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 This article discusses a dynamical analysis of the fractional-order model of 
HIV/AIDS. Biologically, the rate of subpopulation growth also depends on all 
previous conditions/memory effects. The dependency of the growth of 
subpopulations on the past conditions is considered by applying fractional 
derivatives. The model is assumed to consist of susceptible, HIV infected, HIV 
infected with treatment, resistance, and AIDS. The fractional-order model of 
HIV/AIDS with Caputo fractional-order derivative operators is constructed and 
then, the dynamical analysis is performed to determine the equilibrium points, 
local stability and global stability of the equilibrium points. The dynamical 
analysis results show that the model has two equilibrium points, namely the 
disease-free equilibrium point and endemic equilibrium point. The disease-free 
equilibrium point always exists and is globally asymptotically stable when the 
basic reproduction number is less than one. The endemic equilibrium point exists 
if the basic reproduction number is more than one and is globally asymptotically 
stable unconditionally. To illustrate the dynamical analysis, we perform some 
numerical simulation using the Predictor-Corrector method. Numerical 
simulation results support the analytical results.  
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A. INTRODUCTION  

Human Immunodeficiency Virus (HIV) is a virus that attacks the human immune system, 

thus leaving the body vulnerable to various types of diseases. Collection of symptoms of 

diseases that attack the body that is called the Acquired Immuno Deficiency Syndrome (AIDS). 

There are several stages of HIV development in the human body. The first stage called the 

window period is the stage where HIV enters the body and builds antibodies in the body. The 

second stage is the stage where HIV begins to develop in the body. HIV testing can detect the 

presence of the virus because antibodies are starting to form. The third stage is the stage 

where the patient is confirmed to be HIV positive with a declining immune system. The fourth 

stage or what is called AIDS is the stage where the sufferer is declared positive suffering from 

AIDS (Kemenkes RI, 2017).  

Huo, et al. (2016) constructed a mathematical model of the spread of HIV/AIDS. In this 

model, the human population is divided into five subpopulations. They assumed that there are 

subpopulations that change their sexual habits, where this change in behavior aims to reduce 

the chance of spreading HIV through sexual contact so that the subpopulation will not be 
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infected with HIV/AIDS by sexual contact. Using those assumptions, they proposed the 

following HIV/AIDS model  

𝑑𝑆

𝑑𝑡
=  Λ −  𝛽𝑆𝐼 −  𝜇𝑆 −  𝑑𝑆, 

(1)  

𝑑𝐼

𝑑𝑡
=  𝛽𝑆𝐼 + 𝛼1𝑇 − 𝑑𝐼 − 𝑘1𝐼 − 𝑘2𝐼,  

𝑑𝐴

𝑑𝑡
=  𝑘1𝐼 + 𝛼2𝑇 − (𝛿1 +  𝑑)𝐴, 

𝑑𝑇

𝑑𝑡
=  𝑘2𝐼 − 𝛼1𝑇 − (𝑑 + 𝛼2 + 𝛿2)𝑇, 

𝑑𝑅

𝑑𝑡
= 𝜇𝑆 − 𝑑𝑅. 

 
Table 1. Description of variables and parameters of the system (1) 

Variables and 
parameters 

Description 

S The density of susceptible subpopulation. 
I The density of HIV-positive subpopulation in the stage of HIV infection. 
A The density of subpopulation with full-blown AIDS but not receiving ARV 

treatment. 
T The density of subpopulation being treated. 
R The density of resistant subpopulation. 
Λ New recruitment rate. 
𝛽 The rate of interaction between susceptible and infected by sexual contact. 
𝜇 The transfer rate from 𝑆 to 𝑅. 
𝑑 Natural death rate. 
𝑘1 The transfer rate from I to A. 
𝑘2 The transfer rate from I to T.  
𝛼1 The transfer rate from T to I.  
𝛼2 The transfer rate from T to A.  
𝛿1 The disease-induced death rate for subpopulations in A. 
𝛿2 The disease-induced death rate for subpopulations in T. 

 In classical calculus, a function can be derived or integrated once, twice, and so on. Then a 

question arises regarding the fractional order of derivatives and integrals. Therefore, an idea 

arises which is the development of classical calculus, namely fractional calculus. The fractional 

differential equation system was obtained from a nonlinear differential equation system, so 

that the first derivative of the differential equation system became a fractional-order of the 

orde-𝛼 with 0 < 𝛼 <  1 (Das & Gupta, 2011). 

Biologically, the rate of growth also depends on previous conditions. The fractional 

differential equation system model is considered to be more suitable in describing 

phenomena that occur in nature because the subsequent conditions in the model depend not 

only on the current conditions but also on all the previous conditions. As a result, fractional 

derivatives at certain points contain information about functions at the previous points. 

Several studies have been conducted related to fractional material modeling. For example, 

related mathematical model of fractional-order conducted by Rihan (2013) . In that study, 

Rihan developed a mathematical model of the immunity of patients with tumors and HIV and 

the relationships that affect the growth of these diseases in the body. Other research related 

to fractional-order mathematical models was conducted by Pinto and Carvalho (2015). Pinto 
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and Carvalho form a mathematical model of the effect of drugs on HIV development in the 

body. Other research related to fractional-order mathematical models can be seen at 

(Nyabadza et al., 2011), (Rihan et al., 2014), (S.M. & A.M., 2017), (Hassouna et al., 2018), 

(Shaikh & Sooppy Nisar, 2019), (Solís-Pérez et al., 2019), and (Sweilam et al., 2020). 

Recently, Silva and Torres (2017) proposed a mathematical model for the spread of 

HIV/AIDS where the human population is divided into four subpopulations, namely 

susceptible individuals, HIV-infected individuals with no AIDS symptoms, HIV-infected 

individuals under ART treatment, and HIV-infected individuals with AIDS symptoms  (Silva & 

Torres, 2017). Then, they modified their model into a fractional-order to include the memory 

effects. The dynamical analysis of the obtained fractional-order mathematical model has been 

conducted and different  interpretation has been give by using multiple value parameter 

fractionals (Silva & Torres, 2019). 

In 2019, Moore, et al. modified the model of Huo, et al. (2016) by modifying the original 

model into a fractional-order differential equation. They replaced the first-order derivatives 

by the Caputo-Fabrizio operator of fractional-order derivative operator where its kernel is of 

the form of the non-singular exponentially decreasing. Moore, et al. (2019) investigated the 

dynamics of the Caputo-Fabrizio fractional differential equation model for HIV/AIDS with an 

antiretroviral treatment compartment. They determined the equilibrium points of the model 

and the conditions for local asymptotic stability of the disease-free equilibrium point. A three-

step fractional Adams-Bashforth scheme has been derived and used to obtain numerical 

solutions of the fractional system.  

In this article, we will modify the model developed by Huo, et al. (2016) by replacing the 

first-order derivatives with the Caputo operator of fractional-order derivative. The 

fundamental difference between this article and Moore, et al. (2019) lies in the operator of the 

fractional derivative and the numerical scheme for simulation. In this article we perform a 

dynamical analysis to investigate the local and global stability of the disease-free equilibrium 

point and the endemic equilibrium point. Then numerical simulations are performed using 

the Predictor-Corrector (PECE) method to support the results of the fractional dynamic 

analysis. 

This paper is composed of 4 sections. Section A describes the phases of development of 

HIV/AIDS, mathematical models epidemiology of HIV/AIDS, and also some research on 

fractional-order mathematical models related to HIV/AIDS. In section B, we construct the 

fractional order HIV/AIDS model and determine the point of disease-free equilibrium as well 

as an endemic equilibrium point. In section C, local and global stability analysis are given and 

some numerical simulations are performed. Finally, we end up the paper by presenting 

conclusion in section D. 

 

B. METHODS 

This section describes the model of the spread of HIV/AIDS at fractional-order. The first 

step is to modify the model of Huo, et al. (2016) to get a fractional-order mathematical model, 

namely by introducing the Caputo fractional-order derivative operators, and then perform  

dynamical analysis for the model. 
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1. The Caputo Fractional-Order Formula 

Definition 1 Let 𝛼 ∈ (0,1] and 𝑓 ∈  𝐶𝑛([0, +∞),ℝ), and Γ(∙) is the Gamma function. The 

Caputo fractional-order derivative defined by  

(2) 𝐷∗
𝛼𝑓(𝑡) =

1

Γ(1−𝛼)
∫ (𝑡 − 𝑠)−𝛼
𝑡

0
𝑓′(𝑠) 𝑑𝑠, 𝑡 ≥ 0. 

(Diethelm, 2010) 

By using Definition 1, we obtain the Caputo fractional-order HIV/AIDS model as follows 

𝐷∗
𝛼𝑆(𝑡) =  Λ −  𝛽𝑆𝐼 −  𝜇𝑆 −  𝑑𝑆, 

(3)  

𝐷∗
𝛼𝐼(𝑡) =  𝛽𝑆𝐼 + 𝛼1𝑇 − 𝑑𝐼 − 𝑘1𝐼 − 𝑘2𝐼, 

𝐷∗
𝛼𝐴(𝑡) =  𝑘1𝐼 + 𝛼2𝑇 − (𝛿1 +  𝑑)𝐴, 

𝐷∗
𝛼𝑇(𝑡) =  𝑘2𝐼 − 𝛼1𝑇 − (𝑑 + 𝛼2 + 𝛿2)𝑇, 

𝐷∗
𝛼𝑅(𝑡) = 𝜇𝑆 − 𝑑𝑅. 

2. The Equilibrium Points 

The first step in dynamical analysis is determining all possible equilibrium points of the 

model. To find the equilibrium point of system (3), the following definition is used.  

Definition 2  �̅� is called an equilibrium point of the system (3) if it satisfies  

𝑓(�̅�) = 0, �̅� ∈ ℝ𝑛 for each 𝑡 ∈ ℝ.       

(Diethelm, 2010) 

Based on Definition 2, the equilibrium point of system (3) is attained by solving 

Λ −  𝛽𝑆𝐼 −  𝜇𝑆 −  𝑑𝑆 = 0, 

𝛽𝑆𝐼 + 𝛼1𝑇 − 𝑑𝐼 − 𝑘1𝐼 − 𝑘2𝐼 = 0, 

𝑘1𝐼 + 𝛼2𝑇 − (𝛿1 +  𝑑)𝐴 = 0,  

𝑘2𝐼 − 𝛼1𝑇 − (𝑑 + 𝛼2 + 𝛿2)𝑇 = 0, 

𝜇𝑆 − 𝑑𝑅 = 0. 

Therefore, we obtain two equilibrium points as follows. 

(i) The disease-free equilibrium point  

𝐸0 = (𝑆
0, 𝐼0, 𝐴0, 𝑇0, 𝑅0) 

𝐸0 = (
Λ

(𝜇+𝑑)
, 0,0,0,

𝜇Λ

𝑑(𝜇+𝑑)
),  

which always exists. 

(ii) The endemic equilibrium point 

𝐸1 = (𝑆
∗, 𝐼∗, 𝐴∗, 𝑇∗, 𝑅∗),  

where 

𝑆∗ =
Λ

(𝛽𝐼∗ + 𝜇 + 𝑑)
 , 

𝐼∗ =
(ℛ0 − 1)(𝜇 + 𝑑)

𝛽
 , 

𝐴∗ =
((𝛼1 + 𝛼2 + 𝛿2 + 𝑑)𝑘1 + 𝛼2𝑘2)𝐼

∗

(𝛿1 +  𝑑)(𝛼1 + 𝛼2 + 𝛿2 + 𝑑)
 , 

𝑇∗ =
𝑘2𝐼

∗

𝛼1 + 𝛼2 + 𝛿2 + 𝑑
 , 
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𝑅∗ =
𝜇Λ

𝑑(𝛽𝐼∗ + 𝜇 + 𝑑)
 , 

with  

ℛ0 =
𝛽Λ(𝛼1 + 𝛼2 + 𝛿2 + 𝑑)

((𝑑 + 𝑘1 + 𝑘2)(𝛼1 + 𝛼2 + 𝛿2 + 𝑑) − 𝛼1𝑘2)(𝜇 + 𝑑)
 . 

The endemic equilibrium point 𝐸1 exists if ℛ0 > 1. 

 

C. RESULT AND DISCUSSION 

This section will discuss the local stability and global stability of each equilibrium point. 

The local stability is carried out by applying the following theorem. 

Theorem 1. The equilibrium points �̅� of the system (3) is asymptotically stable if all 

eigenvalues 𝜆𝑗  of the Jacobian matrix 𝐽 =
𝜕𝑓

𝜕�⃗�
 evaluated at �̅� satisfy |𝑎𝑟𝑔(𝜆𝑛)| >

𝑎𝜋

2
. 

(Petras, 2011) 

1. Local Stability 

To perform local stability analysis, the theory of Routh-Hurwitz fractional-order criteria 

will be used to determine the properties and stability requirements of each equilibrium point. 

Theorem 2 The equilibrium points of system (3) with the characteristic equation  

 𝑃(𝜆) = 𝑎0𝜆
𝑛 + 𝑎1𝜆

𝑛−1 + 𝑎2𝜆
𝑛−2 +⋯+ 𝑎𝑛 = 0, 

it is said to be local asymptotic stable if  

(i) For 𝑛 = 1 then |𝑎𝑟𝑔(𝜆𝑛)| >
𝑎𝜋

2
 if 𝑎1 > 0. 

(ii) For 𝑛 = 2 then |𝑎𝑟𝑔(𝜆𝑛)| >
𝑎𝜋

2
 : 

a) If 𝐷(𝑃) > 0, 𝑎1 > 0  and 𝑎2 > 0 or ; 

b) If 𝐷(𝑃) < 0, 𝑎1 < 0  , 4𝑎2 > 𝑎1
2 and |𝑡𝑎𝑛−1 (

√4𝑎2−𝑎1
2

𝑎1
)| >

𝛼𝜋

2
. 

(iii) For 𝑛 = 3 then |𝑎𝑟𝑔 (𝜆1,2,3)| >
𝛼𝜋

2
 : 

a) If 𝐷(𝑃) > 0, 𝑎1 > 0, 𝑎3 > 0, 𝑎1𝑎2 > 𝑎3, or ; 

b) If 𝐷(𝑃) < 0,  𝑎1 ≥ 0,  𝑎2 ≥ 0,  𝑎3 > 0 , and 𝛼 <
2

3
 , or ; 

c) If 𝐷(𝑃) < 0, 𝑎1 > 0, 𝑎2 > 0,  𝑎1𝑎2 = 𝑎3 for each 0 < 𝛼 < 1, 

   with 

𝐷(𝑃) =  − |
|

1 𝑎1 𝑎2 𝑎3 0
0 1 𝑎1 𝑎2 𝑎3
3 2𝑎1 𝑎2 0 0
0 3 2𝑎1 𝑎2 0
0 0 3 2𝑎1 𝑎2

|
|, 

𝐷(𝑃) = 18𝑎1𝑎2𝑎3 + (𝑎1𝑎2)
2 − 4𝑎3𝑎1

2 − 4𝑎2
2 − 27𝑎3

2. 
(Ahmed et al., 2006) 
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a. Local Stability of 𝐸0 

The Jacobian matrix at the equilibrium point  𝐸0 is given by 

𝐽(𝐸0) =

(

 
 
 
 
 
−(𝜇 + 𝑑)

−𝛽Λ

𝜇 + 𝑑
0 0 0

0
𝛽Λ

𝜇 + 𝑑
− (𝑘1 + 𝑘2 + 𝑑) 0 𝛼1 0

0 𝑘1 −(𝛿1 + 𝑑) 𝛼2 0

0 𝑘2 0 −(𝛼1 + 𝛼2 + 𝛿2 + 𝑑) 0
𝜇 0 0 0 −𝑑)

 
 
 
 
 

. 

The eigenvalues of  𝐽(𝐸0) can be found by solving the characteristic equation  |𝐽(𝐸0) − 𝜆𝐼|  =

 0. By cofactor expansion method, it can be shown that the eigenvalues of the matrix satisfy 

the following equation  

(−𝑑 − 𝜆)(−(𝛿1 + 𝑑) − 𝜆)(−(𝜇 + 𝑑) − 𝜆)𝑑𝑒𝑡(𝐴) = 0, 

where 

𝐴 = (

𝛽Λ

𝜇 + 𝑑
− (𝑘1 + 𝑘2 + 𝑑) 𝛼1

𝑘2 −(𝛼1 + 𝛼2 + 𝛿2 + 𝑑)

). 

It is clear that the first three eigenvalues of 𝐽(𝐸0) are 𝜆1 = −𝑑 < 0, 𝜆2 = −(𝛿1 + 𝑑) < 0 and 

𝜆3 = −(𝜇 + 𝑑) < 0, which satisfy arg(𝜆𝑗) = 𝜋 >
𝑎𝜋

2
, 𝑖 = 1,2,3.  Therefore, the stability of the 

equilibrium point 𝐸0 is determined by 𝜆𝑗, 𝑗 = 4,5, which are the eigenvalues of 𝐴. It is easy to 

show that the characteristic equation of 𝐴 is  

𝜆2 + 𝑎1𝜆 + 𝑎2 = 0, 

where  

𝑎1 = ((𝑘1 + 𝑘2 + 𝑑) + (𝛼1 + 𝛼2 + 𝛿2 + 𝑑) −
𝛽Λ

𝜇 + 𝑑
), 

𝑎2 = −(
𝛽Λ

𝜇 + 𝑑
− (𝑘1 + 𝑘2 + 𝑑)) (𝛼1 + 𝛼2 + 𝛿2 + 𝑑) − 𝛼1𝑘2. 

Therefore, the roots are 

𝜆4,5 =
−𝑎1 ± √𝒟

2
 , 

where 

𝒟 = 𝑎1
2 − 4𝑎2, 

𝒟 = (
𝛽Λ

𝜇 + 𝑑
− (𝑘1 + 𝑘2 + 𝑑) + (𝛼1 + 𝛼2 + 𝛿2 + 𝑑))

2

+ 4𝛼1𝑘2 > 0. 

Since 𝒟 > 0, it is clear that 𝜆4,5 ∈ ℝ. The equilibrium point 𝐸0 is asymptotically stable only 

when 𝑎1 > 0 and 𝑎2 > 0. Condition  𝑎2 > 0 is equivalent to 

−(
𝛽Λ

𝜇+𝑑
− (𝑘1 + 𝑘2 + 𝑑)) (𝛼1 + 𝛼2 + 𝛿2 + 𝑑) − 𝛼1𝑘2 > 0,  

𝛽Λ

𝜇 + 𝑑
< (𝑘1 + 𝑘2 + 𝑑) −

𝛼1𝑘2
(𝛼1 + 𝛼2 + 𝛿2 + 𝑑)

, 
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𝛽Λ(𝛼1 + 𝛼2 + 𝛿2 + 𝑑)

((𝑘1 + 𝑘2 + 𝑑)(𝛼1 + 𝛼2 + 𝛿2 + 𝑑) − 𝛼1𝑘2)(𝜇 + 𝑑)
< 1. 

So the equilibrium point 𝐸0 is local asymptotically stable if 𝑎1 > 0 and ℛ0 < 1. 

b. Local Stability of 𝐸1  

When the Jacobian matrix is evaluated at the equilibrium point  𝐸1, then we get  

 

𝐽(𝐸1) =

(

 
 

−𝛽𝐼∗ − (𝜇 + 𝑑) −𝛽𝑆∗ 0 0 0
𝛽𝐼∗ 𝛽𝑆∗ − (𝑘1 + 𝑘2 + 𝑑) 0 𝛼1 0
0 𝑘1 −(𝛿1 + 𝑑) 𝛼2 0
0 𝑘2 0 −(𝛼1 + 𝛼2 + 𝛿2 + 𝑑) 0
𝜇 0 0 0 −𝑑)

 
 
. 

It can be shown that the eigenvalues of 𝐽(𝐸1) satisfy the characteristic equation  

(−𝑑 − 𝜆)(−(𝛿1 + 𝑑) − 𝜆)𝑑𝑒𝑡(𝐵) = 0 

where  

𝐵 = (

−𝛽𝐼∗ − (𝜇 + 𝑑) −𝛽𝑆∗ 0
𝛽𝐼∗ 𝛽𝑆∗ − (𝑘1 + 𝑘2 + 𝑑) 𝛼1
0 𝑘2 −(𝛼1 + 𝛼2 + 𝛿2 + 𝑑)

). 

From the above equation, it is obtained that 𝜆1 = −𝑑 < 0, and 𝜆2 = −(𝛿1 + 𝑑) < 0. Hence, 

arg(𝜆𝑗) = 𝜋 >
𝑎𝜋

2
, 𝑗 = 1,2.  Therefore, the stability of the equilibrium point is determined by 

𝜆𝑗 , 𝑗 = 3,4,5, which is the eigenvalue of the matrix 𝐵. The characteristic equation of 𝐵 is  

 

𝜆3 + 𝑏1𝜆
2 + 𝑏2𝜆 + 𝑏3 = 0, 

with 

𝑏1 = 𝛽𝐼
∗ + (𝜇 + 𝑑) − 𝛽𝑆∗ + (𝑘1 + 𝑘2 + 𝑑) + (𝛼1 + 𝛼2 + 𝛿2 + 𝑑),  

𝑏2 = 𝛽𝑆
∗𝛽𝐼∗ − (𝛽𝐼∗ + (𝜇 + 𝑑) − 𝛽𝑆∗ + (𝑘1 + 𝑘2 + 𝑑))(𝛼1 + 𝛼2 + 𝛿2 + 𝑑)

+ (−𝛽𝐼∗ − (𝜇 + 𝑑))(𝛽𝑆∗ − (𝑘1 + 𝑘2 + 𝑑)) + 𝛼1𝑘2, 

𝑏3 = −𝛽𝑆
∗𝛽𝐼∗(𝛼1 + 𝛼2 + 𝛿2 + 𝑑)

− ((𝛽𝐼∗ + (𝜇 + 𝑑))(𝛽𝑆∗ − (𝑘1 + 𝑘2 + 𝑑))(𝛼1 + 𝛼2 + 𝛿2 + 𝑑))

+ (𝛽𝐼∗ + (𝜇 + 𝑑))𝛼1𝑘2. 

Based on Theorem 2, the roots of the characteristic equation satisfy |𝑎𝑟𝑔(𝜆𝑛)| >
𝑎𝜋

2
 when : 

a) If 𝐷(𝑃) > 0, 𝑎1 > 0, 𝑎3 > 0, 𝑎1𝑎2 > 𝑎3,  or ; 

b) If 𝐷(𝑃) < 0,  𝑎1 ≥ 0,  𝑎2 ≥ 0,  𝑎3 > 0 , and 𝛼 <
2

3
 , or ; 

c) If 𝐷(𝑃) < 0, 𝑎1 > 0, 𝑎2 > 0,  𝑎1𝑎2 = 𝑎3 for each 0 < 𝛼 < 1, 

with 

𝐷(𝑃) =  18𝑏1𝑏2𝑏3 + (𝑏1𝑏2)
2 − 4𝑏3𝑏1

2 − 4𝑏2
2 − 27𝑏3

2. 

It can be seen that 𝑏3 > 0 is a necessary condition for the equilibrium point 𝐸1 to be stable.  
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Conditions 𝑏3 > 0 is equivalent to  

𝛽𝑆∗𝛽𝐼∗(𝛼1 + 𝛼2 + 𝛿2 + 𝑑) − ((𝛽𝐼
∗ + (𝜇 + 𝑑))(𝛽𝑆∗ − (𝑘1 + 𝑘2 + 𝑑))(𝛼1 + 𝛼2 + 𝛿2 + 𝑑))

− (𝛽𝐼∗ + (𝜇 + 𝑑))𝛼1𝑘2 > 0. 

By substituting values of 𝐼∗  and 𝑆∗  into the above equation, we get  

ℛ0((𝑘1 + 𝑘2 + 𝑑)(𝛼1 + 𝛼2 + 𝛿2 + 𝑑) − 𝛼1𝑘2)(1 −
1

ℛ0
) > 0. 

Thus, 𝑏3 > 0 is achieved only if  ℛ0 > 1.  

2. Global Stability 

To perform a global stability analysis of a fractional-order systems, the following theorems 

and lemmas are needed  

Theorem 3. Suppose that Ω is a closed and finite set, each solution of system (3) with initial 

values 𝑥(𝑡0) ∈ Ω  and ∀𝑥(𝑡) ∈ Ω . If ∃𝑉(𝑥) ∶ ℝ𝑛 → ℝ  with the first partial derivative is 

continuous, it satisfies the following conditions :  

(4) 𝐷𝛼𝑉(𝑥) ≤ 0. 

(Vargas-De-León, 2015) 

Lemma 1. Suppose 𝑥(𝑡) ∈ 𝐶([0,+∞)). If 𝑥(𝑡) satisfies 𝐷∗
𝛼𝑥 ≤ Λ − (𝜇 + 𝑑)𝑥(𝑡), 𝑥(0) = 𝑥0  ∈

ℝ , 0 < 𝛼 < 1, then 𝑥(𝑡) ≤ (𝑥0 −
Λ

(𝜇+𝑑)
)𝐸𝛼[−(𝜇 + 𝑑)𝑡

𝛼] +
Λ

(𝜇+𝑑)
 and 

lim
𝑡→∞

𝑆(𝑡) ≤
Λ

(𝜇 + 𝑑)
. 

(Li et al., 2017) 

Theorem 4. Suppose that 𝑥(𝑡) ∈ ℝ is a continuous function and its Caputo fractional 

derivative exists for 0 < 𝛼 < 1. For any time 𝑡 ≥ 𝑡0, 𝑥(𝑡) satisfy  

 

𝐷∗
𝛼 [𝑥(𝑡) − 𝑥∗ − 𝑥∗ ln

𝑥(𝑡)

𝑥∗
] ≤ (1 −

𝑥∗

𝑥(𝑡)
)𝐷∗

𝛼𝑥(𝑡), 𝑥∗ ∈ ℝ, ∀𝛼 ∈ (0,1). 

(Vargas-De-León, 2015) 

a. Global Stability of 𝐸0 

Consider a Lyapunov function, which is defined as  

(5) 𝑉(𝑡) = 𝐼 + 𝑚𝑇,  

where 

𝑚 =
𝛼1

(𝛼1 + 𝑑 + 𝛿2 + 𝛼2)
. 

  The fractional derivative of  (5) is 

(6) 𝐷𝛼𝑉(𝑡) = (𝛽𝑆 − (𝑑 + 𝑘1 + 𝑘2) + 𝑚𝑘2)𝐼 + (𝛼1 −𝑚(𝛼1 + 𝑑 + 𝛼2 + 𝛿2))𝑇. 

Based on Lemma 1, (6) can be written as follows  

𝐷𝛼𝑉(𝑡) = (𝛽𝑆 − (𝑑 + 𝑘1 + 𝑘2) + 𝑚𝑘2)𝐼 + (𝛼1 −𝑚(𝛼1 + 𝑑 + 𝛼2 + 𝛿2))𝑇, 



22  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 5, No. 1, April 2021, pp.14-27  

 

𝐷𝛼𝑉(𝑡) ≤ (
𝛽Λ

𝜇 + 𝑑
− (𝑑 + 𝑘1 + 𝑘2) + 𝑚𝑘2) 𝐼 + (𝛼1 −𝑚(𝛼1 + 𝑑 + 𝛼2 + 𝛿2))𝑇. 

Then by substituting the value of 𝑚 into the equation above, we obtain 

𝐷𝛼𝑉(𝑡) ≤ (
(ℛ0 − 1)((𝑑 + 𝑘1 + 𝑘2)(𝛼1 + 𝑑 + 𝛼2 + 𝛿2) − 𝛼1𝑘2)

(𝛼1 + 𝑑 + 𝛼2 + 𝛿2)
) 𝐼. 

Since all parameters are positive then that 𝐷𝛼𝑉(𝑡) < 0 if ℛ0 < 1. If ℛ0 = 1 and/or 𝐼 =

0 such that 𝐷𝛼𝑉(𝑡) = 0. Hence, the equilibrium point 𝐸0 is globally asymptotically 

stable if  ℛ0 < 1. 

b. Global Stability of 𝐸1  

We first define a Lyapunov function as follows  

(7) 𝑉(𝑡) = 𝑆 − 𝑆∗ − 𝑆∗ln
𝑆

𝑆∗
+ (𝐼 − 𝐼∗ − 𝐼∗ln

𝐼

𝐼∗
) +

𝛼1𝑇
∗

𝑘2𝐼∗
(𝑇 − 𝑇∗ − 𝑇∗ ln

𝑇

𝑇∗
).  

  Based on Theorem 4, it is obtained 

(8) 𝐷𝛼𝑉(𝑡) ≤ (1 −
𝑆∗

𝑆
)𝐷𝛼𝑆 + (1 −

𝐼∗

𝐼
)𝐷𝛼𝐼 +

𝛼1𝑇
∗

𝑘2𝐼∗
(1 −

𝑇∗

𝑇
)𝐷𝛼𝑇. 

Let  𝑥 =
𝑆

𝑆∗
,     𝑦 =

𝐼

𝐼∗
,   𝜇 =

𝑇

𝑇∗
, then (8) can be written as 

𝐷𝛼𝑉(𝑡) ≤ −(𝜇1𝑆
∗ + 𝑑𝑆∗)

(1 − 𝑥)2

𝑥
+ 𝛽𝐼∗𝑆∗ (2 − 𝑥 −

1

𝑥
 ) + 𝛼1𝑇

∗ (2 −
𝜇

𝑦
−
𝑦

𝜇
). 

 

By noticing that all parameters are positive and applying the inequality of arithmetic mean 

and geometric mean, it is proven 𝐷𝛼𝑉(𝑡) ≤ 0. Furthermore, it can be seen 𝐷𝛼𝑉(𝑡) = 0 if and 

only if 𝑆 = 𝑆∗, 𝐼 = 𝐼∗, and 𝑇 = 𝑇∗. Thus, it is concluded that the equilibrium point 𝐸1 is 

globally asymptotically stable whenever  𝐸1 exists. 

From the discussion above it can be seen that the disease-free equilibrium point 𝐸0 is 

globally stable if ℛ0 < 1. On the other hand, if the endemic equilibrium point 𝐸1 exists, namely 

when ℛ0 > 1, then 𝐸1 is globally asymptotically stable. Therefore parameters ℛ0 can be 

considered as the basic reproduction number. 

3. Numerical Simulations 

In this part we present some numerical simulation using the Predictor-Corrector scheme 

(Diethelm, 2010). The parameter values used for numerical simulations are based on (Huo et 

al., 2016) and can be seen in the following Table 2.  

Table 2. Parameter values 
Parameter Parameter values 

Λ 0.55 
𝛽 0.03 
𝑑 0.0196 
𝑘2 0.35 
𝑘1 0.15 
𝛿1 0.0909 
𝛿2 0.0667 
𝜇 0.03 



  Agus Suryanto, Dynamic Fractional-Order …    23 

 

The initial value used in this simulation is 𝑆(0) = 35, 𝐼(0) = 24, 𝑇(0) = 8, 𝐴(0) = 15, and 
𝑅(0) = 0. 
 
a. Numerical Simulation I 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 1. The behavior of system in numerical simulation I (a) Subpopulation 𝑆, (b) Subpopulation 

𝐼, (c) Subpopulation 𝐴, (d) Subpopulation 𝑇, and (e) Subpopulation 𝑅. 
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Based on the parameter values in Table 2 and   𝛼1 =  0.08  and 𝛼2 =  0.03, we get ℛ0 =

0.88 < 1 and the disease-free equilibrium point 𝐸0  = (11.89, 0, 0, 0, 16.97). It is also found 

that 𝑎1 = 0.383 > 0, 𝑎2 = 0.009 > 0, and 𝒟(𝑃) = 0.112 > 0. Hence, Theorem 2.(a).(ii) says 

that the disease-free equilibrium point 𝐸0 is asymptotically stable for 0 < 𝛼 < 1. Figure 1 

illustrates the behavior of the solution of each subpopulation for  

0 ≤ 𝑡 ≤ 500 and 𝛼 = 0.5, 𝛼 = 0.75, 𝛼 = 0.8, 𝛼 = 0.9, and 𝛼 = 0.95. It is seen that using 

different values of the order of the fractional derivative (𝛼), all numerical solutions are 

convergent to the disease free equilibrium point 𝐸0. However, detail observation shows that a 

solution with larger value  of 𝛼 has faster convergence in approaching the equilibrium point 

𝐸0.  

 

b. Numerical Simulation II 

Next, we perform simulation using parameter values as in Table 1 and  𝛼1 =  0,25 and 

𝛼2 =  0,01.  In this case, we get ℛ0 = 1.25 > 0  and therefore there exists an endemic 

equilibrium point, namely 𝐸1  = (8.9, 0.41, 0.41, 0.59, 13.62). The characteristic equation of 

the Jacobian matrix at 𝐸1 is given by 

𝜆3 + 𝑏1𝜆
2 + 𝑏2𝜆 + 𝑏3 = 0, 

where 𝑏1 = 0.661 > 0, 𝑏2 = 0.040 > 0, 𝑏3 = 0.001 > 0, and 𝒟(𝑃) = 0.005 > 0, which shows 

that  𝐸1 is asymptotically stable. To see the effect of the order of the fractional derivative (𝛼), 

we perform numerical simulations using five different values of 𝛼, namely 𝛼 = 0.5, 𝛼 = 0.75, 

𝛼 = 0.8, 𝛼 = 0.9, and 𝛼 = 0.95. The numerical results depicted in Figure 2 show that all 

numerical solutions with different values of  𝛼 are convergent to  𝐸1, confirming that the 

endemic equilibrium point  𝐸1 is asymptotically stable. Similar to the previous simulation, it is 

shown that if the order of the fractional derivative is larger then the solution has faster 

convergence in approaching the endemic equilibrium point.  

Based on the results of numerical simulation I and numerical simulation II, it can be seen 

that the greater the value of the fractional-order parameter, the faster the numerical solution 

converges to the equilibrium point. Such behaviour is similar to the result obtained by Moore, 

et al. (2019).  

In this paper we have introduced a fractional order model of the spread of HIV / AIDS. 

Since the fractional order is a nonlocal operator, the growth rate of each sub-population is 

dependent on all previous state. In other words, we have include the memory effects in the 

model. This is in contrast with the original model where the growth rate is modelled by the 

first order derivative, which means that the growth rate only depends on the current 

condition. Hence, our model is closer to problems in the real world when compared to 

mathematical models of integer-order.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

Figure 2. The behavior of system in numerical simulation I (a) Subpopulation 𝑆, (b) Subpopulation 𝐼, 
(c) Subpopulation 𝐴, (d) Subpopulation 𝑇, and (e) Subpopulation 𝑅. 

 

D. CONCLUSION AND SUGGESTIONS 

Based on our analytical results, it is concluded that the constructed model has two 

equilibrium points, namely the disease-free equilibrium point (𝐸0) and endemic equilibrium 

point (𝐸1). The equilibrium point (𝐸0) always exists and is globally asymptotically stable if the 

basic reproduction number is less than one (ℛ0 < 1). When ℛ0 > 1, the equilibrium point 
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(𝐸1) exists and is globally asymptotically stable. The numerical simulation results support the 

results of dynamical analysis. Based on the results of numerical simulations, it is known that 

the greater the fractional derivative order, the faster the converges to the equilibrium points.  

This article uses the Caputo fractional-order derivative operator to form a fractional-order 

mathematical model of the spread of HIV / AIDS. In subsequent research, it is recommended 

to apply the proposed model for the real data.  
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