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 Climate plays a vital role in framing the characteristics of tourist activity. Humidity 
reflects the amount of moisture in the air relative to the maximum it can hold at a 
specific temperature, it has a direct influences on perceived comfort levels. Bali, one 
of the most popular destinations renowned for its breathtaking natural beauty and 
varied landscapes. However, this island is currently served by only four climate 
observation stations which are insufficient to capture the humidity across the 
island. Therefore, this research aims to model humidity levels in Bali based on four 
observed locations at 2019-2023 using the space-time kriging with seasonal drift 
and predict humidity at unobserved locations. This approach was choosen due to 
the strong seasonal pattern exhibited in climate data, which leading to non-
stationary. The space-time kriging method is applied to the residuals. The most 
effective model identified was the exponential-exponential-Gaussian (Exp-Exp-
Gau) model using a sum-metric structure. This model provided the lowest RMSE of 
2.1442. Humidity contour maps suggest a gradual decline in humidity levels over 
time across Bali. This trend may have significant impacts for both environmental 
quality and the tourism sector. Lower humidity levels could lead to increased 
discomfort for tourists and potentially reduce the attractiveness of the destination. 
Theoretically, the development of the kriging model enhances the accuracy of 
predictions, as shows by the low RMSE. Practically, these findings emphasize the 
importance of integrating climate considerations into sustainable tourism planning 
and management strategies based on the humidity information. 
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A. INTRODUCTION  

Bali island, one of the most popular destinations due to its breathtaking natural beauty and 

varied landscapes (Ramadhani et al., 2024). This island is also notable for its relaxing beaches, 

which are perfectly suited for a water sport activity. In addition, Bali features a warm tropical 

climate that attracts international tourist because of the warm temperatures and sunshine 

throughout the year (Susanto et al., 2020). Bali has two main seasons; the dry season, which 

occurs from May to October, and the wet season, from November to April (Ananta et al., 2024). 

The prevailing weather conditions enhance Bali’s allure and contribute to the timing and nature 

of tourist visits (Zeng et al., 2023). 

Climate plays an important role in influencing tourist visit with pleasant weather during the 

dry season encourages higher visitor numbers, whereas the wet season may lead to decline in 

tourism-related activities patterns (Atasoy & Guneysu Atasoy, 2020). The interdependence 

between climate and tourism highlight how weather conditions can directly and indirectly 

affect economic performance and human activities in the region (Simorangkir et al., 2024). 
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Several climatic variables influence comfort conditions for tourist with the one of the most 

effective and applicable thermal indicators, known as the Tourist Climate Index (TCI) (Lukić et 

al., 2021). This index measures tourist comfort based on various weather parameters, such as 

humidity level, air temperature, precipitation, wind speed and sunshine hours. Temperature 

and humidity are the variables that most influence the TCI (Jong et al., 2024). Humidity reflects 

the amount of moisture in the air relative to the maximum it can hold at a specific temperature 

(Mondal et al., 2025). High humidity can lead to increased precipitation, which affects tourist 

comfort (Zeiss et al., 2022). Furthermore, humidity patterns can predict weather changes, with 

high humidity make it feel hotter and low humidity contributing to a drier atmosphere 

(Baldwin et al., 2023). 

Several previous studies have focused on interpolating and predicting climate indicators 

using various methodologies, such as ordinary kriging (Taharin & Roslee, 2021), inverse 

distance weighted (Amelia et al., 2023), SARIMA (Liu, 2024), ARIMA and remote sensing 

(Zaharieva et al., 2025). However, these studies often focus only on either the geographic 

location or temporal aspect. Climate data possess a space-time data type that relates both space 

and time dimension. Therefore, the information derived from space-time data essential.  

Kriging is a statistical technique used to estimate values at unmeasured locations by using 

information from measured locations (Adhikary et al., 2017). It accounts for the space 

variability of data by utilizing a semivariogram function, which illustrates the relationship 

between values at different locations. However, selecting an appropriate semivariogram model 

and a kriging method that align with underlying assumptions poses challenges (Lv & Du, 2021). 

There are three different kriging method that can be used, such as simple kriging (Ro & Yoo, 

2022), ordinary kriging and universal kriging (Khan et al., 2023).  

Space-time kriging extends the basic kriging method by considering not only geographic 

location but also the time aspect of the data (Du et al., 2018). This method is capable to capture 

dynamic changes over time (Dhaher & Shexo, 2023). Space-time kriging conducts interpolation 

by leveraging spatiotemporal autocorrelation among dispersed values to predict values at 

unobserved locations. This method applies weights to spatiotemporal data from observed 

points and provides prediction variance to indicate the accuracy of these predictions (Ding et 

al., 2024). Climate data often exhibit seasonal drift, which make it non-stationary (Krock et al., 

2022). To remove the seasonal component from the data, time-series decomposition can be 

applied. While decomposition removes only the seasonal component, the residual may still 

contain location and time trends. Space-time regression kriging can be employed to interpolate 

non-stationary data, as this method considers both location and time trends (Du et al., 2018).  

This research aims to model humidity in Bali using space-time kriging with seasonal drift to 

predict humidity at unobserved locations. The result of this prediction will not only enhance 

the understanding of humidity patterns but also serve as valuable resource for policymakers 

and stakeholders in the tourism industry, especially in Bali. Furthermore, the insights gained 

from this research can aid in the development of sustainable tourism strategies that consider 

seasonal variations in climate. 
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B. METHODS 

1. Data and Research Variables 

The data is provided by the Bali Province BMKG (Badan Meteorologi Klimatologi dan 

Geofisika), which contains an average percentage of humidity data for Bali. Humidity selected 

because of its big contribution for TCI value. The data were obtained for four stations: Sanglah 

Geophysics Station in Denpasar, Negara Climatology Station in Jembrana, Kahang-kahang 

Geophysics Station in Karangasem, and Ngurah Rai Meteorology Station in Badung. Humidity 

was recorded monthly over five years, from January 2019 to December 2023.  

 

2. Time Series Decomposition 

The analysis was conducted after processing humidity data into space-time data type 

formats using RStudio software. There are four steps of the analysis process. The first step is 

processing the original data to satisfy stationarity by using time series decomposition to 

remove the seasonal component for each location. This step performed because seasonality in 

climatic data is obvious and that is the main factor that makes the data non-stationary. The 

different stations exhibit different seasonality patterns, which can be described by Equation (1) 

(Das & Barman, 2025). 

 

𝑍(𝑠, 𝑡) = 𝑆𝑒(𝑠, 𝑡) + 𝑅(𝑠, 𝑡) (1) 

 

where Z represents the space-time data of humidity at location s and time t which indicates the 

number of a month (𝑡 = 1,… ,60). The Z comprises two components, 𝑆𝑒(𝑠, 𝑡) as a space-time 

seasonal component and 𝑅(𝑠, 𝑡) is the residual from removed seasonal component.  

 

3. Regression Analysis 

The second step involves modeling space-time regression to remove the trend of location 

and time. The location trend variables included the coordinates (x,y) or (longitude, latitude), 

while the time trend variable consists the month of the research. The relationship between 

these various trend variables can be represented by the space-time regression model as shown 

in Equation (2) (Li et al., 2020). 

 

𝑅(𝑠, 𝑡) = ∑𝛽𝑖𝑓𝑖(𝑠, 𝑡)

𝑝

𝑖=0

+ 𝜀𝑖(𝑠, 𝑡) (2) 

 

where R represents the seasonality-removed data, comprising 𝑝 + 1  components. The 𝑝 

denotes the number of regression variables (in this research, 𝑝 = 3 corresponds to longitude, 

latitude and month of the year). The 𝛽𝑖 represent as a coefficient of regression and 𝑓𝑖(𝑠, 𝑡) are 

the known variables over the space-time domain. Specifically, 𝑘0𝑓0(𝑠, 𝑡)  represents the 

intercept of the model, while 𝜀𝑖(𝑠, 𝑡) denotes the residual of the regression. 
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4. Empirical Semivariogram 

Conceptually, the residuals of the regression still contain space-time information, assuming 

that the residuals of the regression 𝜀𝑖(𝑠, 𝑡) are stationary. Thus, the third step is modeling the 

residuals 𝜀𝑖(𝑠, 𝑡)  using a space-time semivariogram, A space-time semivariogram is used to 

describe spatial dependence in regionalized variable and time dependence in time lags. There 

are two types of semivariogram, the empirical space-time semivariogram which is calculated 

using the sampled data and the theoretical space-time semivariogram. The empirical space-

time semivariogram function is calculated using Equation (3) (Venkatachalam & Kumar, 2017). 

  

𝛾𝑠𝑡(𝒖, 𝒗) =
1

2
𝑉(𝜀(𝒔 + 𝒖, 𝑡 + 𝑣) − 𝜀(𝒔, 𝑡)) (3) 

 

where, u defines space distance and v defines time lag. After constructing the empirical space-

time semivariogram, fitting a theoretical space-time semivariogram with an appropriate curve 

shape by comparing several components of the semivariogram such as nugget effect, sill, and 

range.  

 

5. Theoretical Semivariogram 

In this research, the space and time marginal semivariograms will be modeled using the 

exponential model and the Gaussian model, expressed in Equation (4) and (5), respectively. 

 

𝛾(𝑢) = 𝑐0 + 𝑐 [1 − exp⁡ (−
𝑢

𝑎
)] (4) 

𝛾(𝑢) = 𝑐0 + 𝑐 [1 − exp⁡ (−
𝑢2

𝑎2
)] (5) 

 

where, 𝑐0 represents the nugget, 𝑢 represents the distance in either space or time, 𝑐 signifies 

the partial sill, and 𝑎 indicates the effective range.  

After determining the semivariogram model for both space and time, the next step is 

modeling the space-time semivariogram, which can illustrate the structure of space-time data 

dependence. Several methods can be used to model space-time semivariogram, including the 

metric model (Zhao et al., 2020), the separable model (Lambardi Di San Miniato et al., 2022), 

the sum-metric model (O’Rourke & Kelly, 2015), and the sum-product model (Bachrudin et al., 

2023). In this research, the sum-metric model will be employed due to its flexibility in modeling 

the residuals of the regression 𝜀𝑖(𝑠, 𝑡), as shown in Equation (6). 

 

𝛾𝑠𝑡(𝒖, 𝒗) = 𝛾𝑠𝑡(𝒖, 𝟎) + 𝛾𝑠𝑡(𝟎, 𝒗) + 𝛾𝑠𝑡
√||𝑢||

2
+ (𝑘. |𝑣|)2 (6) 

 

to determine the best model in this research, a comparison will be conducted using the RMSE 

as expressed in Equation (7) (Rahmawati, 2020). 
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𝑅𝑀𝑆𝐸 = √
1

#𝑁(𝒉, 𝑢)
∑ (�̂�(𝒉, 𝑢) − 𝛾(𝒉, 𝑢))

𝑁(𝒉,𝑢)

𝑖=1

2

(7) 

 

6. Space-Time Kriging with Seasonal Drift  

The final step is carried out space-time prediction of the residual values for all locations. 

The prediction is performed using ordinary space-time kriging, which represent as Equation 

(8). 

𝜀∗(𝒔𝟎, 𝑡0) = ∑ 𝜆𝑖

𝑛

𝑖=1

𝜀(𝒔𝒊, 𝑡𝑖) (8) 

 

where 𝜀(𝒔𝒊, 𝑡𝑖) is the residuals of sampled location and 𝜆𝑖 denotes the weights for space-time 

kriging, as shown in Equation (9).  

 

(

𝛾(𝒔1 − 𝒔1, 𝑡1 − 𝑡1) ⋯

⋮ ⋱

𝛾(𝒔1 − 𝒔𝑛, 𝑡1 − 𝑡𝑛) 1

⋮ ⋮
𝛾(𝒔𝑛 − 𝒔1, 𝑡1 − 𝑡1) ⋯

1 ⋯

𝛾(𝒔𝑛 − 𝒔𝑛, 𝑡𝑛 − 𝑡𝑛) 1

1 0

)(

𝜆1
⋮
𝜆𝑛
𝛼

) = (

𝛾(𝒔1 − 𝒔0, 𝑡1 − 𝑡0)
⋮

𝛾(𝒔𝑛 − 𝒔0, 𝑡𝑛 − 𝑡0)
1

) (9) 

 

The space-time regression kriging with seasonal drift estimation is given by Equation (10). 

 

�̂�(𝑠0,𝑡0) = 𝑆𝑒(𝑠0, 𝑡0) +∑𝑘𝑖𝑓𝑖(𝑠, 𝑡)

𝑝

𝑖=0

+ 𝜀∗(𝒔𝟎, 𝑡0) (10) 

 

C. RESULT AND DISCUSSION 

1. Data Exploration 

The time series plots illustrated in Figure 1 show the humidity conditions recorded across 

four different stations (Sanglah, Negara, Kahang-Kahang, and Ngurah Rai) from 2019 to 2023. 

An obvious seasonality pattern is evident, especially at the Kahang-Kahang station. It indicates 

similar humidity conditions throughout the year. The Sanglah station exhibit relatively stable 

humidity level around 75-80% with only minor seasonal fluctuations observed.  
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Figure 1. Time series plot in each station 

 

In contrast, the Negara station shows a slight upward trend and recorded the humidity level 

is around 80-85%, which is notably higher than Sanglah station. Both Kahang-Kahang and 

Ngurah Rai stations indicate the strong seasonal effects that characterized by significant 

variations between wet and dry seasons. These seasonal changes contribute to extreme 

fluctuations in humidity levels emphasizing the dynamic nature of the climate in these regions. 

Figure 2 and Figure 3 show scatter plots of the relationship between humidity and location 

coordinate (longitude and latitude) for several different months that randomly selected. In 

most months, there are no distinct linear trend of location coordinates and humidity level. 

However, some months like May 2021, August 2021 and September 2022 show relatively lower 

humidity at higher longitudes.  

 

   
   

   
Figure 2. Longitude trend in several time 
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Figure 3. Latitude trend in several time 

 

Conversely, in, July 2020, the humidity tends to be higher across most latitudes. This 

exploration suggest that latitude and longitude do not exhibit a strong trend concerning 

humidity, but still contain a location trend in several time. Thus suggestion remains an 

underlying spatial pattern that influences the choise of kriging method employed in the analysis. 

Before applying the kriging method, it is important to first address any space and time trends 

present in the data. Both space and time trends might be impacted to kriging result remining 

the underlying assumption of the kriging itself. A time series decomposition is employed as a 

step to removed the obvious seasonality patterns into a SAD (seasonality Adjusted Data). After 

removing the seasonal pattern, a regression analysis is carried out as a preliminary step to 

identify and remove location trends.   

 

2. Time Series Decomposition 

The removal of seasonal component is needed to eliminate the time trend, as climatic data 

is often characterized by seasonal patterns. This process is conducted to enhance the accuracy 

of interpolation. Seasonal removal is applied to each station location, given that each location 

may have the different seasonality pattern. It is conducted using additive time series 

decomposition which is simpler than other methods. Figure 4 shows the time series 

decomposition plot using the additive method using Equaton (1).  
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Figure 4. Decomposition plot in each station 

 

Figure 4 shows the seasonal components derived from each location exhibit a clear annual 

cycle, which aligns well with the monthly data used in this research. This observation indicates 

a strong seasonal influence on humidity, likely tied to wet and dry seasons in the region. 

Furthermore, it is notable that the estimated seasonal components remain relatively stable 

over time, suggesting that the underlying climatic patterns are consistent across the observed 

period. This stability enhances the reliability of the seasonal components as indicators of 

humidity variation. The specific seasonal components from Equation (1) for each station are 

detailed in Table 1. 

 

Table 1. Seasonal component for each station 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Sanglah 2.308 2.557 1.079 -0.57 -0.76 0.099 -1.09 -1.93 -1.64 0.309 -0.18 -0.19 

Negara -0.37 0.692 0.331 -0.61 0.291 0.248 0.140 0.528 0.306 -0.21 0.104 -1.46 

Kahang-
Kahang 

6.222 8.472 5.298 1.106 0.199 -4.43 -2.58 -3.27 -5.54 -4.58 -2.77 1.875 

Ngurah 
Rai 

0.962 1.369 1.538 0.606 0.781 0.262 -2.95 -1.57 -0.89 -0.17 -0.12 0.180 

 

After decomposition, the data will be reduced by the seasonal component. This step is 

conducted because seasonal variation not aligns with the underlying assumption of space-time 

ordinary kriging. The data with seasonal component removed is referred to as seasonality-

adjusted data (SAD).   

 

3. Trend Regression 

The seasonality-adjusted data (SAD) still exhibit a trend that captures variability across 

both space and time dimension. This trend could be influenced by the space dependent 

covariates, such as longitude and latitude, as well as time dependent covariate, specifically the 

month of observed data. To know the relationship between these covariates, a multiple linear 

regression analysis is conducted using the all-subsets regression method. This approach allows 

to explore various combination of covariates to identify the significant predictors of the 

observed trends, The parameter estimation of multiple linier regression model in Equation (2) 

are detailed in Table 2. 
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Table 2. Parameter estimation of regression analysis 

Parameter Estimation SE t value p-value 𝑹𝟐 p-value 

𝛽0 (intercept) 679.5614 55.1908 12.313 <2e-16 

0.3662 <2e-16 
𝛽1 (longitude) -4.8999 0.4843 -10.118 <2e-16 
𝛽2 (latitude) 4.0672 0.9494 -4.284 2.67e-05 
𝛽3 (month) -0.0319 0.0491 -0.652 0.515 

 

Table 2 indicates that the SAD exhibit an obvious spatial trend. This is indicated by the p-

value for longitude and latitude which are lower than the alpha level of 0.05, signifying that 

these spatial covariates significantly influence the SAD. The negative coefficient for longitude 

indicates that as one moves eastward across Bali, humidity levels tend to decrease significantly. 

This spatial gradient may relate to Bali’s topography and prevailing wind patterns. The western 

parts of Bali experience higher humidity since this area close to the Indian Ocean and influenced 

by moist oceanic air masses. While the positive latitude coefficient suggests that moving 

northward within Bali correlates with increasing humidity. Conversely, there is no evidence of 

a temporal trend as the p-value for the month exceeds the alpha level. This lack of significance 

may be causes by seasonality removal that obtained before. For this case, we can conclude that 

the seasonality component removal is effective in eliminating the time trend from origin data. 

The all-subsets regression model explains 36.62% of the variance in the SAD values. 

 

 
Figure 5. QQ Plot for normality test 

 

The regression analysis residuals form a zero-mean process that preserves important 

space-time information. To assess the reliability of the model, normality hypothesis test was 

performed as shown in Figure 5. The QQ plot shows that the most of the residuals closely follow 

the red line. The distribution of the residuals suggests a normal distribution. Therefore, the plot 

indicates that the all-subsets regression model offers a good fit for the SAD values. 

 

4. Empirical Semivariogram 

Figure 6 represent the relationship between time lag (in days) and distance (in kilometers) 

using a color gradient that indicate the semivariance values based on Equation (3). Yellow color 

indicates higher semivariance, while purple indicates lower semivariance. As spatial distance 

increases, the semivariance value initially rise, suggesting that spatial dependence exists over 

shorter distances. However, beyond a certain distance, the semivariance values tend to stabilize, 

indicating a reduced influence of distance on the variability of the data over time.  
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Figure 6. Empirical semivariogram 

 

Based on the Figure 6, assumed that the semivariance stabilizes at distance of around 80 

kilometers. Beyond this point, the semivariance values remain relatively constant, indicating 

that spatial dependence decreases significantly. In essence, once the distance reach 80 

kilometers, further increases in distance do not significantly affect the variability of the data. In 

terms of the time aspect, the range is estimated to occurs around a time lag of 60 days. It 

indicates the time lag over the temporal correlation persists. Beyond this duration, the 

influence of time on the similarity between observations becomes minimal. 

Additionally, the nugget value is assumed to be around 2, which represents the 

semivariance value at a distance of zero. This value typically accounts for measurement error 

or microscale variation. The sill also can be approximated by identifying the maximum 

observed semivariance in the plot. It appears that the highest values in the yellow range, likely 

around 16. This value indicates the point where the spatial correlation between data points has 

significantly decreased and the variability become relatively consistent across distances.  

 

5. Theoretical Semivariogram 

The parameter values for sill, range and nugget from the empirical space-time 

semivariogram serve as the foundation for fitting a theoretical space-time semivariogram 

model. A comparison of RMSE values based on Equation (7) for different model combination is 

presented in Table 3. Among all combinations, the model employing an Exponential structure 

for both space and time components which combined with a Gaussian joint model produced the 

lowest RMSE value of 2.1442. This indicates the best fit to the empirical semivariogram. This 

result suggests that the Exp-Exp-Gau model is the most appropriate combination for capturing 

the underlying space-time dependencies in the residual data. 
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Table 3. Comparison of RMSE for fitting theoretical semivariogram model 

Space model Time model Joint model RMSE 
Exp Exp Exp 2.1445 
Exp Exp Gau 2.1442 
Exp Gau Exp 2.1564 
Exp Gau Gau 2.1534 
Gau Exp Exp 2.1446 
Gau Exp Gau 2.1456 

 

The space-time semivariogram, both empirical and theoretical served in Figure 7.  

 

 
Figure 7. Space-time semivariogram; empirical semivariogram (left)  

and theoretical semivariogram (right) 

 

On the left side is the empirical semivariogram, which characterized by irregular and sharp 

peaks. The fluctuation across the surface suggests the presence of significant space-time 

interaction within the data. Moreover, the theoretical space-time semivariogram shown on the 

right side is derived using Exp-Exp-Gau sum-metric model. This plot shows a smoother and 

more continuous surface reflecting the fitted values obtained from the selected theoretical 

model. Moreover, the joint space-time component is modelled using a Gaussian model that 

contributing a partial sill of 1.72 and a range of 8020.25 km. This selection of a Gaussian joint 

model aligns well with the smoother appearance of the theoretical semivariogram surface. 

Additionally, the estimated space-time anisotropy (stAni) value of approximately 102.19. This 

implies that a unit increase in time (one month) corresponds spatially to a change equivalent 

to 102.92 kilometers. In other words, temporal changes translate into spatial changes at this 

ratio highlight the interconnected nature of space and time in influencing the variable dynamics.  

 

6. Space-Time Regression Kriging with Seasonal Drift 

After interpolating the residual data using the kriging approach, the kriging value were 

combined with the regression estimations as Equation (10). This integration produced the 

space-time regression kriging with seasonal adjustment. The last step involved reintroducing 

the seasonal component base on the nearest observation location to each prediction point. The 
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final estimates which incorporate both space and time trends and seasonal variability are 

presented in Figure 8. 

 

  

  
Figure 8. Contour map of integrated space-time regression kriging with seasonal drift estimation 

 

Based on the space-time predictions, humidity levels in Bali range from approximately 

70.82% to 90.90%. It can be concluded from the figure that humidity tends to increase slowly 

toward the western part of the research area. This spatial gradient suggests a consistent 

westward increase in humidity levels, likely influenced by regional climatic and geographic 

factors. In terms of latitude, there does not appear to be a clear trend. These findings align with 

the study by Toersilowati et al. (2022), which stated that the northern part of Bali experiences 

drier humidity conditions, while some areas in the south exhibit higher humidity. 

 

D. CONCLUSION AND SUGGESTIONS 

This research aims to analyze and predict monthly humidity levels in Bali. The results show 

its effectiveness provides the lowest RMSE value of 2.1442, which highlights its prediction 

accuracy. The map reveals that humidity levels in Bali are projected to decrease which can affect 

both the environmental quality and the tourism industry. Dry air conditions may lead to 

discomfort for tourists and reducing the appeal of the destination. Therefore, integrating 

climate considerations into sustainable tourism planning is crucial to mitigate these potential 

impacts. However, this research has certain limitations, especially regarding the limited 

availability of observed data which may reduce the reliability of the predictions. Sparse of 

distributed data locations reduce the ability of the interpolation to accurately capture spatial 

variability. If large areas have few or no observations, the model has to extrapolate over these 

gaps often leading to less reliable and more uncertain estimates. Incomplete spatial coverage 

means key local features may be missed out. Expending the observed data in future research is 

recommended to enhance the robustness of the model and accuracy. This will ensure more 
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reliable predictions and support the development of practical, data-driven strategies for 

sustainable tourism management in Bali.   
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