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 Particle Swarm Optimization (PSO) is a widely used metaheuristic approach for 
solving optimization problems. Recent developments in this field involve the 
adaptation of human learning behaviors to enhance algorithmic performance. One 
such adaptation is the Adaptive Particle Swarm Optimization based on Human 
Social Learning (APSO-HSL), a variant of PSO that incorporates human inspired 
learning strategies. This study aims to enhance the performance of APSO-HSL on 
the Traveling Salesman Problem (TSP) by incorporating additional human learning 
strategies. The proposed algorithm, named Modified Adaptive Particle Swarm 
Optimization–Human Learning Strategies (MAPSO-HLS), integrates learning 
mechanisms from Human Learning Optimization (HLO), including individual, 
random, and social learning. This research is classified as applied research and 
algorithmic experimentation, focusing on the development and modification of a 
metaheuristic algorithm to solve a well-known combinatorial optimization 
problem. Benchmark datasets from the Traveling Salesman Problem Library 
(TSPLIB) are used for evaluation, and all computations and experiments are 
implemented in Python. The performance of MAPSO-HLS is compared with the 
exact method in terms of shortest distance and computation time. The results of the 
study indicate that the MAPSO-HLS algorithm is capable of producing TSP solutions 
with low total distance deviation, below 10%, compared to exact solutions across 
all tested datasets. This reflects a high level of solution accuracy. In addition, 
MAPSO-HLS demonstrates better time efficiency than the exact ILP method, 
particularly for datasets with a large number of cities. The integration of human 
learning strategies within the adaptive PSO framework provides significant 
advantages in terms of both efficiency and effectiveness in solving TSP. 
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——————————   ◆   —————————— 

 

A. INTRODUCTION  

Particle Swarm Optimization (PSO) is a meta-heuristic algorithm introduced by Kennedy 

and Eberhart and is widely used to solve optimization problems. The PSO algorithm is based on 

natural phenomena, namely the movement of a group of living things, such as birds and fish in 

finding food (Houssein et al., 2021). Computationally, PSO has advantages in terms of memory 

usage and speed (Jiyue et al., 2023; Lynn & Suganthan, 2015; Punyakum et al., 2022). The 

simplicity and efficiency factors have caused PSO to be widely used in various fields and it is 

considered the most effective method for solving optimization problems (Bangyal et al., 2023). 

PSO implementations are widely found in various fields, such as health, environment, industry, 

and commerce (Al-Maamari & Omara, 2015; Ramdhani, 2016). 
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Despite its strengths, standard PSO often suffers from premature convergence, particularly 

when parameters are not properly tuned (Guo et al., 2025; Larsen et al., 2016; Ashraf et al., 

2022). This leads to limited global exploration, insufficient local exploitation, and reduced 

solution diversity. To address these limitations, several PSO variants have been proposed, 

including heterogeneus comprehensive learning PSO (Lynn & Suganthan, 2015), discrete PSO 

(Zhong et al., 2018), and improved PSO with adaptive initialization techniques (Ashraf et al., 

2022), each aiming to enhance convergence and avoid local optima.  

A promising direction to overcome these challenges is the integration of human learning 

behavior into algorithmic design (Roberts-Mahoney et al., 2016; Jarecki et al., 2018; Wang et al., 

2017; Du et al. 2022). Human Learning Optimization (HLO) introduces learning strategies 

inspired by how humans solve problems, through random trial, individual experience, and 

social imitation. These principles have been shown to improve convergence and solution 

diversity in complex search spaces (Wang et al., 2014). Building on this, the Adaptive Particle 

Swarm Optimization based on Human Social Learning (APSO-HSL) algorithm incorporates 

human social learning into the PSO framework, resulting in improved accuracy, stability, and 

global search performance (Jiyue et al., 2023). Nonetheless, current implementations of APSO-

HSL primarily focus on the social learning component, leaving the potential of individual and 

random learning strategies underexplored. 

Solving combinatorial problems such as the Traveling Salesman Problem (TSP), a classic 

NP-hard problem requiring the optimal traversal of cities, is a compelling application for 

metaheuristics (Shaj et al., 2016; Chen et al., 2025). TSP not only represents real-world 

complexity but also demands a balance between exploration and exploitation due to its 

exponentially growing solution space (Jedrzejowicz et al., 2024). Although many PSO variants 

have been applied to TSP, further exploration into the role of adaptive human-inspired learning 

remains limited.  

This study aims to enhance the APSO-HSL algorithm by integrating comprehensive human 

learning strategies from HLO, namely random, individual, and social learning, to improve the 

effectiveness of PSO in solving the TSP. Based on (Vahdat et al., 2016), the combination of meta-

heuristic algorithms with adaptive learning mechanism has many advantages in solving 

optimization problems compared to algorithms inspired by natural phenomena.  By extending 

APSO-HSL with a more complete representation of human learning behavior, the proposed 

approach addresses the gap in existing PSO-based methods that insufficiently balance 

exploration and exploitation. 

 

B. METHODS 

This research is categorized as applied research and algorithmic experimentation, focusing 

on the development and modification of a metaheuristic optimization to solve a well-known 

combinatorial optimization problem (TSP). The dataset utilized in this research comprises 

benchmark instances sourced from the Traveling Salesman Problem Library (TSPLIB). Seven 

case examples with varying numbers of cities were selected, namely burma14, eil51, berlin 52, 

st70, eil76, and pr76 (TSPLIB, n.d.). All experiments were conducted using an Intel PC (core i5 

@3.09GHz CPU, 4GB RAM). The performance of the modified algorithm was evaluated based on 

the total distance traveled and computation time. A comparative analysis was conducted 
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against the exact method using benchmark TSP instances using the percentage deviation 𝑃𝐷 

shown by Equation (1). The exact method used in this study is Integer Linear Programming 

(ILP). 

𝑃𝐷 =
(approximation − exact)

exact
 100% 

  (1) 

 

1. Particle Swarm Optimization (PSO) 

The PSO algorithm begins with the particle initialization and initial velocity assignment. The 

optimal function value and location can be found by using the initial velocity to assess the 

objective function at each particle location. The particle velocity at that moment, each particle's 

optimal location, and each particle's optimal neighboring location are then used to determine a 

new velocity. The particle's location, velocity, and neighbors are updated iteratively until the 

algorithm reaches the stopping criterion. The new location was determined by adding the old 

location and modified velocity to maintain the particle within the boundary (Ab Wahab et al., 

2015; Jain et al., 2018; Gad, 2022). 

To obtain the best solution, each particle moves based on its personal best position (𝑝𝑏𝑒𝑠𝑡) 

and the global best position (𝑔𝑏𝑒𝑠𝑡) in the swarm. Each particle 𝑖 will update its velocity 𝑣 and 

position 𝑥 in each iteration 𝑡 + 1 using the following equation: 

 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1( 𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡), (2) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1, (3) 

 

where 𝑖  denotes the particle index, 𝑡  is the current iteration order, 𝜔  is the inertia used to 

balance local exploitation and global exploration, 𝑟1 and 𝑟2 is any number uniformly distributed 

on [0,1], 𝑐1 and 𝑐2 are the acceleration coefficients, which are two positive constants. Equation 

(2) is used to calculate the new velocity of the particle based on the distance and last velocity 

of a position from the particle's best personal experience and the group's best experience. Then, 

the particle moves towards the new position based on Equation (3) (Piotrowski et al., 2020; 

Zhong et al., 2018). 

 

2. Adaptive Particle Swarm Optimization based on Social Learning Intelligence (APSO-

HSL) 

The APSO-HSL algorithm developed by Jiyue et al. (2023) uses a learning strategy based on 

the multiswarm technique which the diversity of each particle is determined by the division of 

the swarm and the size of each swarm. Human social learning intelligence is used to adaptively 

divide the swarm and determine the size of each subswarm. The multiswarm technique in 

APSO-HSL has the following mathematical definition: 

 

𝑓1 = 𝑓𝑚𝑎𝑥 ,  

𝑓2 = 𝑓min + 𝛼1(𝑓𝑚𝑎𝑥 − 𝑓min),  

𝑓3 = 𝑓min + 𝛼2(𝑓𝑚𝑎𝑥 − 𝑓min), (4) 

𝑓4 = 𝑓min + 𝛼3(𝑓𝑚𝑎𝑥 − 𝑓min),  

𝑓5 = 𝑓min,  
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Ω𝑗
t = {𝑥𝑖

𝑡 | 𝑓𝑗 ≤ fitness (𝑥𝑖
𝑡) < 𝑓𝑗+1, 𝑖 = 1, 2,… , 𝑁; 𝑗 = 1, 2, 3, 4}. 

 

𝑓min and 𝑓𝑚𝑎𝑥 are the minimum and maximum values of the fitness function. {𝑓𝑘 , 𝑘 = 1, 2,… , 5} 

denotes the subswarm boundaries. Ω𝑗
t denotes the 𝑗th subswarm at the 𝑡th iteration. 𝑥𝑖

𝑡 is the 

position of the 𝑖th particle at the 𝑡th iteration. The upper and lower bounds for each particle’s 

fitness are determined using 𝛼𝑘  with 𝑘 = 1, 2, 3 , where 𝛼1 = 0.25, 𝛼2 = 0.50, 𝛼3 = 0.75.  The 

determination of the upper and lower bounds were determined to avoid a large size imbalance 

of the subswarms. 

Every particle was split into three groups according to their learning capacity, each of which 

had a distinct purpose based on how well they evolved with each iteration. The first group is 

made up of the swarm's best particles overall (𝐺𝑏𝑒𝑠𝑡). The second is each subswarm's best 

particle (𝑆𝑏𝑒𝑠𝑡). The remaining particles with average fitness, referred to as ordinary particles, 

make up the third group. The following is a definition of the inertia load operators for the three 

groups: 

 

𝜔𝑖
𝑡 =

{
 
 
 
 

 
 
 
 ∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑏𝑒𝑠𝑡𝑗

𝑡)
𝑁(𝑡)−1
𝑗=1

(𝑁(𝑡) − 1)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖
𝑡)

,   if 𝑥𝑖
𝑡 = 𝐺𝑏𝑒𝑠𝑡𝑡

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑏𝑒𝑠𝑡𝑗+1
𝑡 )

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖
𝑡)

,         if 𝑥𝑖
𝑡 = 𝑆𝑏𝑒𝑠𝑡𝑗

𝑡

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑆𝑏𝑒𝑠𝑡
𝑆(𝑖)
𝑡
𝑡 )

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖
𝑡)

,                           else,

 (5) 

 

where 𝑁(𝑡) represents the number of subswarms, 𝑆𝑏𝑒𝑠𝑡𝑗
𝑡  shows the best particle of the 𝑗th 

subswarm at the 𝑡th iteration, 𝑆(𝑖)
𝑡  shows the subswarm with the position of the 𝑖th particle 

located at the 𝑡th iteration. Groups with different learning abilities also have different ways of 

updating their velocity. Mathematically, the particle velocity in the group with the first learning 

ability can be defined using the following equation: 

 

𝑣𝑖
𝑡+1 = 𝜔𝑖

𝑡𝑣𝑖
𝑡 + 𝑐11𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) + 𝑐21𝑟2(𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑖
𝑡), (6) 

 

where 𝑐11 = 2 and 𝑐21 = 1 denote positive acceleration coeeficients, 𝑟1and 𝑟2 are two arbitrary 

numbers distributed uniformly on [0,1]. 𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 denotes the best position of each particle and 

𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡𝑡  is the average of the best positions of the particles in each subswarm which is 

defined as: 

 

{
 
 

 
 𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡𝑖

𝑡 =∑ 𝑟𝑖
𝑡 𝑥𝑖

𝑡
𝑁(𝑡)−1

𝑗=1

𝑟𝑖
𝑡 =

(1 −
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑏𝑒𝑠𝑡𝑖

𝑡)

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑏𝑒𝑠𝑡𝑗
𝑡)

𝑁(𝑡)−1
𝑗=1

)

𝑁(𝑡) − 2

 (7) 
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Furthermore, it was found: 

 

∑ 𝑟𝑖
𝑡

𝑁(𝑡)−1

𝑗=1
= 1 (8) 

 

The particle velocity in the group with the second learning ability is defined by the following 

equation: 

 

𝑣𝑖
𝑡+1 = 𝜔𝑖

𝑡𝑣𝑖
𝑡 + 𝑐12𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) + 𝑐22𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)+1

𝑡 − 𝑥𝑖
𝑡), (9) 

 

where 𝑐12 = 1 and 𝑐22 = 2 are the acceleration coefficients and 𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)+1
𝑡  denote the learning 

characteristics of the best particle in the subswarm with a lower fitness level. Ordinary particles 

update their velocities using: 

 

𝑣𝑖
𝑡+1 = 𝜔𝑖

𝑡𝑣𝑖
𝑡 + 𝑐13𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) + 𝑐23𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)+1

𝑡 − 𝑥𝑖
𝑡),   (10) 

 

where 𝑐13 = 𝑐23 = 1.5 (Jiyue et al., 2023). 

 

3. Human Learning Optimization (HLO) 

The adaptive algorithm known as Human Learning Optimization (HLO) is based on 

activities of human learning. To master new things, humans repeatedly learn and practice them. 

After determining an appropriate learning method, humans can evaluate the recognition of a 

new object. The learning model used in HLO includes three learning stategy, random learning 

strategy, individual learning strategy, and social learning strategy (Wang, Ni, et al., 2015; Ding 

dan Gu 2020). At the initial stage of a novel task, individuals typically lack prior knowledge, 

resulting in behavior characterized by trial and error. Within the framework of Human 

Learning Optimization (HLO), this phase is conceptualized as random learning, wherein actions 

are guided by uninformed guesses. As individuals accumulate experience through repeated 

attempts, they begin to discern effective strategies from ineffective ones based on personal 

outcomes. This process aligns with what is referred to in HLO as individual learning. Beyond 

self-experience, learning also occurs through observation and interaction with others. When 

individuals are exposed to peers with superior performance or greater experience, they are 

inclined to adopt or imitate those observed strategies. This behavior is captured in HLO as 

social learning, reflecting the influence of social context on cognitive adaptation (Wang, Ni, et 

al., 2015; Wang et al., 2018). The three learning processes are determined based on the 

probability of random learning 𝑝𝑟  and the probability of individual learning 𝑝𝑖𝑛. Once a random 

number 𝑟𝑎𝑛𝑑 ∈ (0,1) is generated, the selection of the learning process is governed according 

to Equation (11) (Wang, Yang, et al., 2015). 

 

{

individual learning,       if 𝑟𝑎𝑛𝑑 ∈ (0, 𝑝
𝑟
) 

random learning,           if 𝑟𝑎𝑛𝑑 ∈ [𝑝
𝑟
, 𝑝

𝑖𝑛
]

social learning,                                      else

 (11) 
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4. Modified Adaptive Particle Swarm Optimization-Human Learning Strategies 

(MAPSO-HLS) 

The proposed algorithm is a combination of APSO-HSL and HLO called Modified Adaptive 

Particle Swarm Optimization-Human Learning Strategies (MAPSO-HLS). Every particle with a 

different role is given three types of learning. The learning process begins with individual 

learning, where each particle evaluates its own historical experience to refine movement 

strategies. This self-guided adaptation helps particles identify locally promising areas based on 

their own performance. The next learning process is random learning, which introduces 

stochastic exploration, directs particle to study from 𝐾neighbors best experience, based on 

their previous experience. 𝐾neighbors used as learning references were randomly selected. 

Finally, social learning enables particles to adopt strategies from particles showing better 

performance, promoting convergence toward globally optimal regions. 

The velocity and position particle-𝑖 at the 𝑡 + 1th iteration represented by 𝑣𝑖
𝑡+1 and 𝑥𝑖

𝑡+1 for 

the best particle in the entire swarm is given by Equation (12), for the best particle in each 

subswarm can be updated using Equation (13), and for ordinary particles can be updated using 

Equation (14). 𝜔 is the moment of inertia to balance local exploitation and global exploration 

calculated using Equation (5), 𝑟1and 𝑟2 is any number uniformly distributed on [0,1]. 𝑐11, 𝑐12, 𝑐13 

are the individual acceleration coefficients, and 𝑐21, 𝑐22, 𝑐23  are the social acceleration 

coefficients. 𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 shows the best position of each particle and 𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡𝑡  is the average of 

the best positions of particles in each subswarm, 𝑔𝐾  shows the best position from any 𝐾 

particle. 

 

𝑣𝑖
𝑡+1 = {

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐11𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐21𝑟2(𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) 𝑝𝑟𝑛;   𝑝𝑟𝑛 ∈ (0, 𝑝𝑖𝑛)

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐11𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐21𝑟2(𝑔𝐾 − 𝑥𝑖
𝑡);  𝑝𝑟𝑛 ∈ [𝑝𝑖𝑛, 𝑝𝑠𝑐]

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐11𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡)(1 − 𝑝𝑠𝑐) + 𝑐21𝑟2(𝐴𝑉𝐺𝑆𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡);  𝑝𝑟𝑛 ∈ (𝑝𝑠𝑐, 1)

 

 

 (12) 

 

𝑣𝑖
𝑡+1 = {

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐12𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐22𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)+1
𝑡 − 𝑥𝑖

𝑡)𝑝𝑟𝑛;   𝑝𝑟𝑛 ∈ (0, 𝑝𝑖𝑛)

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐12𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐22𝑟2(𝑔𝐾 − 𝑥𝑖
𝑡);  𝑝𝑟𝑛 ∈ [𝑝𝑖𝑛, 𝑝𝑠𝑐]

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐12𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡)(1 − 𝑝𝑠𝑐) + 𝑐22𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)+1
𝑡 − 𝑥𝑖

𝑡);  𝑝𝑟𝑛 ∈ (𝑝𝑠𝑐, 1)

 

 

 (13) 

 

𝑣𝑖
𝑡+1 = {

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐13𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐23𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)
𝑡 − 𝑥𝑖

𝑡)𝑝𝑟𝑛;   𝑝𝑟𝑛 ∈ (0, 𝑝𝑖𝑛)

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐13𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐23𝑟2(𝑔𝐾 − 𝑥𝑖
𝑡);  𝑝𝑟𝑛 ∈ [𝑝𝑖𝑛, 𝑝𝑠𝑐]

𝜔𝑖
𝑡𝑣𝑖

𝑡 + 𝑐13𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡)(1 − 𝑝𝑠𝑐) + 𝑐23𝑟2(𝑆𝑏𝑒𝑠𝑡𝑆(𝑖)
𝑡 − 𝑥𝑖

𝑡);  𝑝𝑟𝑛 ∈ (𝑝𝑠𝑐, 1)

 

 

(14) 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1, (15) 

 

 

Similar to HLO, the three learning strategies are independent of one another. Determination 

of the learning process based on the 𝑝𝑖𝑛 , 𝑝𝑠𝑐 , and 𝑝𝑟𝑛 . The values (𝑝𝑖𝑛 − 0)  indicate the 

occurrence of individual learning processes, (𝑝𝑠𝑐 − 𝑝𝑖𝑛) for random learning, and (1 − 𝑝𝑠𝑐) for 

social learning, respectively. Parameter 𝑝𝑟𝑛 will be determined randomly at the interval (0,1). 

In the context of TSP, velocity updates must be redefined as swap operations due to the discrete 

and permutation-based nature of the problem (Clerc, 2004). If the fitness value from the 

updated position is better than before, the position becomes the particle’s 𝑃𝑏𝑒𝑠𝑡. The 2-opt 

algorithm is then applied to further refine the solution. In TSP, 2-opt enhances solution quality 

by reducing inefficient or intersecting paths often found in PSO results. Its low complexity and 
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deterministic nature make it ideal for improving convergence in global search algorithms like 

PSO and its variants (Sathyan et al., 2015). 

 

C. RESULT AND DISCUSSION 

The chosen correlation coefficients were 𝑐11 = 2and 𝑐21 = 1  for the best particle in the 

entire swarm, 𝑐12 = 1 and 𝑐22 = 2 for the best particle in each subswarm, and 𝑐13 = 𝑐23 = 1.5 

for ordinary particle. The learning behavior of each particle is determined by the probabilities 

𝑝𝑖 = 0.4 and 𝑝𝑠 = 0.8. Each particle with free learning strategy learns from the best experience 

among 𝐾 = 5 randomly selected neighbors. The number of particles used in this study was 100, 

with a total of 1000 iterations. The effectiveness of MAPSO-HLS was assessed through 

experiments on six TSP instances with different city counts, with performance evaluation 

conducted based on total route length and computation time. The approximation results of the 

shortest distances generated by MAPSO-HLS were evaluated against the exact method through 

percentage deviation, as shown in Table 1. A smaller percentage deviation indicates a higher 

accuracy of the algorithm in finding the optimal solution.  

 

Table 1. Comparison of Total Distance 

Instances 
Solution 

Percentage Deviation (𝑷𝑫) 
Exact MAPSO-HLS 

burma14 30.88 30.88 0.00% 
eil51 429.98 445.03 3.50% 

berlin52 7544.37 7811.31 3.54% 
st70 678.60 694.09 2.28% 
eil76 544.37 573.44 5.34% 
pr76 108159.44 113925.86 5.33% 

 

The percentage deviations presented in Table 1 indicate that MAPSO-HLS demonstrates 

good performance. The deviations across all six TSP datasets are below 10%. For the dataset 

with a small number of cities (burma14), the deviation is 0.00%. Even for datasets with a larger 

number of cities (more than 50), the deviations remain low, ranging from 2.28% to 5.34%. 

These results suggest that MAPSO-HLS is capable of producing accurate solutions with only 

slight differences compared to the exact solutions. 

Computation time is also a key factor in evaluating algorithm performance. The 

computation time ratio presented in Table 2 shows that MAPSO-HLS is significantly faster than 

the exact method, particularly for datasets with more than 50 cities. For the berlin52 dataset, 

MAPSO-HLS produced a solution in 92.63 seconds, whereas the exact method required 1178.57 

seconds. This indicates that MAPSO-HLS is 12.72 times faster. Similarly, on the eil51, eil76, pr76, 

and st70 datasets, MAPSO-HLS also achieved shorter computation times, being 8.97, 1390.69, 

2164.18, and 3888.11 times faster, respectively. The percentage deviation also highlights that 

computation time for datasets with more than 50 cities is significantly faster using MAPSO-HLS 

compared to the exact method. This is evident in the fact that the computation time deviation 

for the eil51, eil76, pr76, and st70 datasets, the deviation in computation time is extremely high, 

approaching 100%. 
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Table 2. Comparison of Computation Time 

Instances 
Time (seconds) 

Ratio 
Percentage Deviation 

(𝑷𝑫) Exact MAPSO-HLS 
burma14 1.22  45.33  0.03  3615.57%  

eil51 711.09 79.29 8.97 88.85% 
berlin52 1178.57 92.63 12.72 92.14% 

st70 589243.03 151.55 3888.11 99.97% 
eil76 206754.48 148.67 1390.69 99.93% 
pr76 368235.35 170.15 2164.18 99.95% 

 

Based on the percentage deviation in total distance and the computation time ratio, MAPSO-

HLS demonstrates an advantage over exact methods in terms of time efficiency while 

maintaining solution accuracy. Therefore, MAPSO-HLS can be considered a viable alternative 

for solving discrete permutation problems such as the TSP, particularly for datasets involving 

a large number of cities. Figures 1 and Figure 2 illustrate the shortest route for eil51 obtained 

using the exact method and MAPSO-HLS, respectively. 

 

 
Figure 1. The Shortest Route for eil51 Based on the Exact Method 

 

 
Figure 2. The Shortest Route for eil51 Based on the MAPSO-HLS Algorithm 
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This study continues by evaluating the parameters 𝑝𝑖𝑛 and 𝑝𝑠𝑐  to observe their impact on 

the total distance traveled and computation time. The parameters 𝑝𝑖𝑛 and 𝑝𝑠𝑐  represent the 

probabilities of individual learning and social learning, respectively. These probabilities control 

the balance between exploration and exploitation. Exploration refers to the condition where 

particles are still searching for new areas in the solution space, while exploitation refers to the 

condition in which the swarm refines solutions that are already reasonably good. All 

combinations of 𝑝𝑖𝑛 and 𝑝𝑠𝑐  ranging from 0.1 to 0.9 were applied to six TSP datasets, with the 

constraint that 𝑝𝑖𝑛< 𝑝𝑠𝑐. The relationship between these parameters and the average shortest 

distances obtained across the six datasets is visualized in Figure 3. 

As shown in Figure 3, the parameter 𝑝𝑖  corresponds to 𝑝𝑖𝑛 and 𝑝𝑠 corresponds to 𝑝𝑆𝑐 . It can 

be observed that when the difference between 𝑝𝑖𝑛 and 𝑝𝑠𝑐  is either too small or too large, the 

resulting average distance tends to be higher. For example, the combinations 𝑝𝑖𝑛 = 0.1 and 

𝑝𝑠𝑐 = 0.2, 𝑝𝑖𝑛=0.1 and 𝑝𝑠𝑐=0.9, 𝑝𝑖𝑛=0.8 and 𝑝𝑠𝑐=0.9 produce larger average distances compared 

to other combinations. The best performance is observed at 𝑝𝑖𝑛=0.1 and 𝑝𝑠𝑐=0.8, while the 

worst performance is found at 𝑝𝑖𝑛 =0.1 and 𝑝𝑠𝑐 =0.2. Lower average distances were also 

obtained with 𝑝𝑖𝑛=0.1 and 𝑝𝑠𝑐=0.5, and 𝑝𝑖𝑛=0.2 and 𝑝𝑠𝑐=0.5. These results suggest that when 

𝑝𝑖𝑛 is low (0.1 or 0.2), particles do not overly rely on their own learning, helping to avoid local 

optima. Meanwhile, when 𝑝𝑆𝑐  is set to moderate values (0.5 or 0.6), particles engage in social 

learning at a balanced rate, promoting convergence while preserving diversity. This 

combination leads to a more balanced process between exploration and exploitation.   

 

 
Figure 3. Effect of 𝑝𝑖𝑛 and 𝑝𝑠𝑐 on Average Total Distance 

 

The relationship between the parameters 𝑝𝑖𝑛,  𝑝𝑠𝑐  and the average computation time is 

visualized in Figure 4. The parameter 𝑝𝑖  corresponds to 𝑝𝑖𝑛, and 𝑝𝑠 corresponds to 𝑝𝑠𝑐 . 

Combinations of 𝑝𝑖𝑛 and 𝑝𝑠𝑐  with small differences tend to result in shorter computation times. 

For example, when 𝑝𝑖𝑛=0.1, the combination with 𝑝𝑠𝑐=0.2 yields faster computation compared 

to combinations with other 𝑝𝑠𝑐   values. A similar pattern is observed for 𝑝𝑖𝑛 =0.2, where 

combining it with 𝑝𝑠𝑐=0.3 results in shorter computation time. The larger the gap between 𝑝𝑖𝑛 

and 𝑝𝑠𝑐 , the more time is required to reach a solution. The best-performing combination in 
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terms of computation time is 𝑝𝑖𝑛=0.3 and 𝑝𝑠𝑐=0.4, while the worst-performing combination is 

𝑝𝑖𝑛=0.1and 𝑝𝑆𝑐=0.9. 

The increasing computation time associated with higher 𝑝𝑠𝑐  values is caused by the greater 

frequency of social learning, which leads to more frequent information exchange among 

particles. When 𝑝𝑖𝑛=0.6, 0.7, or 0.8, the resulting computation time is lower. However, as shown 

in Figure 3, the quality of the solutions obtained is less optimal. This indicates that when 

particles tend to rely more on their own experience, convergence is faster and computation 

time is shorter, but the solutions are suboptimal. Based on the average total distance and 

computation time, the combinations 𝑝𝑖𝑛=0.1 with 𝑝𝑠𝑐=0.5 or 0.6 are preferable when accuracy 

is the main objective. If time efficiency is prioritized, combinations such as 𝑝𝑖𝑛 > 0.6  with 

𝑝𝑠𝑐=0.6 or 0.7 can be selected. To achieve a balance between optimal solution quality and 

shorter computation time, the combinations 𝑝𝑖𝑛 =0.3 or 0.4 with 𝑝𝑠𝑐 =0.5 or 0.7 are 

recommended. 

 

 
Figure 4. Effect of 𝑝𝑖𝑛 and 𝑝𝑠𝑐 on Average Computation Time 

 

D. CONCLUSION AND SUGGESTIONS 

This study introduces MAPSO-HLS, a modified APSO-HSL algorithm that integrates human 

learning strategies, individual, random, and social learning, adapted from the HLO framework. 

The integration of these three learning mechanisms enhances the algorithm’s ability to balance 

exploration and exploitation. This balanced dynamic allows MAPSO-HLS to avoid premature 

convergence and more effectively navigate complex solution spaces. The percentage deviation 

of total distance from the six TSP datasets, when compared to the exact solutions, indicates that 

MAPSO-HLS produces relatively low deviations, under 10%. This demonstrates the accuracy of 

the solutions obtained using MAPSO-HLS. In terms of computation time, MAPSO-HLS 

outperforms the exact ILP method by requiring significantly less time, especially for datasets 

with a large number of cities. 

A proper balance between exploration and exploitation can be achieved by selecting 

appropriate combinations of the parameters 𝑝𝑖𝑛 and 𝑝𝑠𝑐 . The parameter analysis shows that 

choosing more adaptive values enhances the trade-off between solution quality and 

computational efficiency. A smaller 𝑝𝑖𝑛 value can reduce the risk of getting trapped in local 
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optima, while a larger 𝑝𝑠𝑐  value can reduce computation time. Further research is 

recommended to incorporate statistical testing in evaluating the performance of the modified 

algorithm, and to compare it with both the original version and other PSO variants. The 

algorithm can also be implemented in more complex and practical problem domains, using 

datasets derived from real-world scenarios. Additionally, other factors that influence human 

learning behavior, such as motivation level, age, and experience, may be explored and adapted 

into the algorithm to further enhance its performance. 
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