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 The complexity of a graphs remains an active area of research within graph theory. 
Let 𝐺 be an undirected connected graph. Graph 𝐺 is said as a non-separable graph 
if it does not have cut-vertex. A maximal non-separable subgraph of graph 𝐺  is 
called a block of 𝐺. Every connected graph 𝐺 has at least one spanning tree. The 
complexity of the graph 𝐺 is the number of spanning trees in 𝐺, denoted by 𝜏(𝐺), 
and can be determined using the matrix tree theorem. The matrix used in this 
theorem is the Laplacian matrix, which related to the number of spanning trees in 
a graph. This research aims to formulate the complexity of graphs with wheel graph 
𝑊𝑛 and fan graph 𝐹𝑛 as their blocks. The focus of this research is on graphs whose 
blocks are wheel graph 𝑊𝑛  and fan graph 𝐹𝑛, specifically the 𝑚-wheel graph 𝑊𝑛,𝑚, 

the dragonfly graph 𝐷𝑔𝑛 , and the generalized dragonfly graph 𝐷𝑔𝑛
(3,3)

. This study 
utilizes a qualitative and theoretical approach grounded in mathematical analysis. 
It involves a thorough review of relevant books and journal articles. The theoretical 
contributions of this research include deeper understanding about complexity of 
graph and elucidating the relationship between the complexity of graphs and their 
blocks. In this research, the complexity of graphs is determined using the matrix 
tree theorem, which involves calculating the cofactor of the Laplacian matrix. Based 

on 𝜏(𝑊𝑛)  and 𝜏(𝐹𝑛) , the results obtained in this study are 𝜏(𝑊𝑛,𝑚) = (𝜏(𝑊𝑛))
𝑚

, 

𝜏(𝐷𝑔𝑛) = (𝜏(𝐹𝑛+2))
2

 and  𝜏(𝐷𝑔𝑛
(3,3)

) = (𝜏(𝐹𝑛+2))
3

 . The results of this study show 

that the complexity of a graph is related to the complexity of its blocks. 

Keywords: 
Spanning Tree;  
Laplacian Matrix;  
Matrix Tree Theorem;  
Block of Graph. 
 
 

 

 
 

 
https://doi.org/10.31764/jtam.v9i4.32776 

 
This is an open access article under the CC–BY-SA license 
 

 
——————————   ◆   —————————— 

 
 

A. INTRODUCTION  

Tree is one of the basic structures in graph theory that represent relationships between 

objects in a structured way. As a connected and undirected graph without cycles, a tree consists 

of vertices and the edges that connect them (Koutrouli et al., 2020). Tree is widely used in 

various fields, such as computing, networking, and data, due to their simple yet very flexible 

nature to represent structures or relationships. One of the important concepts in tree is 

spanning trees. A spanning tree is a tree subgraph of a graph that has all vertices in the graph 

without forming a cycle (Daoud & Saleh, 2020). The number of spanning trees in graph 𝐺 or the 

complexity of graph G is denoted by 𝜏(𝐺) (Daoud & Mohamed, 2017). Complexity of graph is 

one of the topics in graph theory that has a wide application (Deen, 2023).  

This is because complexity of graph can be applied to various fields such as investigating 

the possibility of maser particle transitions using energy analysis, calculating certain chemical 

isomers, and calculating the number of Eulerian trajectories in a graph (Liu & Daoud, 2019; 

Mohamed & Amin, 2024). In extension, complexity has a lot to do with networks. The perfect 
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and higher the quality of the network, the more spanning trees it contains, and this increases 

the potential connections between any two vertices, and this enhances good reliability and 

rigidity (Deen & Aboamer, 2021). Owing to its extensive applications, it is essential to 

determine an effective method for calculating its complexity.  

The study of calculating the complexity of graph began in 1847 when Gustav Kirchhoff 

introduced a method to determine the complexity of graph by analyzing the relationship 

between the number of spanning trees in the graph 𝐺 and the cofactor of the Laplacian matrix 

of graph 𝐺 (Daoud, 2017). This method is known as the matrix tree theorem. The matrix used 

in this theorem is the Laplacian matrix 𝐿(𝐺), which is one of the representation matrices of 

graph 𝐺 (Holzer, 2022). In addition, various approaches have been developed to calculate the 

complexity of graph. 

Some previous research have found the general form of the complexity of several types of 

graphs by using many various techniques, such as the matrix tree theorem, the Laplacian 

spectrum or eigenvalues of the corresponding adjacency matrix, the deletion-contraction 

method, and the graph complement approach (Daoud, 2015; Liu & Daoud, 2018; Daoud, 2018, 

2019; Deen et al., 2023; Hanssen et al., 2024; Fran et al., 2024, 2025). There are also other 

research that apply the electrically equivalent transformations for the enumeration of spanning 

trees (Shang, 2016; Sun et al., 2016; Liu & Daoud, 2019; Daoud & Saleh, 2020). Further research 

by Wei et al. (2023) discusses the complexity of wheel graphs with double vertices and edges. 

The results obtained are the complexity of wheel graphs with double vertices and edges, and 

also assumed that if 𝐷𝑊 is a double-wheel graph based on the wheel graphs 𝑊1 and 𝑊2, then 

the complexity of graph 𝐷𝑊  is 𝜏(𝐷𝑊) = 𝜏(𝑊1)𝜏(𝑊2)  (Wei et al., 2023). The focus of this 

research is on graphs whose blocks are wheel graph 𝑊𝑛  and fan graph 𝐹𝑛 . A block of 𝐺  is a 

maximal non-separable subgraph of graph 𝐺. A graph is a non-separable graph if it has no cut-

vertex (Li et al., 2018). Consequently, a graph 𝐺 is regarded as a block if it is non-separable, 

meaning that 𝐺 itself is a block.  

This research aims to determine the complexity of graphs with wheel graph 𝑊𝑛 and fan 

graph 𝐹𝑛 as their blocks, specifically the 𝑚-wheel graph 𝑊𝑛,𝑚, the dragonfly graph 𝐷𝑔𝑛, and the 

generalized dragonfly graph 𝐷𝑔𝑛
(3,3)

 by using the matrix tree theorem. An 𝑚-wheel graph 𝑊𝑛,𝑚 

is a graph with wheel graph as its blocks. The dragonfly graph 𝐷𝑔𝑛  and the generalized 

dragonfly graph 𝐷𝑔𝑛
(3,3)

 are the graphs with fan graph as its blocks. For graphs that contain 

blocks, it is effective for calculating its complexity by using the matrix tree theorem. The matrix 

tree theorem provides a direct algebraic formula to calculate the exact number of spanning 

trees by evaluating the cofactor of the Laplacian matrix. 

 

B. METHODS 

This research uses a literature review, which involves reading literature related to 

complexity of graphs, particularly the matrix tree theorem. The graphs examined in this study 

include the wheel graph 𝑊𝑛, the 𝑚-wheel graph 𝑊𝑛,𝑚, the fan graph 𝐹𝑛, the dragonfly graph 𝐷𝑔𝑛, 

and the generalized dragonfly graph 𝐷𝑔𝑛
(3,3)

. The research stages to determine the complexity 

of graph using the matrix tree theorem are as follows. 

1. Determine the adjacency matrix 𝐴(𝐺) and the degree matrix 𝐷(𝐺) of the graph 𝐺. 

2. Find the Laplacian matrix of graph 𝐺 using 𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺). 
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3. Compute the number of spanning trees of graph 𝐺  using 𝜏(𝐺) = 𝐶𝑖𝑗(𝐿(𝐺)) =

(−1)𝑖+𝑗 det(𝐿(𝐺)(𝑖|𝑗)), where 𝐶𝑖𝑗(𝐿(𝐺)) and 𝐿(𝐺)(𝑖|𝑗) are the cofactor of 𝐿(𝐺) and the 

submatrix formed by deleting row 𝑖 and column 𝑗 of 𝐿(𝐺), respectively. 

4. Construct the complexity 𝜏(𝐺) formula of graph 𝐺. 

5. Prove the complexity 𝜏(𝐺) formula of graph 𝐺. 

 

This is important to note that this research does not involve experimental work or 

empirical data analysis. Instead, all procedures are based on mathematical deduction, utilizing 

concepts from graph theory, matrix theory, and determinant calculation. 

 

C. RESULT AND DISCUSSION 

Before determine the complexity of graph, it is necessary to know some theoretical basic 

such as several definitions of graphs, lemmas, and theorem that define a method to determine 

the complexity of graph, as follows. 

 

Definition 1 (Liu et al., 2019) Let 𝒏,𝒎 be positive integer with 𝒏 ≥ 𝟑 and 𝒎 ≥ 𝟏. An 𝒎-wheel 

graph denoted by 𝑾𝒏,𝒎 = (𝑽(𝑾𝒏,𝒎), 𝑬(𝑾𝒏,𝒎)) is a graph that has 𝒏𝒎 + 𝟏 vertices with the 

vertex and the edge sets as follows. 

 

𝑉(𝑊𝑛,𝑚) = {𝑤0, 𝑤𝑖
𝑗
|𝑖 ∈ {1,2, … , 𝑛}, 𝑗 ∈ {1,2, … ,𝑚}} 

𝐸(𝑊𝑛,𝑚) = {(𝑤0, 𝑤𝑖
𝑗
)|𝑖 ∈ {1,2, … , 𝑛}, 𝑗 ∈ {1,2, … ,𝑚}} ∪ {(𝑤1

𝑗
, 𝑤𝑛

𝑗
)|𝑗 ∈ {1,2, … ,𝑚}} ∪

{(𝑤𝑖
𝑗
, 𝑤𝑖+1

𝑗
)|𝑖 ∈ {1,2, … , 𝑛 − 1}, 𝑗 ∈ {1,2, … ,𝑚}}. 

 

If 𝑚 = 1, then 𝑊𝑛,1 is called as wheel graph 𝑊𝑛  and vertex 𝑤𝑖
𝑗
 can be written as 𝑤𝑖 . Figure 1 

below illustrates the 𝑚-wheel graph 𝑊𝑛,𝑚 and wheel graph 𝑊𝑛. 

 

  

a b 

Figure 1. (a) 𝒎-Wheel Graph 𝑾𝒏,𝒎 and (b) Wheel Graph 𝑾𝒏 
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Definition 2 Bača et al. (2021) Let 𝒏 be a positive integer with 𝒏 ≥ 𝟐. A fan graph denoted by 

𝑭𝒏 = (𝑽(𝑭𝒏), 𝑬(𝑭𝒏)) is a graph that has 𝒏 + 𝟏 vertices with the vertex and the edge sets as 

follows. 

 

𝑉(𝐹𝑛) = {𝑣𝑖|𝑖 ∈ {0,1,2, … , 𝑛}} 

𝐸(𝐹𝑛) = {(𝑣0, 𝑣𝑖)|𝑖 ∈ {1,2, … , 𝑛}} ∪ {(𝑣𝑖, 𝑣𝑖+1)|𝑖 ∈ {1,2, … , 𝑛 − 1}} 

 

In Figure 2, we illustrate the fan graph 𝐹𝑛. 

 

 
Figure 2. Fan Graph 𝑭𝒏  

 

Definition 3 Budi et al. (2021) Let 𝑛  be a positive integer with 𝑛 ≥ 1 . A dragonfly graph 

denoted by 𝐷𝑔𝑛 = (𝑉(𝐷𝑔𝑛), 𝐸(𝐷𝑔𝑛)) is a graph that has 2𝑛 + 7 vertices with the vertex and the 

edge sets as follows. 

 

𝑉(𝐷𝑔𝑛) = {𝑢𝑖 , 𝑣𝑗 , 𝑤𝑘|𝑖, 𝑗 ∈ {1,2, … , 𝑛 + 2}, 𝑘 ∈ {0,1,2}} 

𝐸(𝐷𝑔𝑛) = {(𝑤0, 𝑤𝑖)|𝑖 ∈ {1,2}} ∪ {(𝑢𝑖, 𝑢𝑖+1)|𝑖 ∈ {1,2, … , 𝑛 + 1}} ∪ {(𝑢𝑖, 𝑤0)|𝑖 ∈ {1,2, … , 𝑛 + 2}}

∪ {(𝑣𝑖 , 𝑣𝑖+1)|𝑖 ∈ {1,2, … , 𝑛 + 1}} ∪ {(𝑣𝑖, 𝑤0)|𝑖 ∈ {1,2, … , 𝑛 + 2}}. 

 

Definition 4 (Inayah et al., 2022) Let 𝑛  be a positive integer with 𝑛 ≥ 1 . A generalized 

dragonfly graph denoted by 𝐷𝑔𝑛
(3,3)

= (𝑉(𝐷𝑔𝑛
(3,3)), 𝐸(𝐷𝑔𝑛

(3,3)))  is a graph that has 3𝑛 + 10 

vertices the vertex and the edge sets as follows. 

 

𝑉(𝐷𝑔𝑛
(3,3)

) = {𝑣𝑖
1, 𝑣𝑖

2, 𝑣𝑖
3, 𝑤𝑘|𝑖 ∈ {1,2,3, … , 𝑛 + 2}, 𝑘 ∈ {0,1,2,3}} 

𝐸(𝐷𝑔𝑛
(3,3)

) = {(𝑤0, 𝑤𝑘)|𝑘 ∈ {1,2,3}} ∪ {(𝑣𝑖
𝑗
, 𝑣𝑖+1

𝑗
)|, 𝑖 ∈ {1,2, … , 𝑛 + 1} , 𝑗 ∈ (1,2,3)} ∪

{(𝑣𝑖
𝑗
, 𝑤0)|𝑖 ∈ {1,2, … , 𝑛 + 2} , 𝑗 ∈ (1,2,3)}. 
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As an illustration, the dragonfly graph 𝐷𝑔𝑛  and the generalized dragonfly graph 𝐷𝑔𝑛
(3,3)

 are 

shown in Figure 3. 

 

  
a b 

Figure 3. (a) Dragonfly Graph 𝑫𝒈𝒏  and (b) Generalized Dragonfly Graph 𝑫𝒈𝒏
(𝟑,𝟑)

 

 

From Figure 1, it can be figured out that 𝑊𝑛 is the blocks of graph 𝑊𝑛,𝑚. From Figure 2 and 

Figure 3 It can be figured out that 𝐹𝑛 is the blocks of graph 𝐷𝑔𝑛 and 𝐷𝑔𝑛
(3,3)

. The complexity of 

some defined graphs can be determined using the matrix tree theorem in Theorem 1. Moreover, 

we define Lemma 1 and  Lemma 2 to help in computing the cofactor or determinant of matrix. 

 

Theorem 1 (The Matrix Tree Theorem) Holzer (2022) Let 𝐺  be an undirected connected 

graph with 𝑛 vertices, degree matrix 𝐷(𝐺), and adjacency matrix 𝐴(𝐺). The number of spanning 

trees of graph 𝐺, denoted by 𝜏(𝐺), is equal to the value of any cofactor of the Laplacian matrix 

𝐿(𝐺) of graph 𝐺 where 𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺). 
 

Lemma 1 Deen & Aboamer (2021) Let matrix 𝐴𝑛(𝑥) be a matrix of size 𝑛 × 𝑛, with 

 

𝐴𝑛(𝑥) =

[
 
 
 
 
 

𝑥 −1 0 ⋯ 0 −1
−1 𝑥 −1 ⋱ ⋱ 0
0 −1 𝑥 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
0 ⋱ ⋱ −1 𝑥 −1

−1 0 ⋯ 0 −1 𝑥 ]
 
 
 
 
 

 

 

for all 𝑥 ∈ ℝ, 𝑥 ≥ 3 and 𝑛 ∈ ℕ, 𝑛 ≥ 3, then the determinant is 

 

det(𝐴𝑛(𝑥)) = [(
𝑥

2
+ √(

𝑥

2
)
2

− 1)

𝑛

+ (
𝑥

2
− √(

𝑥

2
)
2

− 1)

𝑛

] − 2 

 

 

 

 



 Fransiskus Fran, Complexity of Graphs with Wheel...    1223 

 

 

Lemma 2 Deen & Aboamer (2021) Let matrix 𝐵𝑛(𝑥) be a matrix of size 𝑛 × 𝑛, with 

 

𝐵𝑛(𝑥) =

[
 
 
 
 
 

𝑥 −1 0 ⋯ 0 0
−1 𝑥 + 1 −1 ⋱ ⋱ 0
0 −1 𝑥 + 1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
0 ⋱ ⋱ −1 𝑥 + 1 −1
0 0 ⋯ 0 −1 𝑥 ]

 
 
 
 
 

 

 

for all 𝑥 ∈ ℝ and 𝑛 ∈ ℕ, 𝑛 ≥ 2, then the determinant is 

 

det(𝐵𝑛(𝑥)) =
𝑥 − 1

2√(
𝑥 + 1

2 )
2

− 1

[(
𝑥 + 1

2
+ √(

𝑥 + 1

2
)
2

− 1)

𝑛

− (
𝑥 + 1

2
− √(

𝑥 + 1

2
)
2

− 1)

𝑛

] 

 

Proof of the matrix tree theorem at Theorem 1 can be found in many articles and one of them 

is in Fikadila’s article at (Fikadila et al., 2024). In addition, the proofs of Lemma 1 and Lemma 

2 can be found in Nurliantika’s research at (Nurliantika et al., 2025).  
 

Lemma 3 Deen & Aboamer (2021) Let 𝒫, 𝒬, ℛ, and 𝒮 be matrices of size 𝑚 × 𝑚, 𝑚 × 𝑛, 𝑛 × 𝑚, 

and 𝑛 × 𝑛, respectively. Assume 𝒫 and 𝒮 are nonsingular, then 

 

det [
𝒫 𝒬
ℛ 𝒮

] = det(𝒫)det(𝒮 − ℛ𝒫−1𝒬) = det(𝒫 − 𝒬𝒮−1ℛ)det(𝒮) 

 

After understanding the theoretical basic, the following theorems provides the result of this 

research. 
 

Theorem 2 (Daoud, 2017) Given a wheel graph 𝑊𝑛, then the complexity of the wheel graph 𝑊𝑛 

with 𝑛 ≥ 3 is 

𝜏(𝑊𝑛) = (
3 + √5

2
)

𝑛

+ (
3 − √5

2
)

𝑛

− 2 

 

Proof. The adjacency matrix and degree matrix of size (𝑛 + 1) × (𝑛 + 1) for the wheel graph 

𝑊𝑛 are as follows: 

 

𝐴(𝑊𝑛) =

[
 
 
 
 
 
 
0 1 ⋯ ⋯ ⋯ 1 1
1 0 1 0 ⋯ 0 1
⋮ 1 0 1 ⋱ ⋱ 0
⋮ 0 1 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ 0 ⋱ ⋱ ⋱ 0 1
1 1 0 ⋯ 0 1 0]

 
 
 
 
 
 

; 𝐷(𝑊𝑛) =

[
 
 
 
 
 
 
𝑛 0 ⋯ ⋯ ⋯ ⋯ 0
0 3 0 ⋱ ⋱ ⋱ ⋮
⋮ 0 3 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 3 0
0 ⋯ ⋯ ⋯ ⋯ 0 3]
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Now, the Laplacian matrix of size (𝑛 + 1) × (𝑛 + 1) can be obtained as follows: 

 

𝐿(𝑊𝑛) = 𝐷(𝑊𝑛) − 𝐴(𝑊𝑛) 

=

[
 
 
 
 
 
 
𝑛 −1 ⋯ ⋯ ⋯ ⋯ −1
−1 3 −1 0 ⋯ 0 −1
⋮ −1 3 −1 ⋱ ⋱ 0
⋮ 0 −1 3 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ 0 ⋱ ⋱ −1 3 −1

−1 −1 0 ⋯ 0 −1 3 ]
 
 
 
 
 
 

 

 

By applying Theorem 1 yields: 

 

𝜏(𝑊𝑛) = 𝐶11(𝐿(𝑊𝑛)) = (−1)1+1 det(𝐿(𝑊𝑛)(1|1)) 

= det

[
 
 
 
 
 

3 −1 0 ⋯ 0 −1
−1 3 −1 ⋱ ⋱ 0
0 −1 3 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
0 ⋱ ⋱ −1 3 −1

−1 0 ⋯ 0 −1 3 ]
 
 
 
 
 

𝑛×𝑛

 

= [(
3

2
+ √(

3

2
)
2

− 1)

𝑛

+ (
3

2
− √(

3

2
)
2

− 1)

𝑛

] − 2 

= (
3

2
+ √

5

4
)

𝑛

+ (
3

2
− √

5

4
)

𝑛

− 2 

= (
3 + √5

2
)

𝑛

+ (
3 − √5

2
)

𝑛

− 2.  ∎ 

 

Theorem 3 Given an 𝑚-wheel graph 𝑊𝑛,𝑚, then the complexity of the 𝑚-wheel graph 𝑊𝑛,𝑚 with 

𝑛 ≥ 3 and 𝑚 ≥ 1 is 

 

𝜏(𝑊𝑛,𝑚) = (𝜏(𝑊𝑛))
𝑚

= [(
3 + √5

2
)

𝑛

+ (
3 − √5

2
)

𝑛

− 2]

𝑚

 

 

Proof. With the same kind of reasoning from Theorem 2, we obtain the Laplacian matrix of size 

(𝑚𝑛 + 1) × (𝑚𝑛 + 1) for the 𝑚-wheel graph 𝑊𝑛,𝑚 as follows. 

 

𝐿(𝑊𝑛,𝑚) =

[
 
 
 
 
 
𝑚𝑛 𝑅𝑇 𝑅𝑇 ⋯ ⋯ 𝑅𝑇

𝑅 𝑆 𝑂 ⋯ ⋯ 𝑂
𝑅 𝑂 𝑆 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 𝑆 𝑂
𝑅 𝑂 ⋯ ⋯ 𝑂 𝑆 ]
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where, 

𝑂 is the 𝑛 × 𝑛 zero matrix; 

𝑅 is the column matrix of size 𝑛 × 1, whose all entries are −1; and 

 

𝑆 =

[
 
 
 
 
 

3 −1 0 ⋯ 0 −1
−1 3 −1 ⋱ ⋱ 0
0 −1 3 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
0 ⋱ ⋱ −1 3 −1

−1 0 ⋯ 0 −1 3 ]
 
 
 
 
 

𝑛×𝑛

. 

 

By applying Theorem 1, it is obtained: 

 

𝜏(𝑊𝑛,𝑚) = 𝐶11 (𝐿(𝑊𝑛,𝑚)) = (−1)1+1 det (𝐿(𝑊𝑛,𝑚)(1|1)) 

= det

[
 
 
 
 
𝑆 𝑂 ⋯ ⋯ 𝑂
𝑂 𝑆 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝑆 𝑂
𝑂 ⋯ ⋯ 𝑂 𝑆]

 
 
 
 

𝑚×𝑚

 

= (det(𝑆))𝑚 

=

(

 
 
 

det

[
 
 
 
 
 

3 −1 0 ⋯ 0 −1
−1 3 −1 ⋱ ⋱ 0
0 −1 3 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
0 ⋱ ⋱ −1 3 −1

−1 0 ⋯ 0 −1 3 ]
 
 
 
 
 

𝑛×𝑛)

 
 
 

𝑚

 

= (𝜏(𝑊𝑛))
𝑚

 

 

From Theorem 2, we conclude that: 

 

𝜏(𝑊𝑛,𝑚) = [(
3 + √5

2
)

𝑛

+ (
3 − √5

2
)

𝑛

− 2]

𝑚

.  ∎ 

 

Theorem 4 (Daoud, 2015) Given a fan graph 𝐹𝑛, then the complexity of the fan graph 𝐹𝑛 with 

𝑛 ≥ 2 is 

𝜏(𝐹𝑛) =
1

5
√5 [(

3 + √5

2
)

𝑛

− (
3 − √5

2
)

𝑛

] 
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Proof. The adjacency matrix and degree matrix of size (𝑛 + 1) × (𝑛 + 1) for the fan graph 𝐹𝑛 

are as follows. 

 

𝐴(𝐹𝑛) =

[
 
 
 
 
 
 
0 1 ⋯ ⋯ ⋯ ⋯ 1
1 0 1 0 ⋯ ⋯ 0
⋮ 1 0 ⋱ ⋱ ⋱ ⋮
⋮ 0 ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋮ ⋯ ⋱ ⋱ 0 1
1 0 ⋯ ⋯ 0 1 0]

 
 
 
 
 
 

; 𝐷(𝐹𝑛) =

[
 
 
 
 
 
 
𝑛 0 ⋯ ⋯ ⋯ ⋯ 0
0 2 0 ⋯ ⋯ ⋯ 0
⋮ 0 3 ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ 3 0
0 0 ⋯ ⋯ ⋯ 0 2]

 
 
 
 
 
 

 

Now, the Laplacian matrix of size (𝑛 + 1) × (𝑛 + 1) can be obtained as follows. 

 

𝐿(𝐹𝑛) = 𝐷(𝐹𝑛) − 𝐴(𝐹𝑛) 

=

[
 
 
 
 
 
 

𝑛 −1 ⋯ ⋯ ⋯ ⋯ −1
−1 2 −1 0 ⋯ ⋯ 0
⋮ −1 3 −1 ⋱ ⋱ ⋮
⋮ 0 −1 3 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋮ ⋱ ⋱ −1 3 −1

−1 0 ⋯ ⋯ 0 −1 2 ]
 
 
 
 
 
 

 

 

By applying Theorem 1 yields: 

 

𝜏(𝐹𝑛) = 𝐶11(𝐿(𝐹𝑛)) = (−1)1+1 det(𝐿(𝐹𝑛)(1|1)) 

= det

[
 
 
 
 
 

2 −1 0 ⋯ ⋯ 0
−1 3 −1 ⋱ ⋱ ⋮
0 −1 3 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ −1 3 −1
0 ⋯ ⋯ 0 −1 2 ]

 
 
 
 
 

𝑛×𝑛

 

=
2 − 1

2√(
2 + 1

2 )
2

− 1

[(
2 + 1

2
+ √(

2 + 1

2
)

2

− 1)

𝑛

− (
2 + 1

2
− √(

2 + 1

2
)
2

− 1)

𝑛

] 

=
1

2√5
4

[(
3

2
+ √

5

4
)

𝑛

− (
3

2
− √

5

4
)

𝑛

] 

=
1

5
√5 [(

3 + √5

2
)

𝑛

− (
3 − √5

2
)

𝑛

] .  ∎ 

 

Theorem 5 Given a dragonfly graph 𝐷𝑔𝑛, then the complexity of the dragonfly graph 𝐷𝑔𝑛 with 

𝑛 ≥ 1 is 

𝜏(𝐷𝑔𝑛) = (𝜏(𝐹𝑛+2))
2

=
1

5
[(

3 + √5

2
)

𝑛+2

− (
3 − √5

2
)

𝑛+2

]

2
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Proof. Observe that the Laplacian matrix of size (2𝑛 + 7) × (2𝑛 + 7) for the dragonfly graph 

𝐷𝑔𝑛 is as follows. 

 

𝐿(𝐷𝑔𝑛) =

[
 
 
 
2𝑛 + 6 𝑅2

𝑇 𝑅𝑇 𝑅𝑇

𝑅2 𝐼2 𝑂2
𝑇 𝑂2

𝑇

𝑅 𝑂2 𝑆 𝑂
𝑅 𝑂2 𝑂 𝑆 ]

 
 
 

 

where, 

𝐼2 is the 2 × 2 identity matrix; 

𝑂2 is the (𝑛 + 2) × 2 zero matrix; 

𝑅2 is the column matrix of size 2 × 1, whose all entries are −1; 

𝑂 is the (𝑛 + 2) × (𝑛 + 2) zero matrix; 

𝑅 is the column matrix of size (𝑛 + 2) × 1, whose all entries are −1; and 

 

𝑆 =

[
 
 
 
 
 

2 −1 0 ⋯ ⋯ 0
−1 3 −1 ⋱ ⋱ ⋮
0 −1 3 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ −1 3 −1
0 ⋯ ⋯ 0 −1 2 ]

 
 
 
 
 

(𝑛+2)×(𝑛+2)

. 

 

From Theorem 1, it follows that: 

 

𝜏(𝐷𝑔𝑛) = 𝐶11(𝐿(𝐷𝑔𝑛)) = (−1)1+1 det(𝐿(𝐷𝑔𝑛)(1|1)) 

= det [
𝐼2 𝑂2

𝑇 𝑂2
𝑇

𝑂2 𝑆 𝑂
𝑂2 𝑂 𝑆

] 

= det(𝐼2) det [
𝑆 𝑂

𝑂 𝑆
] = det [

1 0
0 1

] det(𝑆) det(𝑆) 

= (det(𝑆))2 

=

(

 
 
 

det

[
 
 
 
 
 

2 −1 0 ⋯ ⋯ 0
−1 3 −1 ⋱ ⋱ ⋮
0 −1 3 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ −1 3 −1
0 ⋯ ⋯ 0 −1 2 ]

 
 
 
 
 

(𝑛+2)×(𝑛+2))

 
 
 

2

 

= (𝜏(𝐹𝑛+2))
2
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By applying Theorem 4, we conclude that: 

 

𝜏(𝐷𝑔𝑛) = (
1

5
√5 [(

3 + √5

2
)

𝑛+2

− (
3 − √5

2
)

𝑛+2

])

2

 

=
1

5
[(

3 + √5

2
)

𝑛+2

− (
3 − √5

2
)

𝑛+2

]

2

.  ∎ 

 

Theorem 6 Given a generalized dragonfly graph 𝐷𝑔𝑛
(3,3)

, then the complexity of the generalized 

dragonfly graph 𝐷𝑔𝑛
(3,3)

 with 𝑛 ≥ 1 is 

 

𝜏(𝐷𝑔𝑛
(3,3)

) = (𝜏(𝐹𝑛+2))
3

=
1

25
√5 [(

3 + √5

2
)

𝑛+2

− (
3 − √5

2
)

𝑛+2

]

3

 

 

Proof. The generalized dragonfly graph 𝐷𝑔𝑛
(3,3)

 has 3𝑛 + 10  vertices. Thus, we obtain the 

Laplacian matrix of size (3𝑛 + 10) × (3𝑛 + 10) as follows. 

 

𝐿(𝐷𝑔𝑛
(3,3)

) =

[
 
 
 
 
3𝑛 + 9 𝑅3

𝑇 𝑅𝑇 𝑅𝑇 𝑅𝑇

𝑅3 𝐼3 𝑂3
𝑇 𝑂3

𝑇 𝑂3
𝑇

𝑅 𝑂3 𝑆 𝑂 𝑂
𝑅 𝑂3 𝑂 𝑆 𝑂
𝑅 𝑂3 𝑂 𝑂 𝑆 ]

 
 
 
 

 

where, 

𝐼3 is the 3 × 3 identity matrix; 

𝑂3 is the (𝑛 + 2) × 3 zero matrix; 

𝑅3 is the column matrix of size 3 × 1, whose all entries are −1; 

𝑂 is the (𝑛 + 2) × (𝑛 + 2) zero matrix; 

𝑅 is the column matrix of size (𝑛 + 2) × 1, whose all entries are −1; and 

 

𝑆 =

[
 
 
 
 
 

2 −1 0 ⋯ ⋯ 0
−1 3 −1 ⋱ ⋱ ⋮
0 −1 3 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ −1 3 −1
0 ⋯ ⋯ 0 −1 2 ]

 
 
 
 
 

(𝑛+2)×(𝑛+2)

. 
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By applying Theorem 1 yields: 

 

𝜏(𝐷𝑔𝑛
(3,3)

) = 𝐶11 (𝐿(𝐷𝑔𝑛
(3,3)

)) = (−1)1+1 det (𝐿(𝐷𝑔𝑛
(3,3)

)(1|1)) 

= det [

𝐼3 𝑂3
𝑇 𝑂3

𝑇 𝑂3
𝑇

𝑂3 𝑆 𝑂 𝑂
𝑂3 𝑂 𝑆 𝑂
𝑂3 𝑂 𝑂 𝑆

] 

= det(𝐼3) det [
𝑆 𝑂 𝑂
𝑂 𝑆 𝑂
𝑂 𝑂 𝑆

] = det [
1 0 0
0 1 0
0 0 1

] det(𝑆) det(𝑆) det(𝑆) 

= (det(𝑆))3 

=

(

 
 
 

det

[
 
 
 
 
 

2 −1 0 ⋯ ⋯ 0
−1 3 −1 ⋱ ⋱ ⋮
0 −1 3 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ −1 3 −1
0 ⋯ ⋯ 0 −1 2 ]

 
 
 
 
 

(𝑛+2)×(𝑛+2))

 
 
 

3

 

= (𝜏(𝐹𝑛+2))
3
 

 

Using the result in Theorem 4, it follows that: 

 

𝜏(𝐷𝑔𝑛
(3,3)

) = (
1

5
√5 [(

3 + √5

2
)

𝑛+2

− (
3 − √5

2
)

𝑛+2

])

3

 

=
1

25
√5 [(

3 + √5

2
)

𝑛+2

− (
3 − √5

2
)

𝑛+2

]

3

.  ∎ 

 

Based on the results of this research, it is obtained 𝜏(𝑊𝑛) , 𝜏(𝑊𝑛,𝑚) , 𝜏(𝐹𝑛) , 𝜏(𝐷𝑔𝑛) , and 

𝜏(𝐷𝑔𝑛
(3,3)

).  The complexity of wheel graph 𝑊𝑛  and fan graph 𝐹𝑛  studied in this research is 

supported by previous studies that have determined 𝜏(𝑊𝑛)  and 𝜏(𝐹𝑛)  using the recurrence 

relation and deletion-contraction method (Daoud, 2015, 2017). 

 

D. CONCLUSION AND SUGGESTIONS 

By using the matrix tree theorem, this research has obtained the complexity formulas of 

graphs generated by wheel graph and fan graph as their blocks. Based on 𝜏(𝑊𝑛), the complexity 

of 𝑚 -wheel graph 𝑊𝑛,𝑚  for 𝑛 ≥ 3  and  𝑚 ≥ 1  is 𝜏(𝑊𝑛,𝑚) = (𝜏(𝑊𝑛))
𝑚

. Based on 𝜏(𝐹𝑛) ,  the 

complexity of dragonfly graph 𝐷𝑔𝑛  for 𝑛 ≥ 1  is 𝜏(𝐷𝑔𝑛) = (𝜏(𝐹𝑛+2))
2

 and the complexity of 

generalized dragonfly graph 𝐷𝑔𝑛
(3,3)

 for 𝑛 ≥ 1 is 𝜏(𝐷𝑔𝑛
(3,3)

) = (𝜏(𝐹𝑛+2))
3
. These formulas show 

that the complexity of a graph related to the complexity of its blocks. Additionally, this research 

can be extended by investigating other graphs that contain different types of blocks. 
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