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 Multiple myeloma is a type of blood cancer that attacks plasma cells in the bone 
marrow and affects the immune system. This study analyzes the survival time of 
patients with multiple myeloma using Type 1 censored exponential distributed 
parameter estimation. The data, consisting of 47 patients (35 uncensored and 12 
censored), were tested for exponential distribution fit using the Anderson-Darling 
test, yielding a p-value of 0.495, confirming the suitability of the exponential model. 
The maximum likelihood estimation method was applied, resulting in a parameter 

estimate (θ̂) of approximately 54.028 days, representing the mean survival time. 
Hypothesis testing and confidence intervals were conducted, with the 95% 
confidence interval for θ0 ranging between 32 and 53 days. The findings suggest 
that the exponential distribution effectively models the survival data, providing 
insights into patient survival trends and supporting clinical decision-making. 
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A. INTRODUCTION  

Multiple myeloma is a form of blood cancer that originates from abnormal plasma cell 

proliferation in the bone marrow (Accioly et al., 2024). The disease is characterized by the 

overproduction of monoclonal immunoglobulins, or M-proteins, leading to various clinical 

complications such as anemia, renal insufficiency, hypercalcemia, and osteolytic bone lesions 

(Wijnands et al., 2025). Sensitive monitoring of M-protein is crucial for evaluating therapy 

effectiveness and detecting disease relapse. Recent advances show that mass spectometry 

enables earlier and more accurate detection of M-protein than traditional methods like SPEP 

and IFE (McDonald et al., 2021), enhancing clinicians’ ability to track response and anticipate 

relapse. Epidemiologically, multiple myeloma accounts for approximately 10% of all 

hematologic magnancies and has an incidence rate that increases with age. Although advances 

in immunomodulatory and monoclonal antibody-based therapies have prolonged patient 

survival, disease relapse is almost inevitable (Utsu et al., 2025). 
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In an effort to understand the course of disease and evaluate the effectiveness of therapy, 

survival data analysis is a crucial statistical approach. Survival analysis is a class of statistical 

methods for studying the occurrence of an event (Turkson et al., 2021;Indrayan & Tripathi, 

2022). One of the main challenges in survival analysis is the presence of censored data, 

particularly type 1 censorship, where patient observation stops after a certain predetermined 

time, regardless of whether a clinical event has occurred or not. This censoring is common in 

prospective cohort studies with a fixed observation time limit (Nayabuddin, 2025). 

The exponential distribution is one of the basic probability models widely used to model 

time-to-event data in medical contexts (Akbar et al., 2024). This distribution is characterized 

by a constant event rate over time, making it an ideal initial model, especially when limited data 

is available or the assumption of constant hazard is considered valid (Nayabuddin, 2025). 

Parameter estimation of the exponential distribution with type 1 censored data is essential to 

identify the underlying clinical event rate and support data-driven clinical decision-making. 

Parameter estimation for the exponential distribution with type 1 censored data can be 

efficiently performed using maximum likelihood methods, including on progressively censored 

samples, thus supporting accurate time-to-event analysis in clinical settings (Dutta & Kayal, 

2022). 

Several previous studies have demonstrated the relevance and application of survival 

models particularly exponential models in the context of multiple myeloma. Mamudu and 

Tsokos compared log-normal and Kaplan–Meier methods using data from 48 multiple myeloma 

patients and found that parametric methods provided higher estimates of survival probability 

(Mamudu & Tsokos, 2020). In their follow-up study, they developed nonlinear statistical 

models that demonstrated up to 93% accuracy in predicting survival times based on 

exponential assumptions (Mamudu & Tsokos, 2021). Additionally, a study by BMC Medical 

Research Methodology evaluated several parametric survival models, including exponential and 

spline-based models, to extrapolate long-term survival outcomes in multiple myeloma patients, 

validating predictions against empirical long-term data (Bakker et al., 2023). 

From a methodological standpoint, several recent studies have focused on refining 

parameter estimation techniques for the exponential distribution under type I censoring. A 

study published by MDPI employed a minimum message length (MML) approach, 

demonstrating its superiority over traditional maximum likelihood estimation, especially in 

small sample settings (Makalic & Schmidt, 2021). Other efforts, such as those by Dutta & Kayal 

and the Pakistani Journal of Statistics and Operations Research, emphasized how type I 

progressive censoring can be effectively addressed using likelihood-based and Bayesian 

methods (Dutta & Kayal, 2022; Ashour & Nassar, 2014). 

Along with the complexity of multiple myeloma, statistical approaches are also evolving to 

deal with mode complex disease dynamics. Joint Bayesian models, which combine analysis of 

longitudinal biomarker data and survival data, have been used to improve prediction of therapy 

transition and mortality risk in multiple myeloma patients (Alvares et al., 2024). This strategy 

allows for more personalized clinical predictions based on the evolution of individual 

biomarkers such as M-protein levels and response to new lines of therapy. 

In addition to classical survival analysis, developments in minimal residual disease (MRD) 

monitoring have opened new avenues in evaluating the depth of therapeutic response in 
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multiple myeloma. MRD detection using next-generation cell flow technology or deep 

sequencing has shown a strong correlation with long-term patient outcomes (Caroni et al., 

2025). In this context, censored data-based estimation of survival distribution parameters 

provides an important framework for understanding when relapse is likely to occur and how 

treatment can be optimized. 

Given the importance of estimating survival distribution parameters in the management of 

multiple myeloma disease, as well as the special challenges posed by censored data type 1, it is 

necessary to develop and apply accurate and efficient estimation methods. Therefore, this 

article will discuss the methodology of estimating exponential distribution parameters with 

type 1 censored data, with specific application to multiple myeloma patient data, and examine 

the clinical relevance of the estimation results in the context of disease management (Jayakodi 

et al., 2022).  

 

B. METHODS 

Research methods are techniques for collecting data and analyzing data. Research methods 

allow research to be carried out in an organized, planned, neutral, and valueable manner 

(Magister et al., 2023). This technique is carried out as a strategy in collecting data and finding 

solutions to problems based on existing facts. A high-quality systematic review uses explicit 

and reproducible methods to systematically search, critically appraise, and synthesize evidence 

on a specific issue, adhering to a strict scientific design based on pre-specified procedures 

(Turkson et al., 2021). 

Survival analysis is a statistical technique for conducting tests related to the survival or 

reliability of component (Proust, 2024). Life test analysis is also an event time analysis, where 

the occurance of the desired event is called failure time or survival time (Insan Firsawan et al., 

2022). While commonly applied in clinical settings to model time to death or relapse, survival 

analysis has also found use in broader contexts, such as evaluating user retention in mobile 

applications, where it serves as a useful indicator to monitor promotional effectiveness (Lin et 

al., 2020). 

This study uses secondary data of multiple myeloma patients from the Mayo Clinic (2019). 

The average survival time of patients diagnosed with Multiple Myeloma is measured from the 

time the patient is diagnosed until the patient dies. With the research variables of patient 

survival time (time) and death status (status). Patients with uncensored survival with 1 and 

patients with censored survival with 0 indicating that the patient lived for more than 91 days, 

as shown in Table 1. 

 

Table 1. Survival Time Data of Patients with Multiple Myeloma 

Time Status (𝒅𝒊) 
1 1 
1 1 
1 1 
⋮ ⋮ 

91 0 
91 0 
91 0 
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1. Type 1 Censored Data 

Data is categorized as censored when the known lifetime or observation occurs at a 

predetermined time, while the information to be known dozes not occur within that interval 

(Insan Firsawan et al., 2022). Type I censored is when the experiment is terminated after 

reaching a predetermined time to end all and the data is categorized as censored. If there are 

no sudden missing individuals, the life time of the censored observation is equal to the length 

of the observation time. This is a form of right censoring, which occurs when the event of 

interest does not happen during the study period. For example, if a subject does not ecperience 

a recurrence of disease throughout the 1-year observation period, the subject is considered 

right-censored at the last visit (Barrajón & Barrajón, 2020). Right censoring is the most 

common type of censoring in clinical trials. 

 

2. Exponential Distribution 

The exponential distribution is one of the most commonly used probability distribution in 

survival analysis. It is one of the continuous distributions to find the time difference that occurs 

in the probability of a certain region (Triana & Purwadi, 2019). This distribution is particularly 

useful in modelling situations where the event of interest is equally likely to occur at any 

moment (Pushpanjali & Vijayalakshmi, 2022). Several generalizations of the exponential 

distribution have been developed to improve model flexibility and goodness-of-fit. For example, 

the WLLE distribution demonstrates superior performance in modelling real-world data 

compared to other commonly used models (Job & Solomon Ogunsanya, 2022). A continous 

random variable X is said to be exponentially distributed with parameter 𝜃 > 0  when it has a 

distribution function: 

 

𝑓(𝑥; 𝜃) = {      
1

𝜃
𝑒

𝑥
𝜃, 𝑥 < 0

0, 𝑥 ≥ 0
 (1) 

 

where 𝜃 is the parameterized rate and the cummulative distribution function is: 

 

𝐹(𝑋; 𝜃) = 1 − 𝑒−
𝑥
𝜃;     𝑥 > 0 (2) 

 

3. Likelihood Function 

The likelihood function is a joint probability function that depends on the parameters, it’s 

value indicates the likelihood of the observed data. There are always merits in obtaining raw 

data (i.e., exact individual failure times) rather than grouped data, because given raw data, we 

can always construct grouped data, but the converse is typically not true (Etikan, 2018). 

Therefore, this study focuses on the use of raw. Type I censored data to estimate parameters 

using maximum likelihood estimation (MLE), which allows for consistent inference based on 

observed and censored survival times (Jia et al., 2018). The data in this study uses type one 

censored data whose likelihood equation is: 
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𝐿(𝜃) = ∏ 𝑓(𝑡𝑖)
𝑑𝑖 ∙ 𝑆(𝑡𝑖)

1−𝑑𝑖

𝑛

𝑖=1

 (3) 

 

4. Hypothesis Test and Cofidence Interval 

Hypothesis testing aims to determine whether an assumption (hypothesis) related to a 

population can be accepted or must be rejected based on the sample data that has been 

collected. The parameter tested is 𝜃 which is the distribution in the model used in this study. 

The decision to accept or reject the null hypothesis is based on an analysis that measures how 

consistent the data is with the hypothesis. The parameters hypothesis test 𝜃 is formulated with 

𝐻0 and 𝐻1 as follows: 

 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 ≠ 𝜃0 
(4) 

 

From the two hypothesis it will be seen whether the simple model (under 𝐻0) is still good 

enough or should use more complex model (under 𝐻1). Therefore, the test statistic will be used, 

namely: 

Λ = −2log (
𝐿(𝜃0)

𝐿(𝜃)
) (5) 

Desciption: 

Λ  = The chi-square distribution test statistic 

𝐿(𝜃0)  = Value of likelihood function parameter 𝜃0 (under 𝐻0) 

𝐿(𝜃)  = The value of the likelihood function in the parameter 𝜃  (under  𝐻1 , value that 

maximizes the likelihood) 

 

Rejected criteria𝐻0: Λ < 𝜒2
𝛼

2
 (1) or Λ > 𝜒2

1−
𝛼

2
 (1) which is a chi-distribution square with 1 

degree of freedom. The confidence interval 𝜃 is determined by finding the value of 𝜃0 which 

makes the sttaistic Λ is in the range: 

 

𝜒2𝛼
2

 (1) <  Λ <  𝜒2
1−

𝛼
2

 (1) (6) 

 

The criterion for acceptance of the null hypothesis in a two-sided test is if the value Λ falls 

between the two limits of the chi-square critical value. If Λ is too small or too large drom this 

range, the null hypothesis is rejected. 
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C. RESULT AND DISCUSSION 

This study uses patient survival data classified into two categories based on event status: 

censored (status = 0) and uncensored (status = 1). 

1. Descriptive Statistics 

Based on secondary data from the Mayo Clinic (2019), as cited in the article (Pradana & 

Sofro, 2019), the following results were obtained, as shown in Table 2. 

 

Table 2. Descriptive Statistics 

Variable Mean StDev Minimum Median Maximum 
Survival Time 22.83 24.19 1.00 14.00 91.00 

 

Descriptive statistics of survival time were calculated based on uncensored patients (status 

= 1) to avoid bias due to incomplete data in censored patients. Table 2 shows the average 

survival time (in days) for patients with multiple myeloma until death was 22.83 days. The 

fastest survival time was 1 day and the longest survival time was 91 days. 

 

2. Exponential Distribution Testing 

Before estimating the parameters of the survival data, the Anderson Darling test is used to 

determine whether a data has a certain distribution. In this study, data analysis was carried out 

on the exponential distribution (Jäntschi & Bolboacă, 2018). 

Hypothesis: 

𝐻0: Data is exponentially distributed 

𝐻1: Data is not exponentially distributed 

Critical region: Reject 𝐻0 if P-Value < 𝛼 = 5% 

 

The following is a meta-analysis: accuracy level of the radial basis function method in time 

series prediction, as shown in Figure 1. 

 

 
Figure 1. Anderson Darling Test Plot of Multiple Myeloma Patient Survival Time 
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Based on Figure 1, the P-Value shows 0.495 > 𝛼 = 5%. So the decision taken is to fail to 

reject 𝐻0 . Thus, it can be concluded that the survival time data of patients with multiple 

myeloma follow an exponential distribution. Therefore, this data is suitable for analyzed further, 

especially in the context of estimating the parameters of the type 1 censored exponential 

distribution as raised in this study. 

 

3. Parameter Estimation Using the Derivative of the Likelihood Function 

In type 1 censored data, the observation of the 1st, 2nd, …, n individual is limited by the 

observation time 𝐿1, 𝐿2, … , 𝐿𝑛  and can only be observed if the individual survival time 𝑇𝑖 

satisfies the condition 𝑇𝑖 ≤ 𝐿𝑖 . When the data pair (𝑇𝑖, 𝐿𝑖), for 𝑖 = 1, 2, … , 𝑛 are independent of 

each other then: 

𝑡𝑖 = min(𝑇𝑖, 𝐿𝑖) 

𝑑𝑖 =  {
1,      𝑡𝑖 = 𝑇𝑖  jika 𝑇𝑖 ≤ 𝐿𝑖 
0,    𝑡𝑖 = 𝐿𝑖   jika 𝑇𝑖 > 𝐿𝑖

 

 

The variable 𝑑𝑖 indicates whether the individual’s life time is censored or not. Thus, it can 

be simplified to: 

𝑑𝑖 =  {
1,    if the data is not censored (observed) 

0,   if the data is censored (unobserved)   
 

 

Because the value of 𝑇𝑖 as the actual time is only known with certainty. If the data is not 

censored, then the construction of the likelihood function is carried out based on the actually 

observed data, namely the observation time  𝑡𝑖 and the sensor status  𝑑𝑖. By considering that 

the survival data follows an exponential distribution, the joint likelihood density function (joint 

pdf) of the  𝑡𝑖 and  𝑑𝑖 can be expressed as follows: 

 

𝑓(𝑡𝑖, 𝑑𝑖) = 𝑓(𝑡𝑖)
𝑑𝑖 ∙ 𝑆(𝑡𝑖)

1−𝑑𝑖 

 

The form unifies two conditions: if the data is uncensored, then 𝑓(𝑡𝑖, 𝑑𝑖) = 𝑓(𝑡𝑖), which is 

the density function of the event time. Meanwhile, if the data is censored, then 𝑓(𝑡𝑖, 𝑑𝑖) = 𝑆(𝑡𝑖) 

which is the survival function of the observation time (Su, 2015). Assuming that each individual 

is independent, the likelihood function of all data is: 

 

𝐿(𝜃) = ∏ 𝑓(𝑡𝑖)
𝑑𝑖 ∙ 𝑆(𝑡𝑖)

1−𝑑𝑖

𝑛

𝑖=1

 

It is known that 𝑓(𝑡𝑖) =
1

𝜃
𝑒−𝑡𝑖 𝜃⁄  and 𝑆(𝑡𝑖) = 1 − 𝐹(𝑡𝑖) 

𝑆(𝑡𝑖) = 1 − ∫
1

𝜃
𝑒−𝑥 𝜃⁄

𝑡𝑖

0

𝑑𝑥 

For example, −𝑥 𝜃⁄ = 𝑦 and 𝑑𝑥 = −𝜃𝑑𝑦 

𝑆(𝑡𝑖) = 1 − ∫ (
1

𝜃
𝑒𝑦)

𝑡𝑖

0

− 𝜃𝑑𝑦 
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𝑆(𝑡𝑖) = 1 − (− ∫ 𝑒𝑦
𝑡𝑖

0

𝑑𝑦) 

𝑆(𝑡𝑖) = [1 + 𝑒𝑦]0
𝑡𝑖  

𝑆(𝑡𝑖) = [1 + 𝑒−𝑥 𝜃⁄ ]
0

𝑡𝑖
 

𝑆(𝑡𝑖) = 1 + 𝑒−𝑡𝑖 𝜃⁄ − 1 

𝑆(𝑡𝑖) = 𝑒−𝑡𝑖 𝜃⁄  

 

Thus, the form of the likelihood function can be rewritten as: 

 

𝐿(𝜃) = ∏ 𝑓(𝑡𝑖)
𝑑𝑖 ∙ 𝑆(𝑡𝑖)

1−𝑑𝑖

𝑛

𝑖=1

 

𝐿(𝜃) = ∏ (
1

𝜃
𝑒−𝑡𝑖 𝜃⁄ )

𝑑𝑖

(𝑒−𝑡𝑖 𝜃⁄ )
1−𝑑𝑖

𝑛

𝑖=1

 

𝐿(𝜃) = ∏
1

𝜃𝑑𝑖

𝑛

𝑖=1

𝑒−𝑡𝑖 𝜃⁄  

𝐿(𝜃) =
1

𝜃∑ 𝑑𝑖
𝑛
𝑖=1

𝑒−
∑ 𝑡𝑖

𝑛
𝑖=1

𝜃  

 

where ∑ 𝑑𝑖
𝑛
𝑖=1  is the amount of uncensored data and n is the amount of overall data. 

 

𝐿(𝜃) =
1

𝜃35
𝑒−

∑ 𝑡𝑖
𝑛
𝑖=1

𝜃  

 

To maximize the likelihood function, ln 𝐿(𝜃) is differentiated with respect to 𝜃 , and the 

result is set to zero (Alomari, 2023). 

 

0 =
𝜕 ln 𝐿(𝜃)

𝜕𝜃
 

0 =

𝜕 ln (
1

𝜃35 𝑒
−

∑ 𝑡𝑖
𝑛
𝑖=1

𝜃 )

𝜕𝜃
 

0 =
𝜕 (−35 ln 𝜃 −

∑ 𝑡𝑖
𝑛
𝑖=1

𝜃
)

𝜕𝜃
 

0 = −
35

𝜃
+

∑ 𝑡𝑖
𝑛
𝑖=1

𝜃2
 

0 =
−35𝜃 + ∑ 𝑡𝑖

𝑛
𝑖=1

𝜃2
 

35𝜃 = ∑ 𝑡𝑖

𝑛

𝑖=1
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The estimator value of the exponential distribution parameter is: 

  

𝜃 =
∑ 𝑡𝑖

𝑛
𝑖=1

35
 

 

4. Average Survival Time (in days) of Patients with Multiple Myeloma to Death 

From the parameter estimator values that have been obtained, we can calculated the 

average survival time (in days) of patients with multiple myeloma until they die, which is as 

follows: 

𝜃 =
∑ 𝑡𝑖

47
𝑖=1

35
 

𝜃 =
1891

35
 

 

𝜃 ≈ 54,028 

so, the average survival time (in days) of patients with multiple myeloma to death was 54.028 

days. 

 

5. Hypothesis Testing and Confidence Intervals 

Hypothesis testing is used to determine whether there is enough evidence in the sample 

data to reject the initial conjecture ( 𝐻0 ) about the value of a population parameter. The 

parameter hypothesis 𝜃 is formulated as follows: 

 

𝐻0 : 𝜃 = 𝜃0 

𝐻1 : 𝜃 ≠ 𝜃0 

 

The test statistics used are: 

 

Λ = −2 log (
𝐿(𝜃0)

𝐿(𝜃)
) 

 

The 𝐻0 rejection criteria are: 

 

Λ < 𝜒𝛼 2⁄
2 (1) atau Λ > 𝜒1−𝛼 2⁄

2 (1) 

 

The first step to calculating test statistics is to find the value of log 𝐿(𝜃) with a value of 𝜃 =

54,02857: 

 

log(𝐿(𝜃)) = log (
1

54,02835
𝑒

−
1891

54,028) 

log(𝐿(𝜃)) = −75,842 
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Then find the log 𝐿(𝜃0) value by using the initial value of  𝜃0 as the initial guess value to be 

tested. The value of 𝜃0 to be used is based on the value of 𝜃0 around 𝜃. We will use the value of 

𝜃0 = 40 which is the average survival value of all patients with censored and uncensored data 

status. The log 𝐿(𝜃0) value with 𝜃0 = 40 are as follows: 

 

log(𝐿(𝜃0)) = log (
1

4035
𝑒−

1891
40 ) 

log(𝐿(𝜃0)) = −76,603 

 

The test statistic values are obtained as follows: 

 

Λ = −2(log 𝐿(𝜃0) − log 𝐿(𝜃)) 

Λ = −2(−76,603 + 75,842) 

Λ = 1,522 

 

so that a decision can be made to fail to reject 𝐻0  because 𝜒𝛼 2⁄
2 (1) = 0,001 <  Λ = 1,522 <

𝜒1−𝛼 2⁄
2 (1) = 5,024 which means that the data is obtained consistent with the assumption that 

the level of accuracy of parameter estimation 𝜃  is equal to the initial expected value 𝜃0 . 

Furthermore, to determine the level of accuracy of parameter estimation 𝜃  obtained, it is 

necessary to calculated the confidence interval from 𝜃 with a confidence level of 95%. Search 

for 𝜃0 which makes the value of  Λ fall within the interval boundary: 

 

𝜒𝛼 2⁄
2 (1) < Λ(𝜃0) < 𝜒1−𝛼 2⁄

2 (1) 

Calculating the test statistic 

 

Λ(𝜃0) = −2(log 𝐿(𝜃0) − log 𝐿(𝜃)) 

To test Λ(𝜃0), the value of 𝜃0 that satisfies the interval limit of 0,001 < Λ(𝜃0) < 5,024 is tested. 

 

Upper limit of the interval 𝜃0 

➢ 𝜃0 = 54 

Λ(𝜃0) = −2(log 𝐿(54) − log 𝐿(54,028)) 

Λ(𝜃0) = −2(−75,84213 + 75,84212) 

Λ(𝜃0) = 0,00002 

 

The result show that Λ(𝜃0) is outside the interval, so it is necessary to check the value of other 

𝜃0 to know the upper limit of 𝜃0. 

➢ 𝜃0 = 53 

Λ(𝜃0) = −2(log 𝐿(53) − log 𝐿(54,028)) 

Λ(𝜃0) = −2(−75,84495 + 75,84212) 

Λ(𝜃0) = 0,004 

 

The result show that Λ(𝜃0) is inside the interval, so it is decided that 𝜃0 = 53 is the upper bound 

of 𝜃0. 
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Lower limit of the interval 𝜃0. 

➢ 𝜃0 = 31 

Λ(𝜃0) = −2(log 𝐿(31) − log 𝐿(54,028)) 

Λ(𝜃0) = −2(−78,68962 + 75,84212) 

Λ(𝜃0) = 5,695 

 

The result show that Λ(𝜃0) is outside the interval, so it is necessary to check the value of other 

𝜃0 to know the lower limit of 𝜃0. 

➢ 𝜃0 = 32 

Λ(𝜃0) = −2(log 𝐿(32) − log 𝐿(54,028)) 

Λ(𝜃0) = −2(−78,34433 + 75,84212) 

Λ(𝜃0) = 5,004 

 

The result show that Λ(𝜃0) is inside the interval, so it is decided that 𝜃0 = 32 is the lower bound 

of 𝜃0. So, it can be concluded that the confidence interval for 𝜃0 is: 

 

32 < 𝜃0 < 53 

 

Thus, it can be concluded that at the confidence level 95%, the value of 𝜃0 is between 32 

and 53. Although the maximum estimate value of 𝜃 = 54.028 is outside the interval, this does 

not contradict the test method used, because 𝜃  is the value that maximizes the likelihood 

function, while the confidence interval is formed based on values of 𝜃0 which is not statisfically 

significantly different from 𝜃 . This relatively short survival time likely reflects patients in 

advanced stages of multiple myeloma or those with serious comorbidities such as renal 

impairment. According to the NCCN Clinical Practice Guidelines (2024), patients who receive 

standard therapy including immunomodulatory drugs (IMiDs), proteasome inhibitors, and 

autologous stem cell transplantation (ASCT) can achieve a median overall survival of up to 67 

months (Raje et al., 2014). In their 2023 update, the IMWG recommends immediate initiation 

of bortezomib-based regimens in patients presenting with renal dysfunction, as this approach 

promotes renal recovery and enhances survival outcomes (Dimopoulos et al., 2023). 

Additionally, Faiman (2011) emphasize that patients who recover renal function through 

aggressive intervention can achieve survival rates similar to those without renal complications. 

These findings support policy recommendations such as early renal screening, broader access 

to effective therapies, and the establishment of a national multiple myeloma registry to monitor 

outcomes and guide evidence-based care strategies. 

 

D. CONCLUSION AND SUGGESTIONS 

Research data of patients with multiple myeloma are classified into 2 categories, namely 

censored data and uncensored (observed) data. In the data obtained as many as 47 patients 

with 35 patients died in the observation period (not censored) and 12 patients were still alive 

until the end of the observation period (censored). The results of the analysis show that the 

average survival time of patients with multiple myeloma is 22.83 days with a standard 

deviation of 24.19. Furthermore, the data is tested using the Anderson-Darling Test and shows 
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that the data is exponentially distributed with a p-value of 0.495> 5%, which means that the 

data is exponentially distributed and is considered suitable for estimating the type 1 censored 

exponential distribution parameters. Then the estimator value of the exponential 

distribution parameter (𝜃) is 54.028. After knowing the value of 𝜃, the test is carried out 

hypothesis and the confidence interval of 𝜃0. The hypothesis test results show that the 

conjecture parameter value 𝜃0 = 40 is acceptable with the confidence interval of  𝜃0 being 

within the interval of 32 to 53 days. For future research, studies can explore more flexible 

models like the Weibull or log-normal distribution, especially if the exponential distribution 

assumptions are not fully met. Researchers can also include other factors that influence patient 

survival using models such as Cox regression. In addition, newer approaches like machine 

learning (e.g., survival forests or deep learning models) could be used to improve prediction 

accuracy and tailor treatment plans more effectively for each patient. 
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