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 In spatial data analysis, interpolation is used to estimate values at unobserved 
locations, but often faces challenges in capturing complex spatial patterns and 
estimation uncertainty. One of the main obstacles is the small sample size, which 
makes the empirical variogram difficult to define well in conventional Kriging 
methods. The Bayesian Kriging approach overcomes this problem by integrating 
prior information, so it can still produce stable estimates despite limited data. This 
study is a quantitative, spatial-based research aimed at interpolating monthly 
rainfall in East Java Province using the Bayesian Kriging approach. The data consist 
of monthly rainfall measurements from 11 rain gauge stations distributed across 
East Java, obtained from the Indonesian Agency for Meteorology, Climatology, and 
Geophysics (BMKG) for the period of January to April 2024. The entire analysis was 
conducted using R software. A spherical semivariogram model was selected due to 
its superior fit to the spatial characteristics of the rainfall data in the study area 
with the smallest RMSE 37.17. This study demonstrates the effectiveness of 
Bayesian Kriging for rainfall interpolation in tropical regions with sparse data, 
providing more stable and accurate estimates compared to conventional methods. 
The scientific contribution of this research lies in showcasing how the integration 
of informative priors and Bayesian inference enhances interpolation accuracy in 
data-limited tropical environments. The resulting interpolated maps can inform 
land-use planning and flood risk mitigation by identifying areas of high rainfall for 
improved water infrastructure and lower-rainfall regions for targeted irrigation 
planning. 
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A. INTRODUCTION  

Geostatistics refers to a set of quantitative techniques designed to analyze and interpret 

data that possess spatial or locational attributes (Gao et al., 2024). Emerging in the 1980s, this 

field developed through the integration of disciplines such as mining, geology, mathematics, 

and statistics. Its primary strength lies in the ability to model spatial patterns, trends, and 

correlations within data (Biswas & Biswas, 2024). In parallel, spatial analysis plays a vital role 

in various field such as environmental planning, risk assessment, and resource management by 

enabling the evaluation of geographically distributed variables (Breunig et al., 2020; Rai et al., 

2022). It enables the detection of spatial patterns and trends that may go unnoticed when 

relying exclusively on sparse point-based environmental data (Lu et al., 2024). 

A challenge in spatial analysis is the limited availability of data, which is often caused by 

difficulties in collecting comprehensive and representative data across the study area. Factors 
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such as difficult geographical access, limited resources, and high operational costs are barriers 

to obtaining data in all desired locations. As a result, the spatial data available is usually limited 

and only covers certain observed points (Zorzetto & Marani, 2020). To overcome this limitation, 

spatial interpolation techniques are used as an approach to estimate the value of variables in 

locations that do not have direct observations, by utilizing information from points that have 

been observed in the vicinity (Uddin & Czajkowski, 2022). Interpolation allows the construction 

of continuous maps that depict the spatial distribution of an environmental variable more 

thoroughly. For example in the context of hydrometeorology, rainfall interpolation is used to 

map spatial distribution patterns of rainfall from data available only at a limited number of 

observation stations. This technique is also very useful in other fields such as monitoring air 

quality, soil moisture, surface temperature, and other environmental parameters, especially in 

regional planning efforts, natural resource management, and disaster mitigation (Nicoletta et 

al., 2021; Sharma et al., 2021). Interpolation helps policy makers and researchers to understand 

the condition of the region more accurately and in-depth, even though the available data is 

spatially limited. 

A frequently used interpolation method for estimating values in spatial data is Ordinary 

Kriging (OK) which is the best unbiased linear estimator and produces reliable predictions at 

unsampled locations (Erten et al., 2022). OK relies on some basic assumptions that must be met 

in order for its prediction results to be reliable, namely the existence of spatial dependence and 

stationarity of spatial data (Gribov & Krivoruchko, 2020). Spatial dependence indicates that 

values at a point are influenced by values at other points based on distance, which can be 

modeled with a variogram that describes how much influence the distance between points has 

on measured values (Mahdi et al., 2020). Several studies have applied this method to analyze 

rainfall patterns in various locations, such as Peninsular Malaysia (Jamaludin & Suhaimi, 2013), 

southern Brazil (Charles et al., 2022), and Indonesia (Maulana et al., 2022). OK has been shown 

to effectively map the spatial distribution of rainfall, showing areas of high intensity and dry 

conditions (Jamaludin & Suhaimi, 2013; Chutsagulprom et al., 2022). In practice, environmental 

data such as rainfall, air quality, or soil moisture often exhibit non-linear, heterogeneous, and 

complex spatial patterns that are difficult to capture using simple linear models like OK. When 

the underlying data does not meet the assumptions of stationarity or exhibits non-linear 

relationships, the performance of OK can deteriorate, leading to less accurate spatial 

predictions. Therefore, OK relies on semivariogram estimation to model the spatial structure of 

the data. When data is limited, the estimated semivariogram becomes unstable and 

unrepresentative because a sufficient number of point pairs for each lag distance is not 

available (Han & Suh, 2024). This puts the OK model at risk of overfitting to local noise or 

underfitting and thus failing to capture true spatial variation. As a result, the predicted values 

at unmeasured locations are less accurate and have high variance because the kriging weights 

obtained are not optimal. One such method is Bayesian Kriging (BK), which integrates prior 

into the modeling process and allows more robust spatial prediction even when classical 

assumptions are violated. 

Bayesian methods offer a more comprehensive approach where uncertainty is explicitly 

modeled through probability distributions (Astutik et al., 2023; Schoot et al., 2021). The 

Bayesian approach provides advantages in terms of producing more realistic and robust 
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estimates, especially in conditions of limited data (Schoot & Miočević, 2020). BK is a more 

flexible approach in kriging because it considers the covariance structure as unknown (Gelfand 

& Banerjee, 2017). Unlike traditional methods that estimate parameters using ordinary least 

squares or maximum likelihood, BK employs prior distributions for both parameters and 

hyperparameters which are iteratively updated using data through MCMC simulations. This 

process produces posterior distributions for each parameter, enabling a robust quantification 

of uncertainty an aspect often limited in conventional approaches. BK has been widely adopted 

across various disciplines, not only to model spatial structures but also to provide deeper 

insights into uncertainty within geophysical processes, ecological patterns, environmental 

pollution, topography, and subsurface characteristics (Lima et al., 2021). 

This study uses the BK approach with informative priors for interpolating monthly rainfall 

in East Java with 11 rain gauges. In Bayesian analysis, informative priors incorporate existing 

knowledge or findings from previous studies to guide the estimation process, especially when 

observational data are limited. Informative prior can be obtained through the posterior results 

of previous studies, thereby ensuring that new estimates are grounded in prior empirical 

evidence (Wesner & Pomeranz, 2021; Zondervan-Zwijnenburg et al., 2017). In this case, prior 

information is adapted from previous study (Verdin et al., 2015), who applied BK to model 

precipitation in Central and South America. The prior distribution used in parameter 

estimation is a non-informative prior with the distribution used is flat prior for coefficient 

regression, inverse gamma prior for sill parameters and uniform prior for range parameters, 

and the nugget parameter is not inccluded. The resulting posterior distributions are: normal 

for regression coefficients, inverse gamma for the sill, and uniform for the range. However, the 

analysis reveals that the posterior distribution is imperfect due to difficulties in jointly 

identifying the sill and range parameters, which is a known issue in geostatistical modeling 

when using limited data or non-informative priors (Verdin et al., 2015). This challenge can lead 

to weak identifiability and high uncertainty in spatial prediction.  

Based on the background described, this study aims to spatially interpolate monthly rainfall 

in East Java using the BK approach. By incorporating prior information into the modeling 

process, this study seeks to overcome challenges related to limited observational data and 

improve the accuracy of rainfall predictions in unsampled locations. This research also aims to 

demonstrate the applicability and effectiveness of Bayesian Kriging on monthly rainfall 

interpolation in East Java with a sparse monitoring network. The analysis results are expected 

to produce monthly rainfall distribution maps that can support more informed decision-making 

in areas such as water resources management, agricultural planning, and disaster mitigation. 

 

B. METHODS 

1. Data Source 

The data used in this study are secondary monthly rainfall data obtained from the East Java 

Meteorology, Climatology and Geophysics Agency (BMKG) website in November 2023-April 

2024 which is the rainy season period. This study uses 11 observation locations as spatial units 

shown in Figure 1. 
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Figure 1. Study Area 

 

The study area in this research is East Java, which is one of the provinces in Indonesia. 

Astronomically, East Java is located between 111°0' to 114°4' East Longitude and 7°12' to 8°48' 

South Latitude. East Java Province borders the Java Sea to the north, the Indian Ocean to the 

south, the Bali Strait to the east, and Central Java Province to the west. This astronomical 

location gives East Java a tropical climate with weather variations influenced by latitude and 

altitude from sea level. East Java has 11 weather and climate observation stations. Weather and 

climate observation stations have a strategic role in providing data that forms the basis for 

scientific analysis and evidence-based policy making. The resulting long-term data is essential 

for monitoring climate dynamics, including rainfall patterns, temperature and humidity, to 

understand trends in environmental change and their impact on ecosystems. 

 

2. Spatial Effect Test 

The main concepts in spatial analysis are spatial heterogeneity and spatial dependence. 

Spatial dependence relates to the correlation between observations based on their spatial 

proximity (Gao et al., 2024). Spatial dependence or spatial autocorrelation occurs due to the 

similarity of characteristics that occur in adjacent locations. The test statistic often used to test 

for spatial autocorrelation is the Moran-I statistic (Efendi et al., 2023). The hypothesis used to 

test for autocorrelation is as follows.  

𝐻0 : ∀𝐶𝑜𝑟(𝑌𝑖, 𝑌𝑗) = 0; 𝑖 ≠ 𝑗 (has no spatial autocorrelation) 𝑣𝑠 

𝐻1 : ∃𝐶𝑜𝑟 (𝑌𝑖, 𝑌𝑗) ≠ 0; 𝑖 ≠ 𝑗 (has spatial autocorrelation) 

𝐼 =
∑ ∑ 𝑤𝑖𝑗(𝑌𝑖−�̅�)(𝑌𝑗−�̅�)𝑛

𝑖=1
𝑛
𝑗=1

∑ (𝑌𝑖−�̅�)2𝑛
𝑖=1

           (1) 

 

𝐼 is the Moran's I statistic, 𝑌𝑖 represents the observed value at location-𝑖, �̅� is the mean of all 

observed values, 𝑌𝑗  is the observed value at location-𝑗 , and 𝑤𝑖𝑗  denotes the spatial weight 

between locations 𝑖 and 𝑗, typically based on the distance or adjacency between these locations. 

This test criterion is seen from the value of I which lies between -1 and 1. If the value of 𝐼 is 

negative, it states negative autocorrelation, and if 𝐼  is positive, it can be said that there is 

positive autocorrelation. 
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3. Ordinary Kriging 

Spatial interpolation is a method to predict values at locations that do not have sample 

points. One method for spatial interpolation is Kriging. The Kriging method was developed by 

D.L. Krige to estimate the value of mining ore distribution based on data from several sample 

locations which was further developed by G. Matheron in 1963 (Cressie, 1993). Kriging is a 

geostatistical method that uses known values and semivariograms to predict values at other 

unmeasured locations. The predicted values in the kriging method vary depending on the 

proximity to the original data location. The Kriging method uses a linear combination of weights 

to estimate values between data samples. 

There are several types of kriging methods such as simple, ordinary, universal, indicator, 

disjunctive, and probability kriging (Bostan, 2017). Among these methods, OK is the most 

commonly used spatial interpolation method. OK assumes that the average measured value is 

constant across the area (spatial stationarity). This method is particularly suitable for 

environmental data that exhibit local spatial dependence without a strong global trend. It is also 

preferred when the data show random spatial variability and are limited in number. OK is ideal 

when there is no clear spatial trend in the data or when observations are sparse for example, 

rainfall data that are randomly scattered without a strong geographic gradient because it 

provides a balance between model simplicity and prediction accuracy under minimal 

assumptions (Han & Suh, 2024). 

In using the kriging interpolation method, there are two main steps that must be performed, 

namely recognizing spatial dependence patterns and making predictions in unmeasured areas 

(Varga et al., 2023). The first step involves creating variograms and covariance functions to 

identify and estimate the degree of spatial autocorrelation between the data points. Variograms 

can help in understanding the extent to which a point at a particular location is affected by 

points in its vicinity. The information in the variogram can be used to predict values at 

unmeasured locations through the Kriging equation. The general form of the Kriging equation 

for estimating data at unsampled locations is presented in equation (2). 

 

𝑍(𝑠) = 𝜇(𝑠) + 𝜀(𝑠) (2) 

 

where μ is the average of the process and 𝜀(𝑠) is a random quantity with zero mean and has 

covariance 𝐶(ℎ) where h is the separation in space also known as lag. The covariance (𝐶(ℎ)) is 

shown in equation (3). 

 

𝐶(𝒉) = 𝐸[𝜀(𝒔)𝜀(𝒔 + 𝒉)] (3) 

 

Theoretically, there are semivariogram models such as the exponential model, spherical 

model, and Gaussian model written as follows. 
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a. Spherical 

 

𝛾(𝒉) = {
𝜎2 [

3𝒉

2𝜙
−

1

2
(

𝒉

𝜙
)

2

] , 𝑓𝑜𝑟 0 < ℎ < 𝑟

𝜎2, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟𝑠

(4) 

𝛾(0) = 0 

 

b. Exponential 

𝛾(𝒉) = 𝜎2 [1 − exp (−
𝒉

𝜙
)] + 𝜏2 (5) 

𝛾(0) = 0 

 

with 𝛾(ℎ)  is defined as semivariogram in ℎ𝑡ℎ  lag, 𝜎2  as sill parameter, 𝜙  as range 

parameter, 𝜏2  as nugget variance parameter. Suppose there is a value of a random 

variable Z with locations 𝑠1, 𝑠2, . . . 𝑠𝑁 at 𝑁  observations, 𝑧(𝑠𝑖)  with 𝑖 = 1,2, . . . , 𝑁 . To 

estimate the value at an unsampled location or point 𝑠𝑜 can use the estimator in equation 

(6). 

 

�̂�(𝑠0) = ∑ 𝜆𝑖𝑍(𝑠𝑖)

𝑛

𝑖=1

 (6) 

 

where �̂�(𝑠0) is the estimated value and 𝜆𝑖  is the weight of the kriging estimator that 

satisfies ∑ 𝜆𝑖
𝑁
𝑖=1 = 1. An illustration of 𝜆𝑖 as the weight of the kriging estimator is shown 

in Figure 2. 

 

 
Figure 2. Illustration of Kriging Weights at Location 𝑠0  

 

The unknown value at the target location is estimated as a weighted linear combination 

of nearby observed data points. Weights (λ₁, λ₂, ..., λₙ) are determined based on spatial 

correlation, typically modeled using a semivariogram. 
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4. Bayesian Kriging 

Bayesian Kriging was introduced by Omre (1987) which is a method of combining kriging 

with parameter estimation using the Bayesian approach (Omre, 1987). The Bayesian approach 

to Kriging involves prior information about the variogram with its parameters, namely mean 

(𝛽), sill (𝜎2), range (𝜙), nugget (𝜏2). The model parameters in Bayesian Kriging are estimated 

from the posterior distribution shown in equation (7). 

 

𝑝(𝜽|𝑍) ∝ 𝑓(𝑍|𝜽)𝜋(𝜽) (7) 

 

Where 𝑓(𝑍|𝜃) is the likelihood function and π(θ) is the prior distribution, while 𝑍 is the 

observed data, 𝜃  is the vector of model parameters (variogram), 𝑃(𝜃|𝑍)  is the posterior 

distribution. The explanation of the likelihood function and posterior distribution of Bayesian 

Kriging begins with an understanding of the spatial model. Suppose there is a spatial model 

written hierarchically as follows. 

Level 1  : 𝒀(𝒖) = 𝑿(𝒖)𝜷 + 𝑆(𝒖) + 𝜀(𝒖)  

𝒀(𝒖) = 𝑿(𝒖)𝜷 + ∑ 𝜎𝑘𝑇𝑘(𝒖) + 𝜀(𝒖);𝐾
𝑘=1   

Level 2  : 𝑻𝑘(𝒖)~𝒩(0, 𝑅𝑘(𝜙𝑘)), 𝑻1, … , 𝑻𝑘  are independent and 

     𝜀(𝒖) ~𝑖𝑖𝑑 𝒩(0, 𝜏2𝐼);     

Level 3   : (𝜷, 𝝈𝟐, 𝜙, 𝜏2)~𝑝𝑟( . ), as prior distribution 

 

The likelihood function and the prior distribution of the model parameters can be written 

in equation (8) and equation (9).  

 

𝐿(𝛽, 𝜎2, 𝜙, 𝜏2|𝑌) ∝ (2𝜋)−
𝑛
2 . |𝑅𝑘(𝜙𝑘)|−

1
2. exp (−

1

2
[𝒀 − 𝑿𝛽] ′𝑅𝑘(𝜙𝑘)−1[𝒀 − 𝑿𝛽]) (8) 

 

𝑝(𝛽, 𝜎2, 𝜙, 𝜏2) = 𝑝(𝜙, 𝜏2)𝑝(𝛽, 𝜎2|𝜙, 𝜏2) (9) 

 

For the prior distribution each parameter is written in Table 1. 

 

Table 1. Prior Distribution Each Parameter 

Paremeter Prior Distribution 
𝛽 𝛽~𝒩(𝜇0, 𝑽0) 

𝜎2 𝜎2~𝑆𝑐𝑙 − 𝐼𝑛𝑣 − χ2(𝑣0, 𝑠0
2) 

𝜙 𝜙~𝑈(𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑘𝑠) 
𝜏2 𝜏2~𝑈(𝜏𝑚𝑖𝑛

2 , 𝜏𝑚𝑎𝑘𝑠
2 ) 

 

The posterior of all model parameters can be written as follows. 

 

𝑝(𝛽, 𝜎2, 𝜙, 𝜏2|𝑌) = 𝑝(𝛽, 𝜎2|𝑌, 𝜙, 𝜏2)𝑝(𝜙, 𝜏2|𝑌) (10) 

 

𝑝(𝜙, 𝜏2|𝑌) ∝
𝑝(𝛽, 𝜎2, 𝜙, 𝜏2) × 𝑝(𝑦|𝛽, 𝜎2, 𝜙, 𝜏2)

𝑝(𝛽, |𝑌, 𝜎2, 𝜙, 𝜏2) 𝑝(𝜎2|𝑌, 𝜙, 𝜏2)
(11) 
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𝑝(𝜙, 𝜏2|𝑌) ∝
𝑝(𝜙, 𝜏2) 𝑝(𝛽, 𝜎2|𝜙, 𝜏2) ×  𝑝(𝑦|𝛽, 𝜎2, 𝜙, 𝜏2)

𝑝(𝛽, |𝑌, 𝜎2, 𝜙, 𝜏2) 𝑝(𝜎2|𝑌, 𝜙, 𝜏2)
 (12) 

 

The determination of posterior distribution for 𝛽  and 𝜎2 can be obtained analytically 

because they belong to the conjugate prior type. However, the determination of posterior 

distribution for parameters 𝜙  and 𝜏2 cannot be done analytically but by MCMC. One MCMC 

algorithm was introduced by (Tanner, 1996) to obtain the posterior distribution of each 

parameter in Bayesian Kriging. This algorithm is used in package geoR in RStudio software with 

the following algorithm steps. 

a. Discretize the distribution of (𝜙, 𝜏2 |𝑌), i.e. select a set of values for 𝜙 and 𝜏2 within a 

reasonable interval. In this condition, a uniform prior is used for 𝜙  and 𝜏2  on the 

selected set of values. 

b. Calculate the posterior probability with equation (12). The result of this calculation 

forms the discrete posterior distribution 𝑝(𝜙, 𝜏2 |𝑌). 

c. Sampling the values of 𝜙 and 𝜏2 from the distribution 𝑝(𝜙, 𝜏2 |𝑌). 

d. Plugging the retrieved values of 𝜙 and 𝜏2 into the distribution 𝑝(𝛽, 𝜎2│𝑌, 𝜙, 𝜏2 |𝑌 ) and 

sampling from this distribution. 

e. Repeating step 3 and step 4 for the desired number of iterations until obtaining the 

desired (�̂�, �̂�2, �̂�, �̂�2 ) from the posterior distribution. 

 

5. Performance Evaluation 

Root Mean Square Error (RMSE) is a statistical metric used to measure how well a model's 

predictions approximate the actual observed values. RMSE measures the root of the mean 

square of the difference between the predicted value and the true value. The formula of RMSE 

is shown in equation (13) (Hodson, 2022). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑧0 − �̂�0)2

𝑛

𝑖=1

(13) 

 

where n is the number of observations, 𝑧0 is the actual value, and �̂�0 is the predicted value. If 

the RMSE is smaller, it indicates that the model predictions are more accurate, so the model 

performance can be said to be good. The advantage of RMSE over MSE is that the criterion is in 

the same units as the target variable, making it easier to interpretation (Althoff & Rodrigues, 

2021). 

 

C. RESULT AND DISCUSSION 

1. Descriptive Statistics 

Rainfall is the amount of rain over a specific area and time measured in millimeters (mm) 

and is vital for ecosystems, agriculture, and human needs. In Indonesia, rainfall varies spatially 

and temporally, influenced by geography, wind, and climate phenomena like El Niño and La 

Niña. In East Java, during the study period, rainfall ranged from 139.6 mm (Banyuwangi) to 
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450.6 mm (Nganjuk). Monthly rainfall is classified as medium (100–300 mm) and high (300–

500 mm), with high rainfall observed at Nganjuk and Dhoho stations. 

 

2. Spatial Autocorrelation 

Before conducting Bayesian Kriging analysis, it is essential to perform a spatial 

autocorrelation test to ensure the presence of spatial dependence in the data. One of the most 

commonly used methods is the Moran's I statistic, which measures the degree of correlation 

between the values of a variable at one location and those at neighboring locations, based on a 

predefined spatial weights matrix. The results of the spatial autocorrelation test in this study 

are presented in Table 2.  

 

Table 2. Moran’s I Test 

𝐄(𝐈) 𝐕𝐚𝐫(𝐈) Moran Statistics P-value 
-0.1 0.11 0.463 0.046 

 

The p-value of 0.046 indicates that the Moran’s I statistic is significant at the 5% level, 

suggesting a significant spatial autocorrelation in the monthly rainfall data across East Java. 

This implies that rainfall values at nearby locations are spatially related. 

 

3. Empirical an Theoritical Variogram 

The empirical variogram in Figure 3 derived from the monthly rainfall data reveals a 

characteristic spatial structure. At short distances, the semivariance values are relatively low, 

indicating a strong similarity in rainfall amounts between nearby locations. As the distance 

increases, the semivariance rises, reaching a peak around 100–120 km, reflecting a decline in 

spatial correlation. Beyond this range, the semivariance drops significantly, likely due to the 

limited number of data pairs at larger distances, leading to less stable estimates. In the context 

of Bayesian Kriging, this variogram serves as a basis for constructing the spatial prior. The 

relatively small nugget effect suggests minimal measurement error or small-scale variability in 

the data. The sill, estimated between 12,000 and 13,000, represents the total data variance, 

while the range, approximately 100–120 km, defines the maximum distance over which spatial 

correlation persists.  

In order to accurately model the spatial structure of the monthly rainfall data, several 

theoretical variogram models were considered. Two models spherical and exponential were 

selected due to their widespread use and suitability for various types of spatial data. Each 

model was fitted to the empirical variogram derived from the observed data, using consistent 

initial parameters for nugget, sill, and range. The fitting results were then compared both 

visually and statistically to determine the model that best represents the underlying spatial 

correlation structure. This selection is crucial for ensuring the robustness of subsequent 

Bayesian Kriging analysis. 
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Figure 3.  Empirical Variogram 

 

4. Model Fitting 

In this section, the results of Bayesian Kriging using four different theoretical variogram 

model as spherical and exponential are compared. Each model was fitted with identical prior 

information to isolate the influence of variogram structure on the prediction outcomes. The 

analysis includes a comparison of the trace plot, autocorrelation plot, and Monte Carlo Error, 

aiming to identify the variogram model that provides the most accurate and reliable spatial 

interpolation of monthly rainfall data. Trace plot of of each posterior parameter for spherical 

model are shown in Figure 4 and the trace plot for exponential model are shown in Figure 5 

below. 

Trace plots are used to check the convergence of MCMC chains in the context of Bayesian 

Kriging. Trace plots that show good convergence are characterized by random fluctuations 

around the mean value without any consistent upward or downward trend, indicating that the 

sample has reached a stationary state. In this analysis, the trace plots for the spherical and 

exponential models show that all parameters (𝛽, 𝜎², 𝜙, and 𝜏²) have reached convergence, 

which is reflected by the stable and dense fluctuation patterns throughout the 10,000 iterations. 

Overall, there is no significant difference between the trace plots for the spherical and 

exponential models. Both models show almost identical patterns, with the most striking 

difference being the parameter 𝜎². In the exponential model, this parameter shows slightly 

more extreme spikes compared to the spherical model, although the difference is relatively 

small. 
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Figure 4. Trace Plot of Each Parameter for Spherical Variogram Model 

 

 
Figure 5. Trace Plot of Each Parameter for Exponential Variogram Model 

  

Upon observing the ACF plots for both the spherical and exponential variogram models, it 

can be seen that the autocorrelation values for all parameters (𝛽, 𝜎2, 𝜙, and 𝜏2) largely remain 

within the blue dashed confidence intervals across the first 20 lags. This suggests that there is 

no strong correlation between consecutive samples after a few steps, which is a strong indicator 

of efficient mixing in the MCMC sampling. Efficient mixing is crucial because it means the 

generated samples are representative of the true posterior distribution, rather than being 

heavily dependent on previous samples. 
Furthermore, the minimal autocorrelation observed complements the previous results 

from the trace plots where the chains fluctuated randomly around a stable mean without 

obvious trends and the density plots where smooth and unimodal distributions were obtained. 

These three types of diagnostics (trace plot and ACF plot) collectively suggest that the MCMC 

chains have likely converged and that the samples can be considered reliable for posterior 
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inference. Autocorrelation plot of of each posterior parameter for spherical model are shown 

in Figure 6 and the autocorrelation plot for exponential model are shown in Figure 7 below. 

 

 
Figure 6. Autocorrelation Plot of Each Parameter for Spherical Variogram Model 

 

 
Figure 7. Autocorrelation Plot of Each Parameter for Exponential Variogram Model 

 

When comparing the ACF patterns between the spherical and exponential models, the plots 

are very similar in terms of autocorrelation structure: both models show quick decay of 

autocorrelation and maintain values close to zero after the first few lags. This indicates that 

changing the variogram models has minimal impact on the sampling performance and 

convergence behavior of the Bayesian Kriging approach used. Thus, in terms of MCMC 

diagnostics, both models perform equally well, and the choice between them may be guided 

more by the theoretical or practical suitability for spatial data rather than concerns about 

convergence. The following are the parameter estimation results of two variogram models, 

namely the Spherical and Exponential models shown in Table 3. 
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Table 3. Summary of Posterior Distribution Each Model 

Variogram 
Model 

Parameter 
Estimator 

Mean 
Standard 
Deviation 

Credible Interval MC 
Error 

5% SD 
2,5% 97,5% 

Spherical 

�̂� 246.66 39.53 166.82 323.66 0.39 1.98 

�̂�2 7345.19 2933.93 3449.37 14509.57 29.34 146.69 

�̂� 0.56 0.49 0 1.85 0.005 0.02 

�̂�2 1.09 1.04 0 3.99 0.015 0.05 

Exponential 

�̂� 282.03 45.62 189.04 373.28 0.46 2.28 

�̂�2 7003.62 3616.43 2346.33 16157.38 36.16 180.82 

�̂� 0.18 0.19 0 0.65 0.002 0.01 

�̂�2 1.51 1.25 0 4.54 0.001 0.06 

 

The estimation results of Bayesian Kriging based on the trace plots, ACF plots, and summary 

statistics indicate that both models using spherical and exponential semivariograms have 

reached convergence, as evidenced by the stable and random fluctuations of parameters across 

iterations. However, notable differences emerge in terms of estimation stability and precision. 

The exponential model yields a more concentrated estimate for the spatial range parameter �̂� 

compared to the spherical model, indicating a shorter spatial correlation and greater precision, 

supported by a smaller Monte Carlo error. Meanwhile, the spherical model exhibits higher 

variability in the estimation of �̂�2 (SD = 2933.93) than the exponential model (SD = 3616.43), 

though it features a slightly narrower credible interval. The parameter �̂� is estimated with a 

higher mean under the exponential model (282.03), albeit with greater uncertainty (SD = 45.62 

vs. 39.53). These differences highlight the importance of selecting an appropriate variogram 

model; the exponential model appears more stable in estimating spatial parameters, while the 

spherical model is more sensitive to local variation.  

 

5. Validation Model 

The performance of Bayesian Kriging in interpolating monthly rainfall in East Java can be 

seen through model validation on testing data. Validation on the testing data is seen based on 

the RMSE value on the interpolation results shown in Table 4. 

 

Table 4. RMSE Value 

Variogram Model RMSE 
Spherical 37.17476 

Exponential 40.22298 

 

The validation results of the Bayesian Kriging model on the test data show that the model 

with the spherical variogram produces a RMSE lower than the exponential variogram. The 

lower RMSE value of the spherical variogram indicates that this model has better accuracy in 

predicting monthly rainfall in East Java. This indicates that the spatial structure of rainfall data 

in the region is more in line with the assumptions built by the spherical variogram, where the 

level of interrelationship between locations tends to decrease gradually until it reaches a 

certain threshold (range). This difference in performance between variograms also emphasizes 

the importance of selecting the right variogram model in the spatial interpolation process using 

the Bayesian Kriging approach. The selection of an appropriate variogram can improve the 
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accuracy of predictions in unobserved areas, so that interpolation results are more reliable for 

decision making, especially in the context of planning and mitigating hydrometeorological 

disasters such as floods or droughts. The spherical variogram can be recommended as a more 

optimal model for rainfall characteristics in East Java in this study. The interpolation results of 

East Java monthly rainfall based on Bayesian Kriging can be seen through the contour map in 

Figure 8. 

 

 
Figure 8. Monthly Rainfall Interpolation Map in East Java Based on Bayesian Kriging Model 

 

The interpolated map (Figure 8) of monthly rainfall in East Java illustrates the spatial 

distribution of rainfall predicted using the Bayesian Kriging method. The interpolated results 

show that the highest rainfall is concentrated in the southwestern part of East Java, marked in 

purple and pink. This indicates the possible influence of topography such as mountains or 

upstream watershed areas that tend to receive more precipitation. In contrast, most other areas 

show moderate to low rainfall, especially in the north and east. The spatial distribution shown 

is quite smooth and consistent with the geographical pattern of East Java, which demonstrates 

the effectiveness of the Bayesian Kriging method in capturing spatial structure and 

accommodating prediction uncertainty. These results can serve as the basis for policy planning 

for water management, agriculture, and disaster mitigation at the local level. 

When compared with previous studies that used OK with Gaussian semivariogram to map 

rainfall in Sulawesi, the general spatial patterns particularly the high rainfall in mountainous 

regions appear to be consistent (Sanusi et al., 2024). However, the Bayesian Kriging approach 

employed in this study offers the added advantage of incorporating prior knowledge and 

explicitly modelling uncertainty, resulting in smoother and more reliable spatial predictions 

(Kanooni & Amogein, 2025; Lima et al., 2021). This supports the notion that Bayesian Kriging 

can provide improved interpolation performance, especially in regions with sparse data, as also 

noted in (Verdin et al., 2015). Thus, the findings of this study not only align with earlier research 
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but also highlight the potential of Bayesian approaches in enhancing spatial analysis in tropical 

regions. 

 

D. CONCLUSION AND SUGGESTIONS 

Bayesian Kriging is a parameter estimation approach in spatial interpolation method 

designed to overcome the limitations of sample size and the complexity of variogram structure. 

This study applies Bayesian Kriging to interpolate monthly rainfall in East Java. Semivariogram 

parameters including intercept, sill, range, and nugget are estimated using a Bayesian approach 

with informative priors. The reliability of parameter estimation is proven through trace plots, 

autocorrelation plots, and Monte Carlo error analysis, which demonstrate convergence and 

stability of the posterior samples. Two theoretical semivariogram models were used, namely 

spherical and exponential. The analysis shows that the spherical semivariogram model 

provides more accurate interpolation results than the exponential model, as indicated by lower 

RMSE values (spherical: RMSE = 37.17 mm vs. exponential: RMSE = 40.22 mm). This highlights 

the spherical model’s better capacity to capture medium-range spatial dependencies commonly 

found in rainfall patterns across East Java.  

The novelty of this study lies in the use of informative priors to improve estimation accuracy 

under limited data conditions, which has rarely been implemented in previous rainfall 

interpolation studies in Indonesia. Thus, it can be concluded that the Bayesian Kriging approach 

with the spherical model is better able to represent the spatial structure of monthly rainfall 

data in East Java. The use of informative priors also makes this method effective despite limited 

data. The interpolated maps (Figure 8) clearly show the highest rainfall concentrated in the 

southwestern part of East Java, particularly in districts such as Nganjuk, Madiun, dan Ponorogo, 

with estimated values more than 300 mm/month. These findings indicate that the research 

objectives namely to evaluate the performance of Bayesian Kriging with informative priors in 

interpolating monthly rainfall have been successfully addressed.  

Based on the results obtained, future research is recommended to explore the Bayesian 

Kriging approach by considering other semivariogram models such as Gaussian or Matérn, 

which offer greater flexibility in representing smooth or complex spatial correlations. 

Additionally, the inclusion of environmental covariates such as elevation, distance from the 

coast, or land cover is expected to improve model performance by accounting for key physical 

factors influencing rainfall distribution. In addition, testing for longer time periods or different 

seasons can also enrich the understanding of the spatial dynamics of rainfall in East Java. the 

interpolated map shows that some areas, especially in the central and western parts of East 

Java, receive high monthly rainfall. Therefore, local governments and stakeholders are advised 

to increase vigilance against potential flooding and optimize water management infrastructure 

in these areas. For instance, regions like Ponorogo and Nganjuk consistently showed 

interpolated rainfall above 300 mm/month in this period, suggesting priority zones for flood 

mitigation planning. Conversely, areas with lower rainfall can be prioritized in planning 

irrigation systems and water conservation, especially to support the agricultural sector. Dry 

zones identified in the east such as Banyuwangi may benefit from targeted irrigation 

investments. Thus, the results of this study can be used as a basis for spatially-based land use 

planning and hydrometeorological risk mitigation. 
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