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 Solar energy is a key renewable resource, particularly valuable in tropical regions 
like Bali, where sunlight is consistently available throughout the year. Accurate 
estimation of sunshine duration is essential for assessing solar energy potential, as 
it directly affects photovoltaic (PV) system performace and informs strategic 
planning for renewable energy development. This study aims to develop a 
spatiotemporal statistical interpolation model to estimate and predict sunshine 
duration patterns across Bali, thereby enhancing the planning and deployment of 
solar energy infrastructure. This quantitative research applies space-time kriging 
with local drift using sunshine duration data (in hours) collected from four 
meteorological stations between 2019 and 2023. The method effectively captures 
spatial and temporal dependencies by integrating local drift as a deterministic 
trend component. Among several models tested, the Gaussian-Gaussian-Gaussian 
(Gau-Gau-Gau) combination delivered the best performance, with an RMSE of 
2.3085. The results show a clear seasonal cycle, with higher sunshine duration 
during the dry season (May–October) and lower values in the wet season 
(November–March). Northern and eastern Bali, particularly Buleleng and 
Karangasem, demonstrate the highest solar potential, while central mountainous 
areas show lower sunshine exposure due to cloud coverage. These results offer not 
only a methodological contribution through the application of spatiotemporal 
kriging with local drift, but also a practical framework for decision-makers. The 
insights can guide strategic placement of solar farms, optimize energy yield 
forecasts, and support resilient infrastructure planning in line with Bali’s climatic 
realities and energy needs. 
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A. INTRODUCTION  

Solar energy has emerged as one of the most promising renewable energy sources 

worldwide, offering clean and sustainable alternatives to fossil fuels (Jaiswal et al., 2022). This 

transition is crucial as many countries face the dual challenges of growing electricity demand 

and worsening environmental degradation (Osman et al., 2023). Tropical regions, with high 

levels of solar irradiation are particularly well-positioned to benefit from solar energy 

technologies. As part of this global shift, Indonesia presents a strong case for solar energy 

development due to its equatorial position and consistent year-round solar exposure. 

Maximizing this potential requires a localized understanding of solar availability to guide 

infrastructure development and energy policy. 

Indonesia has tropical climate and high solar radiation that offer significant potential for the 

solar energy development (Laksana et al., 2021). Within this national context, Bali Island stands 
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out with an average annual solar radiation of over 4.5 kWh/m²/day (Pambudi et al., 2023). The 

island’s relatively compact geography, reliable infrastructure and stable electricity demand 

that driven primarily by tourism and residential usage. It enhances its feasibility for solar-based 

energy solutions. However, despite its overall solar richness, Bali’s geographical diversity 

introduces variation in solar energy potential. A strategic and spatially explicit assessment is 

therefore essential to support efficient planning and development of solar installations across 

the island.  

The complex topography of Bali, from coastal lowlands to mountainous interiors like Mount 

Agung and Mount Batur significantly influences sunlight availability. Mountainous areas often 

experience orographic cloud formation, fog and localized rainfall which reduce sunshine hours. 

In contrast, lowland and coastal regions such as Denpasar and Sanur typically benefit from 

clearer skies and more sunshine exposure (Fitchett et al., 2025). These spatial disparities mean 

that generalized solar energy strategies may not be suitable. To ensure accurate planning, 

location-specific assessments are needed to quantify how terrain and climate affect sunshine 

duration which is a key factor in solar energy output. 

Sunshine duration is the total hours of direct sunlight a location receives per day. It is a 

critical climatological parameter that influences photovoltaic (PV) performance (Bamisile et al., 

2025). It plays a vital role not only energy planning (Kazaz & Istil, 2019) but also agricultural 

activities (Yuan et al., 2024), health (Sadiq et al., 2019), and overall daily human productivity 

(Zateroglu, 2021). In Bali, tourism and agriculture are highly dependent on weather conditions, 

understanding sunshine patterns is vital for both economic resilience and environmental 

planning. Despite its importance, sunshine duration data are typically collected at a limited 

number of meteorological stations, leading to sparse spatial coverage that restricts 

comprehensive regional analysis. 

To address this limitation, advanced spatiotemporal interpolation methods such as kriging 

have been employed to estimate sunshine duration at unsampled locations. Space-time kriging 

with local drift is particularly effective, as it incorporates both spatial and temporal 

dependencies and accounts for external variables that influence the observed phenomenon. In 

the case of sunshine duration, these external variables often include seasonal effects driven by 

Bali's tropical climate. Previous studies Huang et al. (2024); Li et al. (2020); Dhaher & Shexo 

(2023) have demonstrated the utility of space-time kriging in environmental and 

meteorological data interpolation, emphasizing the need for models that handle non-

stationarity and spatiotemporal variability. However, these models rarely consider seasonal 

components explicitly, especially in tropical regions like Bali. 

This study addresses a significant research gap by integrating local drift derived from 

seasonal decomposition into the space-time kriging framework. Seasonal patterns, which cause 

systematic fluctuations in sunshine duration can violate the assumption of stationarity 

required by traditional kriging methods. By removing and separately modelling the seasonal 

component, the remaining data become more stationary and thus more suitable for space-time 

interpolation. This improvement allows for more accurate and realistic sunshine duration 

predictions across varying area. 

This research aims to develop and apply a statistical interpolation model, specifically space-

time kriging with local drift to estimate and predict sunshine duration across Bali using data 
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from 2019 to 2023. By producing high-resolution sunshine duration maps, this study aims to 

support optimal site selection for solar installations, improve energy yield forecasting, and 

guide strategic infrastructure planning aligned with Bali’s environmental and economic needs. 

 

B. METHODS 

1. Data and Research Variables  

The data used in this study were obtained from the BMKG (Badan Meteorologi, Klimatologi, 

dan Geofisika) of Bali Province. The dataset consists of monthly average sunshine duration, a 

crucial variable for evaluating solar energy potential as it directly correlates with the amount 

of solar radiation that can be captured by photovoltaic (PV) systems. Data were collected from 

four observation stations across Bali; Denpasar area represented by Sanglah Geophysics 

Station, Jembrana area represented by Negara Climatology Station, Karangasem area 

represented by Kahang-Kahang Geophysics Station, and Badung area represented by Ngurah 

Rai Meteorology Station. These stations provide spatial coverage across urban, coastal, and 

inland areas, capturing diverse microclimates and geographical conditions. 

Each station utilizes Campbell-Stokes sunshine recorders or automated solar radiation 

sensors, such as pyranometers, integrated into automatic weather stations (AWS), depending 

on the site’s technological infrastructure. These instruments are standardized under World 

Meteorological Organization (WMO) guidelines to ensure consistent and reliable 

measurements of solar exposure. The observation period spans five years, from January 2019 

to December 2023 with no missing data thus offering a robust and continuous temporal dataset 

for analysis. This temporal coverage allows for the examination of both interannual variability 

and seasonal trends in sunshine duration. 

For analytical purposes, the sunshine duration data were structured into a space-time 

format using RStudio, which served as the primary software for data processing and statistical 

modeling. Sunshine duration, as a climatological variable, exhibits inherent variability over 

space and time. Therefore, the analysis proceeded in four key stages: (1) seasonal 

decomposition, (2) stationarity testing, (3) space-time semivariogram modeling, and (4) space-

time kriging with local drift. The final results were visualized and mapped using ArcGIS, 

enabling the spatial interpretation of sunshine duration estimates across Bali. 

 

2. Time Series Decomposition 

The first step involved pre-processing the original time series data to ensure stationarity by 

removing seasonal component from each observation station through time series 

decomposition. Climatic data like sunshine duration generally exhibit strong seasonal 

fluctuations that make the data inherently non-stationary. Removing this seasonal trend 

improves the suitability of the data for further statistical analysis and modeling. The additive 

time series decomposition at each location was modeled and described mathematically as 

outlined in Equation (1) (Iftikhar et al., 2023). 
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𝑌(𝑠, 𝑡) = 𝑇𝑟(𝑠, 𝑡) + 𝑆𝑒(𝑠, 𝑡) + 𝐸(𝑠, 𝑡) (1) 

 

where Y denotes the sunshine duration data in a space time context, measured at location s and 

time t, where t indicates the month (𝑡 = 1,… ,12). The variable Y consist of three components; 

𝑇𝑟, representing the trend-cycle component; 𝑆𝑒, the seasonal component; and 𝐸 is the irregular 

(random) component. In this study, only the seasonal component (𝑆𝑒) was removed, resulting 

seasonally adjusted data denoted as 𝑅  which modeled in Equation (2). This seasonal 

component is also referred to as local drift. 

 

𝑅(𝑠, 𝑡) = 𝑌(𝑠, 𝑡) − 𝑆𝑒(𝑠, 𝑡) (2) 

 

3. Stationarity Checking using Regression Analysis 

The second step of the analysis involved checking for stationarity using space-time 

regression model. Stationarity is a crucial assumption in this method, as non-stationary data 

can lead to misleading or biased result. This step ensures that any patterns or trends inherent 

in the data over space and time are appropriately accounted. The spatial trend variables are 

defined by the geographic coordinates longitude (x) and latitude (y) which represent the 

specific location of each observation point. Meanwhile the temporal trend is captured by the 

month in which each observation was recorded. This relationship is mathematically expressed 

in Equation (3)(Van Zoest et al., 2020). 

 

𝑅(𝑠, 𝑡) = ∑𝛽𝑖𝑋𝑖(𝑠, 𝑡)

𝑝

𝑖=0

+ 𝜀𝑖(𝑠, 𝑡) (3) 

 

where R refers to the seasonally adjusted dataset, which consists of 𝑝 + 1  elements. The 

parameter 𝑝 signifies the number of independent variables included in the regression model. 

Specifically, this study using 𝑝 = 3  represent longitude, latitude and month. The symbol 𝛽𝑖 

indicates the regression coefficient for each variable, while 𝑋𝑖(𝑠, 𝑡) denotes the corresponding 

predictor variable defined over the space-time domain. More specifically, the expression 

𝛽0𝑋0(𝑠, 𝑡) denotes the intercept term in the regression model. The subsequent terms account 

for the influence of the spatial and temporal variables on the response. Lastly, 𝜀𝑖(𝑠, 𝑡) 

represents the residual term that not explained by the regression model. 

 

4. Space-time Semivariogram 

The third step is modeling these seasonally adjusted data using a space-time semivariogram, 

A space-time semivariogram characterizes both the spatial dependence of a regionalized 

variable and its temporal correlation over different time lags. There are two main types of 

space-time semivariograms used in this study, the empirical semivariogram which is derived 

from observed data, and the theoretical semivariogram which is fitted based on the empirical 

one. The empirical space time semivariogram provides a foundational understanding of the 

data structured and serves as the basis for fitting a theoretical model. The empirical 

semivariogram function is computed using Equation (4)(Medeiros et al., 2019).  
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𝛾
𝑠𝑡
(𝒖, 𝒗) =

1

2
𝑉(𝑅(𝒔 + 𝒖, 𝑡 + 𝑣) − 𝑅(𝒔, 𝑡)) (4) 

 

where, u represents the spatial distance, while v denotes the temporal lag. After constructing 

the empirical space-time semivariogram, the next step is to fit a theoretical semivariogram 

using an appropriate curve that best represents data. This fitting process involves comparing 

key components of the semivariogram such as the nugget effect, partial sill and range to 

determine the most suitable model. 

In this study, the marginal semivariogram for both spatial and temporal dimensions are 

modeled using two different approaches using the combination of exponential and Gaussian 

model. These models are mathematically formulated in Equations (5) and (6), respectively. 

 

𝛾(𝑣) = 𝑐0 + 𝑐 [1 − exp⁡ (−
𝑣

𝑎
)] (5) 

 

𝛾(𝑣) = 𝑐0 + 𝑐 [1 − exp⁡ (−
𝑣2

𝑎2
)] (6) 

 

where, 𝑣  refers the distance in either spatial or temporal term, 𝑐0  denotes the nugget,  𝑐 

represent the partial sill, and 𝑎 is an effective range.  

After selecting appropriate semivariogram models for both spatial and temporal 

components, the next step is to construct the space-time semivariogram model that captures 

the structure of spatiotemporal dependence in the data. Several modeling approaches are 

available for this purpose, including the metric model, the separable model, the sum-metric 

model, and the sum-product model (Zhao et al., 2020; Lambardi Di San Miniato et al., 2022; 

O’Rourke & Kelly, 2015; Bachrudin et al., 2023).  

In this research, the sum-metric model is chosen due to its greater flexibility in capturing 

the characteristics of the seasonally adjusted data (He et al., 2022). This model allows for the 

integration of both spatial and temporal components while maintaining a realistic 

representation of their interaction. The formulation of the sum-metric model is presented in 

Equation (7). 

𝛾
𝑠𝑡
(𝒖, 𝒗) = 𝛾

𝑠𝑡
(𝒖, 𝟎) + 𝛾

𝑠𝑡
(𝟎, 𝒗) + 𝛾

𝑠𝑡
√||𝑢||

2
+ (𝑘. |𝑣|)2 (7) 

 

to determine the best model combination of spatial and temporal semivariogram model, a 

comparison will be conducted using the Root Mean Square Error (RMSE) as the evaluation 

metric shown in Equation (8) (Rahmawati, 2020). 

 

𝑅𝑀𝑆𝐸 = √
1

#𝑁(𝒖, 𝑣)
∑ (𝛾̂(𝒖, 𝑣) − 𝛾(𝒖, 𝑣))

𝑁(𝒖,𝑣)

𝑖=1

2

(8) 

 

A lower RMSE value indicates a better fit, as it reflects a smaller deviation between the 

modeled semivariogram and the empirical data. This comparison enables the selection of the 
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model that most accurately captures the underlying structure of the residuals. 

 

5. Interpolation using Kriging with Local Drift  

The final step is performing space-time local drift prediction of the data across all locations 

within the study area. The prediction is carried out using space-time kriging, which represent 

as Equation (9). 

𝑅∗(𝒔𝟎, 𝑡0) = ∑ 𝜆𝑖

𝑛

𝑖=1

𝑅(𝒔𝒊, 𝑡𝑖) (9) 

 

where 𝑅∗ is the prediction value at unobserved location, 𝑅represent the seasonally adjusted 

value at the observed location, while 𝜆𝑖  refers to the interpolation weights in the kriging 

process, as illustrated in Equation (10).  

 

(

𝛾(𝒔1 − 𝒔1, 𝑡1 − 𝑡1) ⋯

⋮ ⋱

𝛾(𝒔1 − 𝒔𝑛, 𝑡1 − 𝑡𝑛) 1

⋮ ⋮
𝛾(𝒔𝑛 − 𝒔1, 𝑡1 − 𝑡1) ⋯

1 ⋯

𝛾(𝒔𝑛 − 𝒔𝑛, 𝑡𝑛 − 𝑡𝑛) 1

1 0

)(

𝜆1
⋮
𝜆𝑛
𝛼

) = (

𝛾(𝒔1 − 𝒔0, 𝑡1 − 𝑡0)
⋮

𝛾(𝒔𝑛 − 𝒔0, 𝑡𝑛 − 𝑡0)
1

) (10) 

 

The space-time kriging with local drift estimation is given by Equation (11). 

 

𝑍̂(𝑠0,𝑡0) = 𝑆𝑒(𝑠0, 𝑡0) + 𝑅∗(𝒔𝟎, 𝑡0) (11) 

 

C. RESULT AND DISCUSSION 

1. Exploration 

Figure 1 displays time series plots of monthly sunshine duration measured at four different 

stations located in Denpasar, Jembrana, Karangasem and Badung over the period from 2019 to 

2023. Across all stations, a strong seasonal pattern is evident with sunshine duration increasing 

during the dry season in May to October and decreasing during the wet season in November to 

March. This cyclical trend aligns with Bali’s climate which features clearly defined wet and dry 

periods, as shown in Figure 1. 

 

 
(a) (b) 
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(c) (d) 

Figure 1. Time series plot at (a) Sanglah Geophysics Station, (b) Negara Climatology Station,  

(c) Kahang-Kahang Geophysics Station, and (d) Ngurah Rai Meteorology Station 

 

From the Figure 1, there is a clear cyclical pattern in Sanglah station with generally increases 

around mid-year while dry season and decreasing during the wet season around early and late 

months of the year. The fluctuations are relatively smoother compared to other stations. This 

is posibly due to urban influences or coastal proximity. A seasonal pattern is also evident at the 

Negara station, although it exhibit slightly greater fluctuations compared to Sanglah station. 

Sunshine duration tends to decreases significantly during the rainy months and consistently 

recovers during the dry season. It may be influenced by local topography or heavier rainfall.  

Kahang-Kahang station exhibits the most pronounced seasonal fluctuations. There are 

sharp and consistent peaks during the dry season and steep declines throughout the wet season. 

This is likely due to its mountainous or inland location that tends to amplify seasonal contrast. 

The variation in Ngurah Rai station is not as extreme as in Kahang-Kahang, with the peaks 

around the mid-year and lower values at the beginning and end. It possibly influenced by its 

coastal location near the airport.  

Overall, a seasonal pattern is clearly visible in all four locations, characterized by recurring 

peaks and troughs that appear every 12 months. This pattern indicates the presence of strong 

annual cycles reflected the region’s well-defined dry and wet seasons, which are typical of Bali's 

tropical climate. The regular seasonal fluctuations highlight the need for time series 

decomposition to remove the seasonal components prior to conducting further space-time 

modeling. This preprocessing step is crucial to ensure the stationarity assumption required for 

reliable space-time kriging analysis in the subsequent stages. 

 

2. Time Series Decomposition 

To address the strong seasonality in sunshine duration, a time series decomposition was 

applied separately to each observation station. The additive decomposition technique was 

employed to separate the observed data into trend, seasonal, and residual components. This 

method is suitable when the magnitude of seasonal variation remains consistent over time. 

Figure 2 presents the results of this decomposition for the four meteorological stations in Bali, 

based on Equation (1).  
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(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 2. Decomposition plot at (a) Sanglah Geophysics Station, (b) Negara Climatology Station, 

(c) Kahang-Kahang Geophysics Station, and (d) Ngurah Rai Meteorology Station 

 

From Figure 2, a clear seasonal cycle is observed at Sanglah Geophysics Station. Sunshine 

duration typically reached the highest point between April and August, inline to Bali’s dry 

season. Furthermore, align with the peak of wet season, sunshine duration dips around 

December and February. The trend remains relatively stable after 2022 indicates consistent 

climatic patterns in this region. Similarly, Negara Climatology Station in Jembrana also exhibits 

a regular seasonal pattern where the sunshine duration increases in the middle year and 

decreases toward the end of the year. The residuals suggest some noise but no major shift in 

the overall trend.  

In contrast, Kahang-Kahang Geophysics Station in Karangasem displays a stronger seasonal 

fluctuation, implying greater variation between dry and wet seasons in East Bali. The amplitude 

of the seasonal component is larger compared to other stations. It indicates more extreme 

seasonality in this area. This region experiences more extreme transitions in sunshine duration 

throughout the year. A comparable pattern is observed at Ngurah Rai Meteorology Station in 

Badung, where seasonal variation is also evident. The relatively small residuals across stations 

suggest that these seasonal behaviours are stable and predictable. Overall, the findings reflect 

typical Bali’s tropical climate where the sunshine duration is highest during the dry season that 

occur between April to September and consistently lower during the wet season between 

November until March. The specific deviation of seasonal component that called as a local drift 

are shown in Tabel 1. 
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Table 1. Seasonal deviation at each observed station as a local drift 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Sanglah -0.84 -0.56 0.262 0.472 1.279 1.156 0.752 0.146 -0.09 0.238 -0.86 -1.95 
Negara -1.46 -1.53 -0.40 0.254 0.750 0.927 0.485 0.876 0.785 1.064 -0.83 -0.92 
Kahang-
Kahang 

-3.64 -3.77 -1.62 0.505 0.948 1.501 2.240 2.545 2.146 1.550 -0.39 -2.01 

Ngurah 
Rai 

-2.01 -1.84 -0.91 0.323 1.345 1.148 1.190 1.485 1.216 -0.08 -0.59 -1.26 

 

Kahang-Kahang Station exhibits the most pronounced seasonal variation in sunshine 

duration with the largest local drift range. This indicates significant differences between the 

wet and dry seasons. It likely due to its inland or elevated topography, which tends to intensify 

seasonal contrasts. In comparison, Sanglah and Ngurah Rai stations also show distinct seasonal 

cycles, but with more moderate fluctuations. It suggests a less extreme difference between 

seasons. Among the four stations, Negara Station displays the least seasonal variation indicates 

a relatively stable pattern of sunshine duration throughout the year. This steadiness may be 

attributed to its coastal location. 

Overall, sunshine duration across Bali is closely tied to the Bali’s tropical climate. All 

observation stations experience a clear decreased in sunshine duration during the wet season 

around November to March and increased during the dry season around May to October. The 

seasonal deviation that detailed in Table 1 will be removed from the original data based on 

Equation (2). This step is essential, as seasonal variation violates the underlying assumptions 

of space-time kriging which requires stationarity. The resulting dataset with the local drift is 

referred to as seasonally adjusted data. 

 

3. Stationarity Checking using Regression Analysis 

Stationarity is a critical assumption in kriging, as the method requires that statistical 

properties such as mean and variance remain constant over space and time. If the seasonally 

adjusted sunshine duration data still contains underlying trends, it may bias the interpolation 

results. To verify stationarity, a regression analysis was performed using sunshine duration as 

the response variable and time, latitude, and longitude as explanatory variables. The results are 

summarized in Table 2. 

 

Table 2. Result of regression analysis 

Parameter Parameter Estimation 
t test 

𝑹𝟐 
F test 

t value p-value p-value 
𝛽0 (intercept) -13.0829 -0.328 0.7434 

0.0174 0.2463 
𝛽1 (longitude) 0.2684 0.766 0.4443 
𝛽2 (latitude) 1.1570 1.685 0.0934 
𝛽3 (time) 0.0364 1.026 0.3059 

 

The regression analysis presented in Table 2 confirms that after removing seasonal 

components, the sunshine duration data achieves a stationary state across both space and time. 

This is shown by the non-significant p-values in the t-test for all regression parameter. 

Additionally, the overall model is not statistically significant since the p-value is well above the 

alpha of 0.05. These findings indicate there are no meaningful trend. 
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From a geographical perspective, sunshine duration in northeast area like Karangasem, 

might be slightly higher due to clearer skies in mountainous areas. It aligns with the higher 

latitude coefficient, although it is not significant. Conversely, urban and coastal area such as 

Denpasar and Badung often experience more stable sunshine duration patterns. This is might 

be influenced by urban microclimates and coastal haze which can diffuse or reduce sunshine 

intensity. These microclimatic factors may explain the weak spatial dependence observed in 

the regression model. Temporally, the absence of a significant trend over the five-year period 

implies that sunshine duration patterns remained relatively stable. This reinforces the 

assumption of a consistent climatic background across the study period, further validating the 

use of kriging techniques on the seasonally adjusted dataset. 

 

4. Space-time Semivariogram 

The space-time semivariogram provides insight into the structure of spatial and temporal 

dependence in sunshine duration across Bali. By quantifying how similarity diminishes with 

increasing spatial and temporal separation, it supports the selection of an appropriate 

theoretical model for interpolation. The empirical semivariogram, computed using Equation 

(4), is presented in Figure 3. 

 

 
Figure 3. Empirical semivariogram 

 

From the Figure 3, at short spatial distances less than 40 km, semivariance remains low to 

moderate that indicate a strong spatiotemporal autocorrelation. In practical terms, this means 

that sunshine duration at nearby locations tends to be similar in over shorter time lag. However, 

a notable increase in semivariance is observed between 40 and 60 km indicates the existence 

of a spatial decorrelation zone. This marks a transition zone where sunshine duration begins to 

diverge more significantly between locations.  

On the temporal terms, semivariance gradually increases beyond time lag of approximately 

1,000 days, even when spatial distance is small. This trend reflects a typical temporal decay in 

autocorrelation for climatic variables where weather conditions diverge over multi-year 

timescales. However, the relatively moderate increase in semivariance suggests that Bali’s 

sunshine duration remains fairly stable over time. The performance of various space-time 

semivariogram model combinations, evaluated through Root Mean Square Error (RMSE) 

presented in Table 3. It is supporting the selection of the best-fitting theoretical model for 

sunshine duration estimation. 
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Table 3. Comparison of RMSE for fitting theoretical semivariogram model 

Joint 
Model 

Space-time Combination Model 
Exp-Exp Exp-Gau Gau-Exp Gau-Gau 

Exp 2.308536 2.308537 2.308536 2.308537 
Gau 2.308497 2.308496 2.308497 2.308496 

 

Table 3 presents the Root Mean Square Error (RMSE) values for several theoretical space-

time semivariogram models fitted to the empirical sunshine duration data. Among the six joint 

model combinations evaluated, the Gaussian-Gaussian-Gaussian (Gau-Gau-Gau) model 

produced the lowest RMSE value of 2.308496. It offers the best fit of the observed 

spatiotemporal variability. This result suggests that the Gau-Gau-Gau model most effectively 

captures the underlying structure of sunshine duration across both space and time in Bali. The 

fitted space-time semivariogram based on the best-performing model is illustrated in Figure 4. 

 

 
Figure 4. Space-time semivariogram 

 

The left side of Figure 4 presents the empirical semivariogram which characterized by 

irregular fluctuations and sharp peaks across the surface. These variations indicate a strong 

interaction between spatial and temporal component in sunshine duration. Moreover, the 

theoretical space-time semivariogram shown on the right side is derived using Gau-Gau-Gau 

sum-metric model. This plot shows a smoother and more continuous surface reflecting the 

fitted values obtained from the selected theoretical model. 

In this model, the joint space-time component is represented by Gaussian model which 

contributes a partial sill of 0.8936 and a range of 10.000,34. This high range reflects the gradual 

decay in correlation typical of climatic variables such as sunshine duration. The model also 

estimates a space-time anisotropy (stAni) of approximately 65.85 means that one month 

increase is equivalent to a 65.85 km change in spatial distance. This anisotropy underscores the 

interconnectedness of space and time in driving sunshine variability across Bali where 

temporal changes often mirror spatial transitions, particularly between lowland and highland 

regions or across wet and dry seasons. Overall, the low RMSE value and strong visual alignment 

between the empirical and theoretical semivariograms validate the use of the Gau-Gau-Gau 

model. This model provides a reliable foundation for subsequent space-time kriging and high-

resolution sunshine duration prediction. 
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5. Space-Time Kriging with Local Drift 

In the final modelling step, the previously removed seasonal component was reintroduced 

to each predicted point by referencing the nearest observation station. This adjustment ensures 

that the final sunshine duration estimates reflect both the localized seasonal behavior (local 

drift) and the residual variability captured by space-time kriging. The final sunshine duration 

predictions, which incorporate both the local drift and the adjusted kriging values, are 

illustrated in Figure 5. 

 

 

 
Figure 5. Sunshine duration prediction map using space-time kriging with local drift 

 

Figure 5 present the monthly spatial predictions of sunshine duration across Bali for the 

year 2023 using space-time kriging with local drift. This figure provides valuable insight into 

the island’s solar energy potential as sunshine duration is a key factor influencing photovoltaic 

(PV) system performance. Regions with consistently high sunshine hours offer optimal 

conditions for solar power generation, while regions with low duration may require alternative 

energy strategies. 

Regionally, northern Bali (e.g., Buleleng, parts of Karangasem) consistently records the 

highest sunshine duration that often exceeding 9 hours/day especially between May and 

September. It happened due to its relatively dry area, inland conditions and lower cloud density. 

This makes it highly suitable for utility-scale solar farms. Eastern Bali, particularly Karangasem 
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shows high solar potential with strong seasonal variation. The combination of lower population 

density and topographic diversity provides good opportunities for targeted solar development. 

Western Bali (Jembrana and Negara) experiences moderate sunshine throughout the year 

with slightly lower than the north and east. The influence of coastal moisture may explain the 

marginally reduced values. In southern Bali, including Denpasar, Badung, Sanur and Nusa Dua, 

sunshine duration more stable yet relatively lower in the wet season. Urban haze, coastal 

humidity and air pollution may reduce solar efficiency. While in central Bali like Bangli and 

areas near Mt. Batur and Mt. Agung, records the lowest sunshine duration across the year. The 

high elevation and mountainous terrain cause frequently cloud cover and afternoon rainfall 

that significantly limiting solar exposure. However, hybrid energy systems may offer a more 

reliable solution for sustainable energy development.  

Overall, the predicted sunshine duration maps reflect the distinct seasonal rhythm of Bali’s 

tropical climate. Sunshine duration increases during the dry season around April to October, 

peaking in August and September. While the wet season in November to March shows markedly 

reduced sunshine duration due to increased cloud cover and precipitation. Align with the study 

by Hasibuan et al. (2024), this seasonal fluctuation indicates that solar energy systems in Bali 

would perform most efficiently during the dry months, with reduced output expected during 

the rainy season. These insights provide essential guidance for planning solar infrastructure 

and optimizing energy yield across different regions of the island. 

 

D. CONCLUSION AND SUGGESTIONS 

This study aimed to analyse and predict sunshine duration across Bali Island using space-

time kriging with local drift. The findings demonstrate that this method effectively captures 

both the seasonal dynamics and spatial variability of sunshine duration, offering a statistically 

robust framework for spatiotemporal interpolation in tropical regions. Among the six model 

combinations evaluated, the Gaussian-Gaussian-Gaussian (Gau-Gau-Gau) model achieved the 

best performance, with the lowest RMSE value of 2.3085. The resulting predictions align with 

Bali’s well-known monsoonal climate, showing longer sunshine durations during the dry 

season around May to October and shorter durations during the wet season around November 

to March. Importantly, the results confirm that sunshine duration is not uniformly distributed 

across the island, with variations influenced by topography, proximity to the coast, and local 

microclimatic factors. The main contribution of this research lies in its integration of seasonal 

components as local drift into the space-time kriging framework, which enhances model 

accuracy by addressing the non-stationarity commonly found in climatic data. This approach 

provides a refined estimation of sunshine duration, making it especially valuable for renewable 

energy studies in tropical regions like Bali. The model outputs offer practical insights for 

decision-makers involved in solar energy planning, such as identifying priority areas for solar 

farm development, optimizing energy yield forecasts, and guiding infrastructure investment 

based on regional sunshine potential. Additionally, the results support sustainable tourism and 

land-use strategies by enabling more climate-resilient planning. To further improve model 

performance and generalizability, it is recommended to expand the dataset by incorporating a 

longer temporal span and increasing the number of observation stations, particularly in 

currently underrepresented inland and mountainous areas. These enhancements will not only 
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improve the spatial resolution and predictive accuracy of the model but also ensure more 

comprehensive coverage of Bali’s diverse geographic and climatic conditions, thereby 

supporting more inclusive and data-driven energy development strategies. 
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