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 Forest fires are recurring environmental disasters with severe ecological and 
economic impacts, particularly in regions like West Kalimantan. One of the key 
indicators used to measure fire intensity is Fire Radiative Power (FRP). Accurate 
spatial prediction of FRP is essential to support early warning systems and 
mitigation strategies. This study is a quantitative descriptive research that applies 
a geostatistical spatial analysis technique, namely Ordinary Kriging interpolation, 
to predict FRP values in West Kalimantan for July, August, and September 2024. 
The data were obtained from satellite imagery (VIIRS NOAA-20), including latitude, 
longitude, and FRP values. Prior to modeling, data were tested for normality and 
found to follow a normal distribution. The spherical semivariogram model yielded 
the best fit for July and August with RMSE values of 0.046 and 0.011, respectively, 
while the Gaussian model was optimal for September (RMSE = 0.007). The results 
show spatial variation in FRP distribution across different regencies each month, 
with the highest estimated FRP values recorded in Kapuas Hulu (July: 63.56), 
Melawi (August: 69.00), and Ketapang (September: 55.27). Most areas 
demonstrated low fire intensity, as shown by the dominance of green zones on the 
prediction maps. However, localized red-yellow zones indicate areas with high fire 
potential, which shifted monthly. This study contributes by demonstrating the 
application of Ordinary Kriging in forest fire intensity mapping and highlights the 
importance of choosing an appropriate semivariogram model to enhance 
predictive accuracy. The resulting FRP prediction maps can serve as a valuable tool 
for policy planning and targeted fire prevention efforts. 
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A. INTRODUCTION  

Fire Radiative Power (FRP) is a fundamental parameter for fire characterization because it 

represents the fire's heat emission rate (Filizzola et al., 2023). In addition, FRP is a key indicator 

used to assess wildfire intensity, as it provides more detailed quantitative information than 

conventional fire lines or burned area maps, which typically offer only binary data. Operational 

remote sensing techniques for estimating FRP have been developed and widely applied over 

the past two decades to evaluate combustion and emission rates (S. S. Kumar et al., 2020), 

highlighting its long-standing relevance in wildfire research. It also plays a crucial role in the 

real-time detection and monitoring of fires. Mapping spatial FRP values is vital in efforts to 

mitigate and control forest fires. Therefore, accurate FRP prediction is essential not only to 

support more effective firefighting actions but also to evaluate the environmental pollution 

impacts associated with wildfires (Dong et al., 2024). 
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Forest fires are one of the major environmental disasters with widespread impacts in 

Indonesia. This is driven by the increasing demand for land use for agriculture and residential 

development (Pratiwi et al., 2025). Land-use changes, particularly the conversion to oil palm 

plantations, are a primary cause of forest fires in peatland areas. Forest fires, also referred to 

as bushfires or vegetation fires, can also be triggered by climatic changes, which are intensified 

by high greenhouse gas emissions and global warming (Supriya & Gadekallu, 2023). In fact, 

human activities are responsible for over 90% of forest fires, while the remaining cases are 

mostly caused by natural events such as lightning strikes (Alkhatib et al., 2023). Wildfires occur 

globally and have significant impacts on ecosystems, the environment, human populations, and 

infrastructure (Thom & Seidl, 2016). The consequences of these fires can lead to thick smoke, 

causing ecosystem damage, public health issues, transportation disruptions, and a significant 

decline in air quality. Each year, substantial financial resources are allocated to fire 

management initiatives aimed at preventing or controlling forest fires (Borrelli et al., 2015), yet 

the scale and frequency of fire events remain a serious concern. 

Forest fires have become a serious environmental issue in recent years, especially on the 

island of Kalimantan, which is part of Borneo and frequently faces this problem (Huda & 

Imro’ah, 2024). One of the regions often affected is West Kalimantan Province. Forest fires in 

West Kalimantan continue to seriously threaten the environment and human life (Huda et al., 

2025). This scenario is influenced by a mix of natural elements, such as extended drought 

periods and the El Niño weather pattern, alongside anthropogenic actions like land clearing via 

burning. In particular, on peatlands, the risk of forest fires increases during dry climates and 

high temperatures (Pratiwi et al., 2025). 

FRP is considered spatial data because each observation point of FRP is associated with 

important geographic attributes, namely latitude and longitude. Spatial analysis involves 

examining data with a focus on the location or distance between objects (Xu & Kennedy, 2015). 

Spatial data is analyzed to understand patterns and relationships between locations, 

distributions, or geographic trends. Spatial analysis is a quantitative study of spatial 

phenomena in geography and even earth science (Chen et al., 2020), aiming to uncover spatial 

patterns and dependencies in environmental and geospatial data. Spatial analysis is the process 

of processing, modeling, and interpreting data related to geographic or spatial locations on the 

Earth's surface (Franch-Pardo et al., 2020). The term spatial analysis describes methods to 

study the location, distribution, and relationship of spatial phenomena (Bäing, 2023). 

The Ordinary Kriging method is one of the most widely used spatial analysis methods. This 

technique estimates the value at a specific point within a region where the variogram is known, 

utilizing data from surrounding locations (Meliyana R. & Ahmar, 2023). Kriging is the most 

effective linear, optimal, unbiased interpolation technique for estimating unknown values of 

spatial and temporal variables while minimizing mean interpolation error (Chung et al., 2019). 

Nonetheless, the proper implementation of Ordinary Kriging necessitates a precise assessment 

of the spatial structure through the construction of a semivariogram and subsequent model-

fitting (Emmanuel et al., 2020). In this study, Ordinary Kriging is applied to predict FRP values 

in the West Kalimantan region to illustrate the spatial distribution of forest and land fire 

intensity based on FRP data. 
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Several previous researchers have conducted the prediction of FRP using spatial 

approaches. For example, studies using FRP data from MODIS satellites in countries such as 

Nepal, Bhutan, and Sri Lanka employed spatial statistical methods like the Spatial Lag Model, 

Spatial Error Model, and Kriging to map and predict the spatial distribution of FRP. The Kriging 

interpolation technique was used to estimate fire potential in areas not directly observed, 

providing a comprehensive overview of fire risk and impact (Devkota, 2021). Another study in 

Florida, USA, used Fire Radiative Energy Density (FRED) data, Ordinary Kriging, and Gaussian 

Conditional Simulation methods to interpolate FRED values in unmonitored areas. The 

resulting interpolation provided accurate estimations (Klauberg et al., 2018). Additionally, a 

study in Kubu Raya Regency, West Kalimantan, applied Kriging interpolation to analyze the 

spatial distribution of peatland fire hotspots, highlighting the spread of fire risk to surrounding 

areas based on historical satellite data (Huda et al., 2025). 

This study aims to predict the spatial distribution of Fire Radiative Power (FRP) in West 

Kalimantan Province using the Ordinary Kriging method. The objective is to produce spatially 

continuous maps that identify fire intensity patterns across the region, thereby supporting 

better-informed decisions for fire management and environmental protection. The novelty of 

this study lies in its integration of FRP data from the VIIRS NOAA-20 sensor and semivariogram-

based spatial interpolation to offer a refined prediction of fire potential in a high-risk region. 

 

B. METHODS 

This study employs a quantitative descriptive research approach that focuses on spatial 

analysis using geostatistical interpolation. The aim is to describe and model the spatial 

distribution of Fire Radiative Power (FRP) in West Kalimantan using the Ordinary Kriging 

method. 

1. Kriging 

Kriging is a group of geostatistics-based interpolation techniques that attempt to give an 

unbiased estimate of the value of a variable on a surface (Wu, 2017). Kriging weights are 

defined by two conditions: the value to be estimated and its estimator have the same average 

value, and the estimation error variance, or prediction variance, is the minimum feasible value 

(Freulon & Desassis, 2023). Points that are closer to the estimation location are given higher 

weights compared to those that are farther away. The estimation accuracy is highly influenced 

by the shape of the semivariogram model used to determine these weights. The Kriging model 

can be represented by the following equation (Pham et al., 2019): 

 

𝑍̂(𝑢0) = ∑ 𝑤𝑖𝑍(𝑢0)

𝑛

𝑖=1

 (1) 

 

The estimated value at location 𝑢0 is denoted as 𝑍̂(𝑢0), which is a linear combination of the 

observed values 𝑍̂(𝑢𝑖)  at locations 𝑢𝑖 , each multiplied by a corresponding weight 𝑤𝑖 . The 

number of observation points used in the estimation is represented by 𝑛. The weights 𝑤𝑖 are 

determined based on the distance and spatial relationship between the points. Generally, 

several types of kriging methods are available: ordinary, simple, universal, Poisson probability, 

and more (Böhner & Bechtel, 2018). However, this study employs the Ordinary Kriging method. 
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The object of this study is Fire Radiative Power (FRP) data for West Kalimantan Province, 

obtained from the VIIRS (Visible Infrared Imaging Radiometer Suite) sensor onboard the 

NOAA-20 satellite. The data were accessed through the FIRMS NASA website and cover the 

period of July, August, and September 2024. Prior to analysis, the data were downloaded in SHP 

format, filtered to include only observations within the West Kalimantan region, and processed 

in GIS software to extract relevant spatial information. The FRP values along with their 

geographic coordinates were then prepared for use in the Kriging interpolation process. 

 

2. Variogram and Semivariogram 

A variogram is a function that describes the degree of difference or variation between pairs 

of data points separated by a certain distance. This function assesses the spatial relationship 

between data points based on their separation distance. The variogram is formulated as follows: 

 

2𝛾(ℎ) =
1

𝑁(ℎ)
∑ [𝑍(𝑢𝑖 + ℎ) − 𝑍(𝑢𝑖)]2

𝑁(ℎ)

𝑖=1

 (2) 

 

where 2𝛾(ℎ) is the variogram at distance ℎ, 𝑍(𝑢) is the observed value at location 𝑢, 𝑍(𝑢 + ℎ) 

is the observed value at location (𝑢 + ℎ), and 𝑁(ℎ) is the number of point pairs separated by 

distance ℎ. 

The semivariogram is defined as half the value of the variogram. In general, semivariograms 

are classified into two types: experimental semivariogram and theoretical semivariogram. The 

experimental semivariogram is a plot of semivariance values 𝛾(ℎ) against distance ℎ (Setiyoko 

et al., 2020). The experimental semivariogram is calculated based on observed or sample data 

using the following formula (Xia et al., 2020): 

 

𝛾(ℎ) =
1

𝑁(ℎ)
∑ [𝑍(𝑢𝑖 + ℎ) − 𝑍(𝑢𝑖)]2

𝑁(ℎ)

𝑖=1

 (3) 

 

where 𝛾(ℎ) represents the semivariogram value at distance ℎ. 

The value of the experimental semivariogram will later be compared with the theoretical 

semivariogram to determine the best-fitting model to be used in the weighting process of the 

Kriging method. Theoretical semivariograms generally consist of three types of models, namely 

(Wong & Kwon, 2021): 

a. Exponential Model 

The exponential model describes a sharp increase in variance at short distances, which 

then gradually levels off as the distance increases. The exponential model is formulated 

as follows: 

𝛾(ℎ) = 𝑐(1 − 𝑒𝑥𝑝(−ℎ/𝑎)) 
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b. Spherical Model 

The spherical model is a semivariogram model where spatial variability increases 

linearly with distance up to a certain range, after which it levels off at the sill. The 

spherical model is formulated as follows: 

𝛾(ℎ) = 𝑐 [
3

2
(

ℎ

𝑎
) −

1

2
(

ℎ

𝑎
)

3

], if ℎ ≤ 𝑎 

𝛾(ℎ) = 𝑐, if ℎ > 𝑎  

 

c. Gaussian Model 

The Gaussian model shows a very gradual increase in variance at short distances, 

followed by a sharper rise as the distance approaches the range. The Gaussian 

semivariogram model is formulated as follows: 

 

𝛾(ℎ) = 𝑐 [1 − 𝑒𝑥𝑝 ((
ℎ

𝑎
))]  

 

where ℎ represents the distance between sample locations, 𝑐 is the sill (the value where 

the semivariogram levels off), and 𝑎  is the range (the distance at which spatial 

correlation effectively becomes zero). The graphs of the three theoretical 

semivariogram models are presented in Figure 1 (Hilal et al., 2024): 

 

 
Figure 1. Theoretical semivariogram model 

 

3. Ordinary Kriging 

Ordinary Kriging is a method that assumes the population mean is unknown but remains 

constant throughout the study area (Sukkuea & Heednacram, 2022). It operates under the 

assumption that the mean is not explicitly known but does not vary spatially. In Ordinary 

Kriging, spatial prediction is based on several underlying assumptions (P. Kumar et al., 2023). 

The Ordinary Kriging equation is given as follows: 
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𝑍̂(𝑢0) = ∑ 𝑤𝑖𝑍(𝑢0)

𝑛

𝑖=1

 (4) 

 

with ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 , where 𝑍̂(𝑢𝑖)  denotes the estimated value at location 𝑢𝑖 , 𝑛  represents the 

number of samples used for estimation, and 𝑤𝑖 is the weight assigned to each variable. One of 

the main objectives of the Kriging method is to produce an estimate that meets the three criteria 

of a Best Linear Unbiased Estimator (BLUE) (Li et al., 2021). 

a. Linear, the estimate 𝑍̂(𝑢0)  is considered linear because it is formed as a linear 

combination of the observed values 𝑍̂(𝑢𝑖). 

b. Unbiased, the Ordinary Kriging method produces unbiased estimates because the sum 

of the weights is equal to one, i.e., ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, ensuring that the expected value of the 

estimation equals the true mean. 

c. Best, the Ordinary Kriging method produces estimates with the smallest possible error 

variance, making it the most precise linear unbiased estimator. The variance of the 

estimation error is expressed as: 

 

𝑉𝑎𝑟(𝑒(𝑢0)) = 𝜎2 − [∑ 𝑤𝑖𝐶𝑜𝑣

𝑛

𝑖=1

(𝑍(𝑢𝑖), 𝑍(𝑢0)) − 𝜆] 

 

 
Figure 2. Ordinary Kriging analysis flowchart 

 

C. RESULT AND DISCUSSION 

The data used in this study are Fire Radiative Power (FRP) values obtained from the NOAA-

20 VIIRS satellite. Data were obtained through the NASA FIRMS website covering the West 

Kalimantan Province in July, August, and September 2024 (NASA, 2024). The data collected 

includes three main variables, namely longitude in decimal degrees as the X variable (abscissa), 

latitude in decimal degrees as the Y variable (ordinate), and FRP values, which are used in the 

analysis to map and predict the distribution pattern of fire intensity levels in the West 

Kalimantan region using the Ordinary Kriging method. The distribution of FRP data in July, 

August, and September 2024 can be seen in Figure 3. 
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(a) 

 
(b) 

 

 
(c) 

Figure 3. Map of FRP distribution in West Kalimantan in 2024 in the months  

of (a) July (b) August (c) September 

 

The data shows that July, August, and September are the months with the highest levels of 

fire intensity in West Kalimantan in 2024. This can be seen in Figure 3, which shows that 

September has the highest distribution of fire intensity levels throughout 2024. July is in second 

place with 3,347 FRP points and has the lowest FRP value of 0.20 in the Mempawah Regency 

and the highest FRP value of 321.64 in the Landak Regency. The third place is in August, with 

2,317 FRP points. However, August has the highest FRP value among other months, namely 

341.73 in Kapuas Hulu Regency and the lowest value of 0.39 in Ketapang Regency. August also 

has very varied FRP values , with a distribution level 310.03 and an average of 12.64. Although 

the number of hotspots is smaller, this month shows a more severe fire intensity due to extreme 

fire incidents in specific locations. Meanwhile, in September, there was a widespread spread of 

fires, but with a low and stable level of fire intensity. This is indicated by the low variance value 

compared to other months, which is 237.14, and an average value of 12.41. The minimum FRP 

value in September occurred in the Sintang district of 0.26, and the highest FRP value occurred 

in the Landak district of 254.78. A summary of these values is presented in Table 1. 

 

Table 1. Descriptive Statistics 

Values July August September 
Mean 11.33 12.64 12.41 

Varians 252.28 310.03 237.14 
Minimum 0.20 0.39 0.26 
Maximum 321.64 341.73 254.78 

Number of Points 3,347 2,317 9,724 
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1. Normality 

The normality test was conducted to determine whether the FRP data used in this study was 

normally distributed. The non-normality may cause potential issues when fitting a kriging 

model, particularly during the covariance function fitting stage (Guo & Li, 2024). The normality 

test was conducted using the Kolmogorov-Smirnov test with the following hypothesis. 

Hypothesis: 

𝐻0: 𝜋 = 0 = Data are normally distributed 

𝐻1: 𝜋 ≠ 0 = Data are not normally distributed 

Rejection region: 

Reject 𝐻0 if the p-value < α (0.05) 

 

Table 2. Normality test 

P-Value Kolmogorov-Smirnov Test 
July August September 

2.2 × 10−16 2.2 × 10−16 2.2 × 10−16 

 

Based on Table 2, it can be seen that the p-value < α (0.05), which means that 𝐻0 is rejected. 

This indicates that the July, August, and September data are not normally distributed. Therefore, 

a logarithmic transformation was applied to all three datasets to produce unbiased predictions. 

 

2. Experimental Semivariogram 

After the data were transformed, the next step was calculating the experimental 

semivariogram values based on the coordinates and FRP values for July, August, and September. 

The results of the experimental semivariogram calculations are presented in Table 3. 

 

Table 3. Experimental semivariogram 

Class 
July August September 

Range (𝒉) 𝑵(𝒉) 𝜸(𝒉) Range (𝒉) 𝑵(𝒉) 𝜸(𝒉) Range (𝒉) 𝑵(𝒉) 𝜸(𝒉) 
1 0.076 160,923 0.784 0.091 486,96 0.695 0.097 712,427 0.730 
2 0.224 196,704 0.778 0.231 934,48 0.701 0.238 1,610,319 0.745 
3 0.365 253,423 0.810 0.380 120,725 0.726 0.389 2,279,614 0.748 
4 0.515 272,220 0.823 0.530 138,302 0.723 0.542 2,710,580 0.758 
5 0.659 312,903 0.818 0.679 142,350 0.691 0.695 3,042,599 0.766 
6 0.805 349,978 0.861 0.832 156,052 0.688 0.849 3,209,641 0.772 
7 0.950 405,590 0.905 0.982 161,139 0.686 1.003 3,345,087 0.772 
8 1.095 417,460 0.956 1.132 168,986 0.701 1.157 3,357,203 0.778 
9 1.241 414,801 0.891 1.283 158,689 0.709 1.312 3,351,592 0.769 

10 1.388 399,023 0.913 1.434 153,826 0.712 1.466 3,367,047 0.760 
11 1.533 413,884 0.872 1.587 160,583 0.706 1.619 3,155,980 0.754 
12 1.675 326,919 0.925 1.737 165,901 0.708 1.774 2,960,982 0.754 
13 1.824 206,372 0.923 1.886 159,118 0.706 1.928 2,625,131 0.759 
14 1.971 170,861 0.936 2.036 134,843 0.715 2.081 2,302,133 0.752 
15 2.121 175,190 0.964 2.188 117,962 0.711 2.236 1,914,156 0.749 

 

The next step is to calculate the semivariogram parameters, namely the sill, nugget, and 

range, in order to determine the appropriate theoretical model. The results of the 

semivariogram parameter calculations are presented in Table 4. 
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Table 4. Semivariogram parameter values 

Model Parameter July August September 

Spherical 
Sill 0.768 0.684 0.723 

Nugget 1.064 0.709 0.769 
Range 3.021 0.173 0.877 

Exponential 
Sill 0.773 0.686 0.716 

Nugget 55.874 0.686 0.769 
Range 375.726 0.729 0.331 

Gaussian 
Sill 0.780 0.688 0.727 

Nugget 1.052 0.710 0.766 
Range 1.185 0.029 0.352 

 

After determining the parameter values for each model, the next step is to create 

semivariogram plots to identify which model best fits the data pattern. In addition, the best 

semivariogram model is selected based on the Root Mean Square Error (RMSE) value. The 

Kriging method is considered to have good estimation accuracy if it yields the smallest RMSE 

value (Oliver & Webster, 2015). The RMSE can be calculated using the following formula (Id et 

al., 2022): 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

 

where 𝑛 is the number of data points, 𝑦𝑖 is the actual value, and 𝑦̂𝑖 is the predicted value. The 

RMSE values and semivariogram plots are presented in Table 5. 

 

Table 5. Model selection based on RMSE 

Model Spherical Exponential Gaussian 
July 

RMSE 0.046 0.060 0.049 
Plot 

   
August 

RMSE 0.011 0.024 0.012 
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Model Spherical Exponential Gaussian 
Plot 

   
September 

RMSE 0.008 0.009 0.007 
Plot 

   

 

Based on Table 5, it can be observed that the best semivariogram model used in July and 

August is the Spherical model, with RMSE values of 0.046 and 0.011, respectively. Meanwhile, 

in September, the Gaussian model was identified as the best fit, with the lowest RMSE value of 

0.007. The RMSE values highlighted in bold indicate the lowest prediction error among the 

models compared. Therefore, by selecting the optimal semivariogram model, more precise 

estimation results can be obtained, as the chosen model accurately represents the spatial 

variation in the data. This, in turn, supports better decision-making and interpretation in spatial 

analysis. 

 

3. Estimation of Fire Radiative Power (FRP) at Unobserved Locations 

Based on the results of Kriging interpolation, the highest estimated FRP value in July was 

found in Kapuas Hulu Regency at 63.56, while the lowest was in Melawi Regency at 0.57. In 

August, Melawi Regency recorded the highest estimated FRP value at 69.61, and Ketapang 

Regency had the lowest at 0.82. In September, the highest estimated FRP value was in Ketapang 

Regency at 91.04, and the lowest was in Bengkayang Regency at 1.02. The spatial distribution 

of estimated FRP values for July, August, and September is shown in Figure 4 below. 
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(c) 

Figure 4. Spatial distribution maps of estimated FRP in West Kalimantan in 2024 for the months 

of (a) July, (b) August, and (c) September 

 

Figure 4 further illustrates how the intensity and location of fire activity fluctuate over time. 

While most regions consistently exhibit low FRP values as shown by the dominance of green 

tones on the maps there are pockets of persistently high FRP areas, particularly in central and 

southern West Kalimantan. These spatial-temporal variations suggest that fire activity is not 

static but dynamically responds to changes in short-term climatic conditions, such as rainfall 

variability, as well as anthropogenic influences like peatland disturbance and agricultural 

practices. For instance, the lower FRP values in August compared to July and September may 

be attributed to temporary rainfall events, which suppressed fire intensity. However, the 

reemergence of high FRP in September especially in Ketapang indicates a return to drier 

conditions or sustained fire sources. This pattern highlights the importance of monitoring 

monthly changes, as areas that appear inactive in one month may quickly become hotspots in 

the next. These results support previous findings in Kubu Raya Regency, which also 

demonstrated significant spatial clustering and temporal shifts in fire intensity based on 

Kriging analysis (Huda et al., 2025). The consistency between this study and earlier research 
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reinforces the understanding that fire risk in West Kalimantan is highly localized and shaped 

by both environmental variability and ongoing land-use dynamics. 

 

D. CONCLUSION AND SUGGESTIONS 

The study revealed that the spatial distribution and intensity of fire activity in West 

Kalimantan during July, August, and September 2024 exhibited clear spatial variability across 

regions and time. Although most areas showed low FRP, some regions consistently exhibited 

higher intensity, indicating localized fire risk zones. The applied Ordinary Kriging method, 

supported by low RMSE values (ranging from 0.007 to 0.046), confirms the reliability of the 

spatial predictions made in this study. These findings offer valuable insights for improving fire 

mitigation strategies, enabling authorities to prioritize high-risk areas for surveillance and 

resource allocation. Furthermore, the spatial modelling approach used in this study can support 

the development of predictive tools and inform future research on fire dynamics in relation to 

climate patterns and land use. 
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