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ABSTRACT
Article History: Particle Swarm Optimization (PSO) is a widely used metaheuristic approach for
Received :14-05-2025 solving optimization problems. Recent developments in this field involve the
Revised :17-07-2025 adaptation of human learning behaviors to enhance algorithmic performance. One
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Online  + 01-10-2025 such adaptation is the Adaptive Particle Swarm Optimization based on Human

Social Learning (APSO-HSL), a variant of PSO that incorporates human inspired
learning strategies. This study aims to enhance the performance of APSO-HSL on

lff:r};‘i,zl(:erg\./varm the Traveling Salesman Problem (TSP) by incorporating additional human learning
Optimization; strategies. The proposed algorithm, named Modified Adaptive Particle Swarm
Human Learning Optimization-Human Learning Strategies (MAPSO-HLS), integrates learning
Optimization; mechanisms from Human Learning Optimization (HLO), including individual,
Traveling Salesman random, and social learning. This research is classified as applied research and
Problem; algorithmic experimentation, focusing on the development and modification of a

Operations Research. metaheuristic algorithm to solve a well-known combinatorial optimization

problem. Benchmark datasets from the Traveling Salesman Problem Library
(TSPLIB) are used for evaluation, and all computations and experiments are
implemented in Python. The performance of MAPSO-HLS is compared with the
exact method in terms of shortest distance and computation time. The results of the
study indicate that the MAPSO-HLS algorithm is capable of producing TSP solutions
with low total distance deviation, below 10%, compared to exact solutions across
all tested datasets. This reflects a high level of solution accuracy. In addition,
MAPSO-HLS demonstrates better time efficiency than the exact ILP method,
particularly for datasets with a large number of cities. The integration of human
learning strategies within the adaptive PSO framework provides significant
advantages in terms of both efficiency and effectiveness in solving TSP.
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A. INTRODUCTION

Particle Swarm Optimization (PSO) is a meta-heuristic algorithm introduced by Kennedy
and Eberhart and is widely used to solve optimization problems. The PSO algorithm is based on
natural phenomena, namely the movement of a group of living things, such as birds and fish in
finding food (Houssein et al., 2021). Computationally, PSO has advantages in terms of memory
usage and speed (Jiyue et al,, 2023; Lynn & Suganthan, 2015; Punyakum et al., 2022). The
simplicity and efficiency factors have caused PSO to be widely used in various fields and it is
considered the most effective method for solving optimization problems (Bangyal et al., 2023).
PSO implementations are widely found in various fields, such as health, environment, industry,
and commerce (Al-Maamari & Omara, 2015; Ramdhani, 2016).
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Despite its strengths, standard PSO often suffers from premature convergence, particularly
when parameters are not properly tuned (Guo et al., 2025; Larsen et al., 2016; Ashraf et al,,
2022). This leads to limited global exploration, insufficient local exploitation, and reduced
solution diversity. To address these limitations, several PSO variants have been proposed,
including heterogeneus comprehensive learning PSO (Lynn & Suganthan, 2015), discrete PSO
(Zhong et al,, 2018), and improved PSO with adaptive initialization techniques (Ashraf et al.,
2022), each aiming to enhance convergence and avoid local optima.

A promising direction to overcome these challenges is the integration of human learning
behavior into algorithmic design (Roberts-Mahoney et al., 2016; Jarecki et al., 2018; Wang et al.,
2017; Du et al. 2022). Human Learning Optimization (HLO) introduces learning strategies
inspired by how humans solve problems, through random trial, individual experience, and
social imitation. These principles have been shown to improve convergence and solution
diversity in complex search spaces (Wang et al., 2014). Building on this, the Adaptive Particle
Swarm Optimization based on Human Social Learning (APSO-HSL) algorithm incorporates
human social learning into the PSO framework, resulting in improved accuracy, stability, and
global search performance (Jiyue et al., 2023). Nonetheless, current implementations of APSO-
HSL primarily focus on the social learning component, leaving the potential of individual and
random learning strategies underexplored.

Solving combinatorial problems such as the Traveling Salesman Problem (TSP), a classic
NP-hard problem requiring the optimal traversal of cities, is a compelling application for
metaheuristics (Shaj et al., 2016; Chen et al, 2025). TSP not only represents real-world
complexity but also demands a balance between exploration and exploitation due to its
exponentially growing solution space (Jedrzejowicz et al., 2024). Although many PSO variants
have been applied to TSP, further exploration into the role of adaptive human-inspired learning
remains limited.

This study aims to enhance the APSO-HSL algorithm by integrating comprehensive human
learning strategies from HLO, namely random, individual, and social learning, to improve the
effectiveness of PSO in solving the TSP. Based on (Vahdat etal., 2016), the combination of meta-
heuristic algorithms with adaptive learning mechanism has many advantages in solving
optimization problems compared to algorithms inspired by natural phenomena. By extending
APSO-HSL with a more complete representation of human learning behavior, the proposed
approach addresses the gap in existing PSO-based methods that insufficiently balance
exploration and exploitation.

B. METHODS

This research is categorized as applied research and algorithmic experimentation, focusing
on the development and modification of a metaheuristic optimization to solve a well-known
combinatorial optimization problem (TSP). The dataset utilized in this research comprises
benchmark instances sourced from the Traveling Salesman Problem Library (TSPLIB). Seven
case examples with varying numbers of cities were selected, namely burma14, eil51, berlin 52,
st70, eil76, and pr76 (TSPLIB, n.d.). All experiments were conducted using an Intel PC (core i5
@3.09GHz CPU, 4GB RAM). The performance of the modified algorithm was evaluated based on
the total distance traveled and computation time. A comparative analysis was conducted
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against the exact method using benchmark TSP instances using the percentage deviation PD
shown by Equation (1). The exact method used in this study is Integer Linear Programming
(ILP).

(1)

(approximation — exact)

PD 100%

exact

1. Particle Swarm Optimization (PSO)

The PSO algorithm begins with the particle initialization and initial velocity assignment. The
optimal function value and location can be found by using the initial velocity to assess the
objective function at each particle location. The particle velocity at that moment, each particle's
optimal location, and each particle's optimal neighboring location are then used to determine a
new velocity. The particle's location, velocity, and neighbors are updated iteratively until the
algorithm reaches the stopping criterion. The new location was determined by adding the old
location and modified velocity to maintain the particle within the boundary (Ab Wahab et al,,
2015; Jain et al., 2018; Gad, 2022).

To obtain the best solution, each particle moves based on its personal best position (ppest)
and the global best position (gpes¢) in the swarm. Each particle i will update its velocity v and
position x in each iteration t + 1 using the following equation:

vit+1

= wv} + c171( Phest; = %i) + €212 (Ghest — X0), (2)

X = x4, ©
where i denotes the particle index, t is the current iteration order, w is the inertia used to
balance local exploitation and global exploration, r; and r, is any number uniformly distributed
on [0,1], ¢; and c, are the acceleration coefficients, which are two positive constants. Equation
(2) is used to calculate the new velocity of the particle based on the distance and last velocity
of a position from the particle's best personal experience and the group's best experience. Then,
the particle moves towards the new position based on Equation (3) (Piotrowski et al., 2020;
Zhong et al., 2018).

2. Adaptive Particle Swarm Optimization based on Social Learning Intelligence (APSO-

HSL)

The APSO-HSL algorithm developed by Jiyue et al. (2023) uses a learning strategy based on
the multiswarm technique which the diversity of each particle is determined by the division of
the swarm and the size of each swarm. Human social learning intelligence is used to adaptively
divide the swarm and determine the size of each subswarm. The multiswarm technique in
APSO-HSL has the following mathematical definition:

fi = fmaxs
f2 = fmin + al(fmax - fmin);
f3 = fmin + az(fmax - fmin)' (4)

fa = fmin + @3(fmax — fmin)s
f5 = fminr
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Of = {x{ | f; <fitness (x{) < fj41,i = 1,2,..,N;j = 1,2,3,4}.

fmin and finq, are the minimum and maximum values of the fitness function. {f;,k = 1, 2, ..., 5}
denotes the subswarm boundaries. (2} denotes the jth subswarm at the tth iteration. x{ is the
position of the ith particle at the tth iteration. The upper and lower bounds for each particle’s
fitness are determined using a; with k = 1, 2,3, where a; = 0.25, 2, = 0.50, a3 = 0.75. The
determination of the upper and lower bounds were determined to avoid a large size imbalance
of the subswarms.

Every particle was split into three groups according to their learning capacity, each of which
had a distinct purpose based on how well they evolved with each iteration. The first group is
made up of the swarm's best particles overall (Gbest). The second is each subswarm's best
particle (Sbest). The remaining particles with average fitness, referred to as ordinary particles,
make up the third group. The following is a definition of the inertia load operators for the three
groups:

fZMt)_lfitness(Sbestjt)

Jj=1
W) — 1) if x! = Gbest!
fitness(xf) ’ ¢
. t
wt = fltness(Sbesth)’ fxt = Shestt (5)
fitness(x}) ' J
fitness (Sbest_gt, )
© else,

. fitness(xf)

where N(t) represents the number of subswarms, Sbestjt shows the best particle of the jth
subswarm at the tth iteration, S(ti) shows the subswarm with the position of the ith particle

located at the tth iteration. Groups with different learning abilities also have different ways of
updating their velocity. Mathematically, the particle velocity in the group with the first learning
ability can be defined using the following equation:

Ul-t+1 = a)it‘l]l-t + CllT'l(PbeStit - xf) + C21r2(AVGSbeStt - xit)’ (6)

where ¢;; = 2 and ¢,; = 1 denote positive acceleration coeeficients, r;and r, are two arbitrary
numbers distributed uniformly on [0,1]. Pbestf denotes the best position of each particle and
AVGSbest® is the average of the best positions of the particles in each subswarm which is
defined as:

N(t)-1

)
AVGSbest! = Z rfxt
j=1
] 1 fitness(Shestf) (7)
, Z?’z(?_lfitness (Sbestf)
ri =

i N() — 2
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Furthermore, it was found:

N(t)-1
Z rf=1 (8)
j=1
The particle velocity in the group with the second learning ability is defined by the following
equation:
vt = wfvf + ciory (Phestf — x{) + cyom2(Shestfy .y — xf), 9)

where c;, = 1 and ¢,, = 2 are the acceleration coefficients and Sbestst(l-)+1 denote the learning

characteristics of the best particle in the subswarm with a lower fitness level. Ordinary particles
update their velocities using:

vt = wfvf + ci3m (Phestf — x{) + cy315(Shestf iy — xf), (10)
where ¢;3 = c,3 = 1.5 (Jiyue et al,, 2023).

3. Human Learning Optimization (HLO)

The adaptive algorithm known as Human Learning Optimization (HLO) is based on
activities of human learning. To master new things, humans repeatedly learn and practice them.
After determining an appropriate learning method, humans can evaluate the recognition of a
new object. The learning model used in HLO includes three learning stategy, random learning
strategy, individual learning strategy, and social learning strategy (Wang, Nj, et al,, 2015; Ding
dan Gu 2020). At the initial stage of a novel task, individuals typically lack prior knowledge,
resulting in behavior characterized by trial and error. Within the framework of Human
Learning Optimization (HLO), this phase is conceptualized as random learning, wherein actions
are guided by uninformed guesses. As individuals accumulate experience through repeated
attempts, they begin to discern effective strategies from ineffective ones based on personal
outcomes. This process aligns with what is referred to in HLO as individual learning. Beyond
self-experience, learning also occurs through observation and interaction with others. When
individuals are exposed to peers with superior performance or greater experience, they are
inclined to adopt or imitate those observed strategies. This behavior is captured in HLO as
social learning, reflecting the influence of social context on cognitive adaptation (Wang, Ni, et
al, 2015; Wang et al., 2018). The three learning processes are determined based on the
probability of random learning p, and the probability of individual learning p;,,. Once a random
number rand € (0,1) is generated, the selection of the learning process is governed according
to Equation (11) (Wang, Yang, et al,, 2015).

individual learning,  if rand € (0,p)

random learning, if rand € [pr, P, (11)
social learning, else
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4. Modified Adaptive Particle Swarm Optimization-Human Learning Strategies

(MAPSO-HLS)

The proposed algorithm is a combination of APSO-HSL and HLO called Modified Adaptive
Particle Swarm Optimization-Human Learning Strategies (MAPSO-HLS). Every particle with a
different role is given three types of learning. The learning process begins with individual
learning, where each particle evaluates its own historical experience to refine movement
strategies. This self-guided adaptation helps particles identify locally promising areas based on
their own performance. The next learning process is random learning, which introduces
stochastic exploration, directs particle to study from Kneighbors best experience, based on
their previous experience. Kneighbors used as learning references were randomly selected.
Finally, social learning enables particles to adopt strategies from particles showing better
performance, promoting convergence toward globally optimal regions.

The velocity and position particle-i at the t + 1th iteration represented by v{** and xf** for
the best particle in the entire swarm is given by Equation (12), for the best particle in each
subswarm can be updated using Equation (13), and for ordinary particles can be updated using
Equation (14). w is the moment of inertia to balance local exploitation and global exploration
calculated using Equation (5), r;and r;, is any number uniformly distributed on [0,1]. ¢11, 15, ¢13
are the individual acceleration coefficients, and c,;,c,,,c,3 are the social acceleration
coefficients. Pbest} shows the best position of each particle and AVGSbest® is the average of
the best positions of particles in each subswarm, gy shows the best position from any K
particle.

wfvf + cqy7y (Phest! — xf) + c;112(AVGSbest® — xf) Pr; Prn € (0,Pin)
= wfvit + Cllrl(PbeStit - xlt) + C21r2(gl( - xit); prn S [pin' psc] (12)
w:':vit + Cllrl(PbeStit - xit)(l - psc) + C21T'2(AVGSb€Stt - xlF); Prn S (psc' 1)

t+1
Vi

w{v{ + ciory (Phest{ — x{) + szrz(SbeStg(i)H - xit)prn; Prn € (0,0in)
viH—1 = wl’::vl!: + C12r1(PbeSt1F - xlt) + CZZrz(gK - xf); Prn € [pin: psc] (13)
wgvit + (:12""1(Pbestlgt - xit)(l - psc) + szrz(SbeStg(i)+1 - xit); P € (psc' 1)

w{v{ + c131y (Phest{ — x{) + Czsrz(Sbf«’Stsf(i) — X )Prn; Prn € (0,Din)

vit+1 = wLFvlF + c13r1(Pbestit - xlt) + C23T2(9K - xf); Prn € [pin: psc] (14)
wfvf + cy3ry (Pbestf — x{)(1 — psc) + 5237’2(5b35tst(i) - xit)i Prn € (Pse, 1)
xf*t = xf + vt (15)

Similar to HLO, the three learning strategies are independent of one another. Determination
of the learning process based on the p;,, psc, and p,,. The values (p;, — 0) indicate the
occurrence of individual learning processes, (pg. — pin) for random learning, and (1 — p,,) for
social learning, respectively. Parameter p,.,, will be determined randomly at the interval (0,1).
In the context of TSP, velocity updates must be redefined as swap operations due to the discrete
and permutation-based nature of the problem (Clerc, 2004). If the fitness value from the
updated position is better than before, the position becomes the particle’s Pbest. The 2-opt
algorithm is then applied to further refine the solution. In TSP, 2-opt enhances solution quality
by reducing inefficient or intersecting paths often found in PSO results. Its low complexity and
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deterministic nature make it ideal for improving convergence in global search algorithms like
PSO and its variants (Sathyan et al., 2015).

C. RESULT AND DISCUSSION

The chosen correlation coefficients were ¢;; = 2and c,; = 1 for the best particle in the
entire swarm, ¢;, = 1 and c,, = 2 for the best particle in each subswarm, and ¢;3 = ¢,3 = 1.5
for ordinary particle. The learning behavior of each particle is determined by the probabilities
p; = 0.4 and p; = 0.8. Each particle with free learning strategy learns from the best experience
among K = 5 randomly selected neighbors. The number of particles used in this study was 100,
with a total of 1000 iterations. The effectiveness of MAPSO-HLS was assessed through
experiments on six TSP instances with different city counts, with performance evaluation
conducted based on total route length and computation time. The approximation results of the
shortest distances generated by MAPSO-HLS were evaluated against the exact method through
percentage deviation, as shown in Table 1. A smaller percentage deviation indicates a higher
accuracy of the algorithm in finding the optimal solution.

Table 1. Comparison of Total Distance

Instances Exact Solut:\(/)[:PS O-HLS Percentage Deviation (PD)
burmal4 30.88 30.88 0.00%

eil51 429.98 445.03 3.50%
berlin52 7544.37 7811.31 3.54%

st70 678.60 694.09 2.28%

eil76 544.37 573.44 5.34%

pr76 108159.44 113925.86 5.33%

The percentage deviations presented in Table 1 indicate that MAPSO-HLS demonstrates
good performance. The deviations across all six TSP datasets are below 10%. For the dataset
with a small number of cities (burma14), the deviation is 0.00%. Even for datasets with a larger
number of cities (more than 50), the deviations remain low, ranging from 2.28% to 5.34%.
These results suggest that MAPSO-HLS is capable of producing accurate solutions with only
slight differences compared to the exact solutions.

Computation time is also a key factor in evaluating algorithm performance. The
computation time ratio presented in Table 2 shows that MAPSO-HLS is significantly faster than
the exact method, particularly for datasets with more than 50 cities. For the berlin52 dataset,
MAPSO-HLS produced a solution in 92.63 seconds, whereas the exact method required 1178.57
seconds. This indicates that MAPSO-HLS is 12.72 times faster. Similarly, on the eil51, €il76, pr76,
and st70 datasets, MAPSO-HLS also achieved shorter computation times, being 8.97, 1390.69,
2164.18, and 3888.11 times faster, respectively. The percentage deviation also highlights that
computation time for datasets with more than 50 cities is significantly faster using MAPSO-HLS
compared to the exact method. This is evident in the fact that the computation time deviation
for the eil51, eil76, pr76, and st70 datasets, the deviation in computation time is extremely high,
approaching 100%.
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Table 2. Comparison of Computation Time

Time (seconds)

Percentage Deviation

Instances Exact _ MAPSO-HLS  RoU° (PD)

burmal4 1.22 4533 0.03 3615.57%
eil51 711.09 79.29 8.97 88.85%

berlin52 117857 92.63 12.72 92.14%
$t70 589243.03 15155 3888.11 99.97%
eil76 20675448 148.67 1390.69 99.93%
pr76 36823535 170.15 2164.18 99.95%

1089

Based on the percentage deviation in total distance and the computation time ratio, MAPSO-
HLS demonstrates an advantage over exact methods in terms of time efficiency while
maintaining solution accuracy. Therefore, MAPSO-HLS can be considered a viable alternative
for solving discrete permutation problems such as the TSP, particularly for datasets involving
a large number of cities. Figures 1 and Figure 2 illustrate the shortest route for eil51 obtained
using the exact method and MAPSO-HLS, respectively.
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Figure 1. The Shortest Route for eil51 Based on the Exact Method
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Figure 2. The Shortest Route for eil51 Based on the MAPSO-HLS Algorithm
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This study continues by evaluating the parameters p;;,, and p,. to observe their impact on
the total distance traveled and computation time. The parameters p;, and p,. represent the
probabilities of individual learning and social learning, respectively. These probabilities control
the balance between exploration and exploitation. Exploration refers to the condition where
particles are still searching for new areas in the solution space, while exploitation refers to the
condition in which the swarm refines solutions that are already reasonably good. All
combinations of p;, and p,. ranging from 0.1 to 0.9 were applied to six TSP datasets, with the
constraint that p;,, < ps.. The relationship between these parameters and the average shortest
distances obtained across the six datasets is visualized in Figure 3.

As shown in Figure 3, the parameter p; corresponds to p;,, and p, corresponds to pg,. It can
be observed that when the difference between p;;,, and py, is either too small or too large, the
resulting average distance tends to be higher. For example, the combinations p;, = 0.1 and
Psc = 0.2, p;,=0.1 and p,.=0.9, p;;,=0.8 and p,.=0.9 produce larger average distances compared
to other combinations. The best performance is observed at p;;,=0.1 and p,.=0.8, while the
worst performance is found at p;, =0.1 and p,. =0.2. Lower average distances were also
obtained with p;;,=0.1 and p4.=0.5, and p;,=0.2 and p,;.=0.5. These results suggest that when
Pin is low (0.1 or 0.2), particles do not overly rely on their own learning, helping to avoid local
optima. Meanwhile, when pg, is set to moderate values (0.5 or 0.6), particles engage in social
learning at a balanced rate, promoting convergence while preserving diversity. This
combination leads to a more balanced process between exploration and exploitation.

20800

20600

20400

Average Shortest Distance

20000

v v v v 5 - - v
0.2 03 0.4 05 0.6 0.7 08 0.9
p_s

Figure 3. Effect of p;;, and p,. on Average Total Distance

The relationship between the parameters p;;, ps. and the average computation time is
visualized in Figure 4. The parameter p; corresponds to p;,, and ps corresponds to ps..
Combinations of p;;, and p,. with small differences tend to result in shorter computation times.
For example, when pin=0.1, the combination with psc=0.2 yields faster computation compared
to combinations with other p,. values. A similar pattern is observed for p;, =0.2, where
combining it with p,.=0.3 results in shorter computation time. The larger the gap between p;;,
and ps., the more time is required to reach a solution. The best-performing combination in
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terms of computation time is p;;,=0.3 and p,.=0.4, while the worst-performing combination is
pin=0.1land ps.=0.9.

The increasing computation time associated with higher p,. values is caused by the greater
frequency of social learning, which leads to more frequent information exchange among
particles. When p;,,=0.6, 0.7, or 0.8, the resulting computation time is lower. However, as shown
in Figure 3, the quality of the solutions obtained is less optimal. This indicates that when
particles tend to rely more on their own experience, convergence is faster and computation
time is shorter, but the solutions are suboptimal. Based on the average total distance and
computation time, the combinations p;,,=0.1 with p,.=0.5 or 0.6 are preferable when accuracy
is the main objective. If time efficiency is prioritized, combinations such as p;, > 0.6 with
psc=0.6 or 0.7 can be selected. To achieve a balance between optimal solution quality and
shorter computation time, the combinations p;, =0.3 or 0.4 with p,. =0.5 or 0.7 are
recommended.

110
pi
- p_i=01
- pi=02
-& p_i=03
~&- p_i=04
& pi=05
p_i=06
p_i=07
pi=08

100

80 4

Average Computation Time (seconds)

T T T T u T T
0.2 03 04 0.5 0.6 0.7 0.8 09
p_s

Figure 4. Effect of p;;, and p,. on Average Computation Time

D. CONCLUSION AND SUGGESTIONS

This study introduces MAPSO-HLS, a modified APSO-HSL algorithm that integrates human
learning strategies, individual, random, and social learning, adapted from the HLO framework.
The integration of these three learning mechanisms enhances the algorithm’s ability to balance
exploration and exploitation. This balanced dynamic allows MAPSO-HLS to avoid premature
convergence and more effectively navigate complex solution spaces. The percentage deviation
of total distance from the six TSP datasets, when compared to the exact solutions, indicates that
MAPSO-HLS produces relatively low deviations, under 10%. This demonstrates the accuracy of
the solutions obtained using MAPSO-HLS. In terms of computation time, MAPSO-HLS
outperforms the exact ILP method by requiring significantly less time, especially for datasets
with a large number of cities.

A proper balance between exploration and exploitation can be achieved by selecting
appropriate combinations of the parameters p;,, and pg.. The parameter analysis shows that
choosing more adaptive values enhances the trade-off between solution quality and
computational efficiency. A smaller p;, value can reduce the risk of getting trapped in local
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optima, while a larger p,.value can reduce computation time. Further research is
recommended to incorporate statistical testing in evaluating the performance of the modified
algorithm, and to compare it with both the original version and other PSO variants. The
algorithm can also be implemented in more complex and practical problem domains, using
datasets derived from real-world scenarios. Additionally, other factors that influence human
learning behavior, such as motivation level, age, and experience, may be explored and adapted
into the algorithm to further enhance its performance.
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