝 (−
|𝒉|

56,414.54
)} 

𝛾𝑡(𝑢) = 15,306.94 {1 − 𝑒𝑥𝑝 (−
|𝑢|2

16,599.692
)} 

𝛾 (√‖𝒉‖2 + (84,458.50|𝑢|)2) = 3857.67 {1 − 𝑒𝑥𝑝 (−
‖𝒉‖2 + (84,458.50|𝑢|)2

18,3974.102
)} 

 

Figure 3 presents the spatio-temporal empirical semivariogram, which illustrates the 

sample variability of precipitation phenomena in East Kalimantan, compared to the simple 

sum-metric semivariogram, identified as the best-fitting spatio-temporal semivariogram. 
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Figure 3. Empirical semivariogram and the best fitting (simple sum-metric) semivariogram 

 

The nugget value of 7317.03 indicates unexplained semivariance at zero distance, likely due to 

measurement errors. The anisotropy correction of 84,458.50 m suggests that one temporal unit 

is equivalent to 84.46 km in spatial distance, allowing alignment between spatial and temporal 

correlation scales. 

 

3. Spatio-Temporal Median Polish 

Outlier detection using the Z-Score method identified precipitation in West Kutai during 

May 2022 as an outlier (Z = 4.247). Given that such extreme values can bias interpolation 

models assuming normality, median polish kriging was adopted to improve robustness. Median 

polish decomposes the data into overall mean, spatial effect, time effect, and residuals through 

iterative median subtraction. The overall mean was 230.775 mm. Spatial effects ranged from -

65.525 mm to 69.175 mm, while temporal effects showed considerable month-to-month 

variation. Residual analysis revealed a remaining outlier (Z = 3.581) in West Kutai during May 

2022, indicating that while the influence of outliers was reduced, it was not fully neutralized. 

This persistence can occur because median polish addresses global trend structures but does 

not explicitly detect or remove all local anomalies. As a result, residual outliers may still 

propagate through the kriging stage, subtly affecting the final predictions. Thus, although ST-

MPK improves robustness compared to conventional methods, its effectiveness is bounded 

when faced with extremely skewed observations. 

a. Median Polish Spatial Effect Modeling with Kriging 

Spatial effects extracted from median polish showed a clear decreasing trend from west 

to east. Consequently, universal kriging was used to interpolate these effects. Among 

tested semivariogram models (spherical, exponential, Gaussian), the exponential model 

performed best with the smallest SSE (0.000048). The model parameters were: 

1) Nugget: 284.452 

2) Sill: 499 

3) Effective Range: 166,796.6  

4) Range: 
Effective Range

3
= 55,598.867 
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The theoretical semivariogram equation used: 

𝛾𝑠(|𝒉|) = 499 {1 − 𝑒𝑥𝑝 (−
|𝒉|

55,589.867 
)} (10) 

(Jannah et al., 2025) 

The nugget term suggests short-scale measurement noise or microscale variability. The 

relatively large range highlights a broad spatial dependency, confirming spatial 

smoothness in the median-polished effects. This modeling ensures that large-scale 

geographic patterns are preserved in the interpolated surface. 

b. Median Polish Time Effect Modeling with ARIMA 

Temporal patterns from the median polish component showed non-seasonal 

fluctuations. After a second-order differencing process, the data achieved stationarity, 

and the 𝐴𝑅𝐼𝑀𝐴(1,2,0)  model was selected. The AR coefficient was significant (𝜙 =

−0.881), and the ARIMA equation is given by Jannah et al. (2025): 

 

𝜏𝑡 = 2𝜏𝑡−1 − 𝜏𝑡−2 − 0.881(𝜏𝑡−1 − 2𝜏𝑡−2 + 𝜏𝑡−3) + 𝑎𝑡  (11) 

 

The AR parameter was statistically significant, and diagnostic checks confirmed model 

adequacy. The ARIMA model achieved a MAPE of 21.589%, indicating strong temporal 

prediction ability. 

c. Spatio Temporal Kriging Modeling on Median Polish Model Residuals 

Residuals were interpolated using ST-Kriging with a simple sum-metric semivariogram 

model. The best-fit configuration adopted gaussian models for spatial, temporal, and 

joint components, minimizing RMSE to 2668.869. The model was defined as: 

 

𝛾(𝒉, 𝑢) = 6993.967 + 𝛾𝑠(𝒉) + 𝛾𝑡(𝑢) + 𝛾𝑠𝑡 (√‖𝒉‖2 + (3229.449|𝑢|)2) (12) 

with, 

𝛾𝑠(|𝒉|) = 760,222.3 {1 − 𝑒𝑥𝑝 (−
|𝒉|2

2,771,718.92
)} 

𝛾𝑡(𝑢) = 0 {1 − 𝑒𝑥𝑝 (−
|𝑢|2

651,794.972
)} 

𝛾𝑠𝑡 (√‖𝒉‖2 + (3229.449|𝑢|)2) = 0 {1 − 𝑒𝑥𝑝 (−
‖𝒉‖2 + (3229.449|𝑢|)2

55,718.342
)} 

(Jannah et al., 2025) 

 

The nugget of 6993.967 reflects unexplained variance, while the anisotropy correction 

of 3229.449 m implies that one temporal unit corresponds to 3.229 km, capturing finer 

spatio-temporal dependencies.  

d. Spatio Temporal Median Polish Kriging 

The spatio-temporal median polish kriging model, enhanced with ARIMA, integrates 

four components: the overall mean (230.775 mm), kriged spatial effects based on 

equation (10), ARIMA-modeled temporal effects in equation (11), and residual 
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interpolation via ST-Kriging using the semivariogram in equation (12). The complete 

model is summarized in equation (13), 

 

�̂�(𝒔𝟎, 𝑡0) = 230.775 + ∑ 𝜆𝑖𝛼(𝒔𝑖)

7

𝑖=1

+ 2𝜏𝑡−1 − 𝜏𝑡−2

− 0.881(𝜏𝑡−1 − 2𝜏𝑡−2 + 𝜏𝑡−3) + 𝑎𝑡 + 

�̂�(𝒔𝟎, 𝑡0) = ∑ 𝜆𝑙𝑒(𝑠𝑙, 𝑡𝑙)

252

𝑙=1

 

(13) 

 

4. Model Performance 

The ST Kriging model achieved an RMSE of 84.05, MAE of 69.95, and MAPE of 52.67%, 

indicating reasonable absolute accuracy but limited relative accuracy. Conversely, the ST-MPK 

model produced higher RMSE (122.44) and MAE (91.35), yet achieved a lower MAPE of 44.83%, 

suggesting superior proportional prediction performance. This distinction is critical for real-

world applications: while RMSE and MAE indicate precision in absolute terms, MAPE better 

reflects the model's adaptability to local extremes. In the context of water resource 

management and flood risk mitigation, accurate relative predictions are essential. A lower 

MAPE means ST-MPK more effectively captures both very high and very low precipitation 

values, key for identifying early signs of flood or drought. This robustness to outliers and 

extreme events makes ST-MPK more suitable for operational decision-making in dynamic and 

environmentally vulnerable regions such as East Kalimantan. 

 

D. CONCLUSION AND SUGGESTIONS 

This study successfully compared two precipitation models: spatio-temporal kriging (ST-

Kriging) and spatio-temporal median polish kriging (ST-MPK). Using consistent datasets and 

performance metrics (RMSE, MAE, and MAPE), the comparison revealed key differences in 

predictive capabilities. The results demonstrate that although the ST-MPK model yielded 

slightly higher RMSE and MAE values compared to ST-Kriging, it achieved a notably lower 

MAPE, suggests that ST-MPK provides more accurate relative predictions, particularly in 

regions with highly variable or extreme precipitation values. The robustness of ST-MPK is 

attributable to its use of the median polish procedure, which decomposes the data into additive 

components and reduces the influence of outliers by focusing on medians rather than means. 

This makes it more resilient in the presence of anomalous events such as localized heavy 

precipitation, which are common in tropical climates like East Kalimantan. This robustness is 

especially important in the context of hydrological modeling and disaster management. 

Outliers, if not properly handled, can distort spatial interpolation and lead to unreliable 

forecasts, particularly in flood-prone areas. By mitigating their impact, ST-MPK ensures more 

stable and realistic precipitation estimates, which are crucial for accurate flood risk assessment 

and sustainable water resource planning. 

Moreover, to enhance the spatial resolution and predictive strength of the model, future 

study should incorporate a denser network of observation stations. A greater number of data 

points would better capture local precipitation variability, reduce interpolation uncertainty, 
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and improve the reliability of semivariogram estimation, especially for short-range spatial 

correlations. This would allow both spatial and spatio-temporal models to more precisely 

reflect true precipitation dynamics across East Kalimantan's diverse topography and 

microclimates. 
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