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 Particle Swarm Optimization (PSO) is a widely used metaheuristic approach for 
solving optimization problems. Recent developments in this field involve the 
adaptation of human learning behaviors to enhance algorithmic performance. One 
such adaptation is the Adaptive Particle Swarm Optimization based on Human 
Social Learning (APSO-HSL), a variant of PSO that incorporates human-inspired 
learning strategies. This study aims to enhance the performance of APSO-HSL on 
the Traveling Salesman Problem (TSP) by incorporating additional human learning 
strategies. The proposed algorithm, named Modified Adaptive Particle Swarm 
Optimization–Human Learning Strategies (MAPSO-HLS), integrates learning 
mechanisms from Human Learning Optimization (HLO), including individual, 
random, and social learning. This research is classified as applied research and 
algorithmic experimentation, focusing on the development and modification of a 
metaheuristic algorithm to solve a well-known combinatorial optimization 
problem. Benchmark datasets from the Traveling Salesman Problem Library 
(TSPLIB) are used for evaluation, and all computations and experiments are 
implemented in Python. The performance of MAPSO-HLS is compared with the 
original APSO-HSL in terms of shortest distance, convergence rate, and population 
diversity. A comparison of the shortest distances was conducted using exact 
solutions and evaluated through percentage deviation. The results show that 
MAPSO-HLS produces more accurate solutions than APSO-HSL. Convergence 
analysis reveals that MAPSO-HLS converges faster toward lower objective values. 
Its advantage is further supported by the diversity analysis, where the diversity 
curves indicate a better balance between exploration and exploitation. 
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A. INTRODUCTION  

Particle Swarm Optimization (PSO) is a meta-heuristic algorithm introduced by Kennedy 

and Eberhart and is widely used to solve optimization problems. The PSO algorithm is based on 

natural phenomena, namely the movement of a group of living things, such as birds and fish in 

finding food (Houssein et al., 2021). Computationally, PSO has advantages in terms of memory 

usage and speed (Jiyue et al., 2023; Lynn & Suganthan, 2015; Punyakum et al., 2022). The 

simplicity and efficiency factors have caused PSO to be widely used in various fields and it is 

considered the most effective method for solving optimization problems (Bangyal et al., 2023). 

PSO implementations are widely found in various fields, such as health, environment, industry, 

and commerce (Al-Maamari & Omara, 2015; Ramdhani, 2016). 
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Despite its strengths, standard PSO often suffers from premature convergence, particularly 

when parameters are not properly tuned (Guo et al., 2025; Larsen et al., 2016; Ashraf et al., 

2022). This leads to limited global exploration, insufficient local exploitation, and reduced 

solution diversity. To address these limitations, several PSO variants have been proposed, 

including heterogeneus comprehensive learning PSO (Lynn & Suganthan, 2015), discrete PSO 

(Zhong et al., 2018), and improved PSO with adaptive initialization techniques (Ashraf et al., 

2022), each aiming to enhance convergence and avoid local optima.  

A promising direction to overcome these challenges is the integration of human learning 

behavior into algorithmic design (Roberts-Mahoney et al., 2016; Jarecki et al., 2018; Wang et al., 

2017; Du et al. 2022). Human Learning Optimization (HLO) introduces learning strategies 

inspired by how humans solve problems, through random trial, individual experience, and 

social imitation. These principles have been shown to improve convergence and solution 

diversity in complex search spaces (Wang et al., 2014). Building on this, the Adaptive Particle 

Swarm Optimization based on Human Social Learning (APSO-HSL) algorithm incorporates 

human social learning into the PSO framework, resulting in improved accuracy, stability, and 

global search performance (Jiyue et al., 2023). Nonetheless, current implementations of APSO-

HSL primarily focus on the social learning component, leaving the potential of individual and 

random learning strategies underexplored. 

Solving combinatorial problems such as the Traveling Salesman Problem (TSP), a classic 

NP-hard problem requiring the optimal traversal of cities, is a compelling application for 

metaheuristics (Shaj et al., 2016; Chen et al., 2025). TSP not only represents real-world 

complexity but also demands a balance between exploration and exploitation due to its 

exponentially growing solution space (Jedrzejowicz et al., 2024). Although many PSO variants 

have been applied to TSP, further exploration into the role of adaptive human-inspired learning 

remains limited.  

This study aims to enhance the APSO-HSL algorithm by integrating comprehensive human 

learning strategies from HLO namely random, individual, and social learning to improve the 

effectiveness of PSO in solving the TSP. Based on Vahdat et al. (2016), the combination of meta-

heuristic algorithms with adaptive learning mechanism has many advantages in solving 

optimization problems compared to algorithms inspired by natural phenomena.  By extending 

APSO-HSL with a more complete representation of human learning behavior, the proposed 

approach addresses the gap in existing PSO-based methods that insufficiently balance 

exploration and exploitation. 

 

B. METHODS 

This research is categorized as applied research and algorithmic experimentation, focusing 

on the development and modification of a metaheuristic optimization to solve a well-known 

combinatorial optimization problem (TSP). The dataset utilized in this research comprises 

benchmark instances sourced from the Traveling Salesman Problem Library (TSPLIB). Seven 

case examples with varying numbers of cities were selected: namely burma14, gr666, gr96, 

pr226, u574, ulysses16, and ulysses22 (TSPLIB, n.d.). All experiments were conducted using an 

Intel PC (core i5 @3.09GHz CPU, 4GB RAM). 
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1. Particle Swarm Optimization (PSO) 

The PSO algorithm begins with the particle initialization and initial velocity assignment. 

The optimal function value and location can be found by using the initial velocity to assess the 

objective function at each particle location. The particle velocity at that moment, each particle's 

optimal location, and each particle's optimal neighboring location are then used to determine a 

new velocity. The particle's location, velocity, and neighbors are updated iteratively until the 

algorithm reaches the stopping criterion. The new location was determined by adding the old 

location and modified velocity to maintain the particle within the boundary (Ab Wahab et al., 

2015; Jain et al., 2018; Gad, 2022). 

To obtain the best solution, each particle moves based on its personal best position (𝑝𝑏𝑒𝑠𝑡) 

and the global best position (𝑔𝑏𝑒𝑠𝑡) in the swarm. Each particle 𝑖 will update its velocity 𝑣 and 

position 𝑥 in each iteration 𝑡 + 1 using the following equation: 

 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1( 𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡), (1) 

  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1, (2) 

 

where 𝑖  denotes the particle index, 𝑡  is the current iteration order, 𝜔  is the inertia used to 

balance local exploitation and global exploration, 𝑟1 and 𝑟2 is any number uniformly distributed 

on [0,1], 𝑐1 and 𝑐2 are the acceleration coefficients, which are two positive constants. Equation 

(1) is used to calculate the new velocity of the particle based on the distance and last velocity 

of a position from the particle's best personal experience and the group's best experience. Then, 

the particle moves towards the new position based on Equation (2) (Piotrowski et al., 2020; 

Zhong et al., 2018). 

 

2. Adaptive Particle Swarm Optimization based on Social Learning Intelligence (APSO-

HSL) 

The APSO-HSL algorithm developed by Jiyue et al. (2023) uses a learning strategy based on 

the multiswarm technique which the diversity of each particle is determined by the division of 

the swarm and the size of each swarm. Human social learning intelligence is used to adaptively 

divide the swarm and determine the size of each subswarm. The multiswarm technique in 

APSO-HSL has the following mathematical definition: 

 

𝑓1 = 𝑓𝑚𝑎𝑥,  

𝑓2 = 𝑓min + 𝛼1(𝑓𝑚𝑎𝑥 − 𝑓min),  

𝑓3 = 𝑓min + 𝛼2(𝑓𝑚𝑎𝑥 − 𝑓min), (3) 

𝑓4 = 𝑓min + 𝛼3(𝑓𝑚𝑎𝑥 − 𝑓min),  

𝑓5 = 𝑓min,  

Ω𝑗
t = {𝑥𝑖

𝑡  | 𝑓𝑗 ≤ fitness (𝑥𝑖
𝑡) < 𝑓𝑗+1, 𝑖 = 1, 2, … ,𝑁; 𝑗 = 1, 2, 3, 4}. 

 

𝑓min and 𝑓𝑚𝑎𝑥 are the minimum and maximum values of the fitness function. {𝑓𝑘, 𝑘 = 1, 2,… , 5} 

denotes the subswarm boundaries. Ω𝑗
t denotes the 𝑗th subswarm at the 𝑡th iteration. 𝑥𝑖

𝑡  is the 

position of the 𝑖th particle at the 𝑡th iteration. The upper and lower bounds for each particle’s 
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fitness are determined using 𝛼𝑘  with 𝑘 = 1, 2, 3 , where 𝛼1 = 0.25, 𝛼2 = 0.50, 𝛼3 = 0.75.  The 

determination of the upper and lower bounds were determined to avoid a large size imbalance 

of the subswarms. 

Every particle was split into three groups according to their learning capacity, each of 

which had a distinct purpose based on how well they evolved with each iteration. The first 

group is made up of the swarm's best particles overall (𝐺𝑏𝑒𝑠𝑡). The second is each subswarm's 

best particle (𝑆𝑏𝑒𝑠𝑡) . The remaining particles with average fitness, referred to as ordinary 

particles, make up the third group. The following is a definition of the inertia load operators for 

the three groups: 

 

𝜔𝑖
𝑡 =

{
 
 
 
 

 
 
 
 ∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑏𝑒𝑠𝑡𝑗

𝑡)𝑁(𝑡)−1
𝑗=1

(𝑁(𝑡) − 1)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖
𝑡)

,   𝑖𝑓 𝑥𝑖
𝑡 = 𝐺𝑏𝑒𝑠𝑡𝑡

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑏𝑒𝑠𝑡𝑗+1
𝑡 )

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖
𝑡)

,         𝑖𝑓 𝑥𝑖
𝑡 = 𝑆𝑏𝑒𝑠𝑡𝑗

𝑡

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑆𝑏𝑒𝑠𝑡
𝑆(𝑖)
𝑡
𝑡 )

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖
𝑡)

,                           𝑒𝑙𝑠𝑒

 (4) 

 

𝑁(𝑡) represents the number of subswarms, 𝑆𝑏𝑒𝑠𝑡𝑗
𝑡 shows the best particle of the 𝑗th subswarm 

at the 𝑡th iteration, 𝑆(𝑖)
𝑡  shows the subswarm with the position of the 𝑖th particle located at the 

𝑡th iteration. Groups with different learning abilities also have different ways of updating their 

speed. Mathematically, the particle speed in the group with the first learning ability can be 

defined using the following model: 

 

𝑣𝑖
𝑡+1 = 𝜔𝑖

𝑡𝑣𝑖
𝑡 + 𝑐11𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) + 𝑐21𝑟2(𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑖
𝑡), (5) 

 

where 𝑐11 = 2 and 𝑐21 = 1 denote positive acceleration coeeficients, 𝑟1and 𝑟2 are two arbitrary 

numbers distributed uniformly on [0,1]. 𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 denotes the best position of each particle and 

𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡𝑡  is the average of the best positions of the particles in each subswarm which is 

defined as: 

{
 
 

 
 𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡𝑖

𝑡 =∑ 𝑟𝑖
𝑡 ∗ 𝑥𝑖

𝑡
𝑁(𝑡)−1

𝑗=1

𝑟𝑖
𝑡 =

(1 −
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑏𝑒𝑠𝑡𝑖

𝑡)

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑏𝑒𝑠𝑡𝑗
𝑡)𝑁(𝑡)−1

𝑗=1

)

𝑁(𝑡) − 2

 (6) 

 

Furthermore, it was found: 

 

∑ 𝑟𝑖
𝑡

𝑁(𝑡)−1

𝑗=1
= 1 (7) 
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The particle velocity in the group with the second learning ability is defined by the 

following equation: 

 

𝑣𝑖
𝑡+1 = 𝜔𝑖

𝑡𝑣𝑖
𝑡 + 𝑐12𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) + 𝑐22𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)+1

𝑡 − 𝑥𝑖
𝑡), (8) 

 

where 𝑐12 = 1 and 𝑐22 = 2 are the acceleration coefficients and 𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)+1
𝑡  denote the learning 

characteristics of the best particle in the subswarm with a lower fitness level. Ordinary particles 

update their velocities using: 

 

𝑣𝑖
𝑡+1 = 𝜔𝑖

𝑡𝑣𝑖
𝑡 + 𝑐13𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) + 𝑐23𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)+1

𝑡 − 𝑥𝑖
𝑡),   (9) 

 

where 𝑐13 = 𝑐23 = 1.5 (Jiyue et al., 2023). 

 

3. Human Learning Optimization (HLO) 

The adaptive algorithm known as Human Learning Optimization (HLO) is based on 

activities of human learning. To master new things, humans repeatedly learn and practice them. 

After determining an appropriate learning method, humans can evaluate the recognition of a 

new object. The learning model used in HLO includes three learning stategy: random learning 

strategy, individual learning strategy, and social learning strategy (Wang, Ni, et al., 2015; Ding 

dan Gu 2020). 

At the initial stage of a novel task, individuals typically lack prior knowledge, resulting in 

behavior characterized by trial and error. Within the framework of Human Learning 

Optimization (HLO), this phase is conceptualized as random learning, wherein actions are 

guided by uninformed guesses. As individuals accumulate experience through repeated 

attempts, they begin to discern effective strategies from ineffective ones based on personal 

outcomes. This process aligns with what is referred to in HLO as individual learning. Beyond 

self-experience, learning also occurs through observation and interaction with others. When 

individuals are exposed to peers with superior performance or greater experience, they are 

inclined to adopt or imitate those observed strategies. This behavior is captured in HLO as 

social learning, reflecting the influence of social context on cognitive adaptation (Wang, Ni, et 

al., 2015; Wang et al., 2018). 

The three learning processes are determined based on the probability of random learning 

𝑝𝑟 and the probability of individual learning 𝑝𝑖𝑛.  Once a random number 𝑟𝑎𝑛𝑑 ∈ (0,1)  is 

generated, the selection of the learning process is governed according to Equation (10) (Wang, 

Yang, et al., 2015). 

 

{

individual learning,       if 𝑟𝑎𝑛𝑑 ∈ (0, 𝑝
𝑟
) 

random learning,           if 𝑟𝑎𝑛𝑑 ∈ [𝑝
𝑟
, 𝑝

𝑖𝑛
]

social learning,                                      else

 (10) 
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4. Modified Adaptive Particle Swarm Optimization-Human Learning Strategies 

(MAPSO-HLS) 

The proposed algorithm is a combination of APSO-HSL and HLO called Modified Adaptive 

Particle Swarm Optimization-Human Learning Strategies (MAPSO-HLS). Every particle with a 

different role is given three types of learning. The learning process begins with individual 

learning, where each particle evaluates its own historical experience to refine movement 

strategies. This self-guided adaptation helps particles identify locally promising areas based on 

their own performance. Next, random learning introduces stochastic exploration, directs 

particle to study from 𝐾 neighbors best experience, based on their previous experience. 

𝐾 neighbors used as learning references were randomly selected. Finally, social learning 

enables particles to adopt strategies from better-performing peers, promoting convergence 

toward globally optimal regions. 

The speed and position particle-𝑖 at the 𝑡 + 1th iteration represented by 𝑣𝑖
𝑡+1 and 𝑥𝑖

𝑡+1 for 

the best particle in the entire swarm is given by Equation (11), for the best particle in each 

subswarm can be updated using Equation (12), and for ordinary particles can be updated using 

Equation (13). 𝜔 is the moment of inertia to balance local exploitation and global exploration 

calculated using Equation (4), 𝑟1 and 𝑟2  is any number uniformly distributed on 

[0,1] .  𝑐11, 𝑐12, 𝑐13  are the individual acceleration coefficients, and 𝑐21, 𝑐22, 𝑐23  are the social 

acceleration coefficients. 𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 shows the best position of each particle and 𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡𝑡  is the 

average of the best positions of particles in each subswarm, 𝑔𝐾 shows the best position from 

any 𝐾 particle. 

 

𝑣𝑖
𝑡+1 = {

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐11𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐21𝑟2(𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) 𝑝𝑟𝑛;  𝑝𝑟𝑛 ∈ (0, 𝑝𝑖𝑛)

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐11𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐21𝑟2(𝑔𝐾 − 𝑥𝑖
𝑡);  𝑝𝑟𝑛 ∈ [𝑝𝑖𝑛 , 𝑝𝑠𝑐]

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐11𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡)(1 − 𝑝𝑠𝑐) + 𝑐21𝑟2(𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡);  𝑝𝑟𝑛 ∈ (𝑝𝑠𝑐 , 1)

 

 

 (11) 

 

 

𝑣𝑖
𝑡+1 = {

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐12𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐22𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)+1
𝑡 − 𝑥𝑖

𝑡)𝑝𝑟𝑛;  𝑝𝑟𝑛 ∈ (0, 𝑝𝑖𝑛)

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐12𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐22𝑟2(𝑔𝐾 − 𝑥𝑖
𝑡);  𝑝𝑟𝑛 ∈ [𝑝𝑖𝑛 , 𝑝𝑠𝑐]

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐12𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡)(1 − 𝑝𝑠𝑐) + 𝑐22𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)+1
𝑡 − 𝑥𝑖

𝑡);  𝑝𝑟𝑛 ∈ (𝑝𝑠𝑐 , 1)

 

 

 (12) 

 

 

𝑣𝑖
𝑡+1 = {

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐13𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐23𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)
𝑡 − 𝑥𝑖

𝑡)𝑝𝑟𝑛;  𝑝𝑟𝑛 ∈ (0, 𝑝𝑖𝑛)

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐13𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐23𝑟2(𝑔𝐾 − 𝑥𝑖
𝑡);  𝑝𝑟𝑛 ∈ [𝑝𝑖𝑛 , 𝑝𝑠𝑐]

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐13𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡)(1 − 𝑝𝑠𝑐) + 𝑐23𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)
𝑡 − 𝑥𝑖

𝑡);  𝑝𝑟𝑛 ∈ (𝑝𝑠𝑐 , 1)

 

 

(13) 

 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1, (14) 

 

Similar to HLO, the three learning strategies are independent of one another. 

Determination of the learning process based on the 𝑝𝑖𝑛 , 𝑝𝑠𝑐 , and 𝑝𝑟𝑛 . The values (𝑝𝑖𝑛 − 0) 

indicate the occurrence of individual learning processes, (𝑝𝑠𝑐 − 𝑝𝑖𝑛) for random learning, and 

(1 − 𝑝𝑠𝑐) for social learning, respectively. Parameter 𝑝𝑟𝑛 will be determined randomly at the 

interval (0,1). 
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5. Performance Evaluation 

The performance of the modified algorithm was evaluated using multiple metrics, including 

the shortest distance, convergence rate, and diversity. A comparative analysis was conducted 

against the unmodified version of the algorithm using benchmark TSP instances. The 

comparison of the shortest distances was conducted by evaluating the exact solution against 

APSO-HSL and the exact solution against MAPSO-HLS using the percentage deviation 𝑃𝐷 shown 

by Equation (15). 

 

𝑃𝐷 =
(approximation − exact)

exact
 100% 

  (15) 

 

The equation for determining diversity 𝐷 shown by Equation (16). 

 

𝐷 =
2

𝑁(𝑁 − 1)
∑ ∑ Hamming(𝑥𝑖 , 𝑥𝑗)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

, 
  (16) 

 

where 𝑁  is the number of particles, 𝑥𝑖  represents the position of the particle 𝑖  in the 

dimensional space 𝑑. Hamming(𝑥𝑖 , 𝑥𝑗) defined as the number of differing positions divided by 

the total length of the permutation. The factor 
2

𝑁(𝑁−1)
 is used to calculate the average of all 

unique pair combinations without calculating them twice. 

 

C. RESULT AND DISCUSSION 

The chosen correlation coefficients were 𝑐11 = 2and 𝑐21 = 1 for the best particle in the 

entire swarm, 𝑐12 = 1 and 𝑐22 = 2 for the best particle in each subswarm, and 𝑐13 = 𝑐23 = 1.5 

for ordinary particle. The learning behavior of each particle is determined by the probabilities 

𝑝𝑖 = 0.4 and 𝑝𝑠 = 0.8. Each particle with free learning strategy learns from the best experience 

among 𝐾 = 5 randomly selected neighbors. The number of particles used in this study was 100, 

with a total of 500 iterations. After being tested on six benchmark instances, MAPSO-HLS is 

compared with APSO-HSL based on the shortest route of exact solution. The comparison results 

of the shortest distances from six TSP datasets are presented in Table 1. A smaller percentage 

deviation indicates a higher accuracy of the algorithm in finding the optimal solution. As shown 

in Table 1, the percentage deviation of MAPSO-HLS are closer to the exact solutions compared 

to those of APSO-HSL. 

 

Table 1. Comparison of APSO-HSL and MAPSO-HLS Results 

Instances 
Solution Percentage Deviation (𝑷𝑫) 

Exact APSO-HSL MAPSO-HLS APSO-HSL MAPSO-HLS 
berlin52 7544.37 13236.05 12219.19 75.44% 61.96% 
burma14 30.88 30.88 30.88 0.00% 0.00% 

eil51 429.98 732.54 655.13 70.37% 52.36% 
eil76 545.39 1151.24 1108.56 111.08% 103.26% 
pr76 108159.44 207319.31 213169.12 91.68% 97.09% 
st70 678.60 1612.76 1683.95 137.66% 148.15% 

Average 81.04% 77.14% 
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The algorithm's performance was also evaluated based on its convergence behavior. In the 

context of the TSP, the convergence level of an algorithm is typically assessed through two main 

factors. The first is the speed at which the algorithm stabilizes or approaches its best-found 

solution over successive iterations. The second is the ability of the algorithm to converge 

toward the globally optimal solution, or in this case, the shortest possible route. These two 

aspects provide insight into both the efficiency and the accuracy of the optimization process. A 

visual comparison of the convergence patterns for MAPSO-HLS and APSO-HSL is presented in 

Figure 1 and Figure 2, respectively, highlighting differences in their convergence speed and 

final solution quality.  
 

 
Figure 1. The Convergence Curve of berlin52 

 

 
Figure 2. The Convergence Curve of burma14 
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As depicted in Figure 1, MAPSO-HLS begins to converge toward a lower objective value 

starting from iteration 300, indicating its effectiveness in refining solutions over time. Figure 2 

further illustrates that MAPSO-HLS achieves convergence at an earlier stage, specifically before 

iteration 50, while APSO-HSL only starts to converge before iteration 300. This difference in 

convergence speed reflects the superior search efficiency of MAPSO-HLS. The earlier 

stabilization of MAPSO-HLS suggests that the algorithm is capable of rapidly identifying 

promising regions in the solution space and focusing its search efforts accordingly. In contrast, 

APSO-HSL requires more iterations to reach a similar level of solution quality, indicating a 

slower convergence process. Overall, these results confirm that MAPSO-HLS outperforms 

APSO-HSL in terms of convergence speed and solution refinement, making it a more effective 

approach for solving TSP problems in the tested scenarios. 

In addition to the shortest route, and convergence, population diversity is also a key factor 

in determining the balance between exploration and exploitation in an algorithm. Exploration 

aims to avoid local optima and ensure that the entire solution space is thoroughly evaluated. 

Exploitation, on the other hand, focuses on refining promising solutions to become more 

optimal and accelerating convergence toward the optimal solution. The ideal condition, marked 

by a proper balance between exploration and exploitation, is characterized by high exploration 

in the early stages and high exploitation in the later stages. The diversity comparison is shown 

in Figure 3 and Figure 4.  

 

 
Figure 3 The Diversity Comparison of berlin52 
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Figure 4 The Diversity Comparison of eil51 

 

As illustrated in Figure 3, MAPSO-HLS demonstrates superior and more stable diversity 

throughout the optimization process. In the early iterations, the particles exhibit a high level of 

exploration by covering a wide range of solutions in the search space. This is reflected in the 

higher diversity values, indicating that the algorithm effectively avoids premature convergence. 

As the number of iterations increases, the particles gradually converge toward the optimal 

region, showing the algorithm's capability in intensifying the search or exploiting the promising 

areas. Figure 4 further confirms this behavior, where MAPSO-HLS maintains high diversity in 

the early phase and transitions smoothly into a more exploitative phase as the iteration 

progresses. Compared to APSO-HSL, MAPSO-HLS achieves a more balanced trade-off between 

exploration and exploitation, which is essential in avoiding local optima and enhancing solution 

quality. These findings highlight the effectiveness of MAPSO-HLS in maintaining population 

diversity while guiding the search toward optimal solutions.  

The sequential application of three learning phases allows MAPSO-HLS to dynamically 

balance exploration and exploitation. Individual learning provides focused search at the 

particle level, random learning expands the search space to inject diversity, and social learning 

accelerates convergence by reinforcing successful behaviors. Compared to APSO-HSL, which 

relies solely on social learning, MAPSO-HLS demonstrates a more comprehensive and adaptive 

learning mechanism. This study contributes further by demonstrating the advantages of 

hybridizing APSO-HSL with human-inspired learning strategies in solving TSP problems. 

 

D. CONCLUSION AND SUGGESTIONS 

This study introduces MAPSO-HLS, a modified APSO-HSL algorithm that integrates human 

learning strategies, individual, random, and social learning, adapted from the HLO framework. 

The integration of these three learning mechanisms enhances the algorithm’s ability to balance 

exploration and exploitation. This balanced dynamic allows MAPSO-HLS to avoid premature 

convergence and more effectively navigate complex solution spaces. When applied to the 

Traveling Salesman Problem (TSP), MAPSO-HLS achieved an average deviation of 77.14%, 
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while APSO-HSL recorded 81.04%, indicating that MAPSO-HLS is more effective in identifying 

shorter paths, with results closer to the exact solutions. MAPSO-HLS demonstrates superior 

convergence behavior, improved solution quality, and more stable population diversity, 

confirming its potential as a robust approach for solving combinatorial optimization problems. 

Future research should incorporate statistical significance testing, extend comparisons to 

other PSO variants, and explore additional cognitive factors, such as motivation or memory 

decay, to further refine the learning mechanism. This approach offers a promising direction for 

developing intelligent optimization algorithms that more closely emulate human problem-

solving behavior. Applying the algorithm to real-world datasets in logistics or scheduling could 

also validate its practical utility.  
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