
 

 

1292 

JTAM (Jurnal Teori dan Aplikasi Matematika) 

http://journal.ummat.ac.id/index.php/jtam 
 

p-ISSN 2597-7512 | e-ISSN 2614-1175 
Vol. 9, No. 4, October 2025, pp. 1292-1308 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
An ST-DBSCAN Approach to Spatio-Temporal Clustering of 

Earthquake Events in West Java, Indonesia 
 

Dwi Kartika Widyawati1, Achmad Fauzan1* 
1Department of Statistics, Universitas Islam Indonesia, Indonesia 

achmadfauzan@uii.ac.id 
 

  ABSTRACT 
Article History: 
Received   : 09-07-2025 
Revised     : 16-08-2025 
Accepted   : 19-08-2025 
Online        : 01-10-2025 
 

 Earthquakes are among the most frequent and damaging natural disasters in 
Indonesia, particularly in West Java Province, where their unpredictable 
occurrence often causes casualties and severe infrastructure damage. This study 
aims to identify spatial and temporal patterns of earthquakes to support disaster 
risk mitigation efforts. A quantitative exploratory approach was applied using the 
Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-
DBSCAN) method, which groups earthquake events based on their proximity in 
space and time while distinguishing random noise. The analysis utilized secondary 
earthquake data from the Meteorology, Climatology, and Geophysics Agency 
(BMKG) covering the period January 2022 to December 2023. The results revealed 
eight distinct clusters and several high-risk zones with strong internal similarity 
(silhouette coefficient = 0.721), indicating stable and stationary patterns over the 
observed period. These findings demonstrate that ST-DBSCAN is effective in 
detecting consistent earthquake-prone areas. More importantly, the study provides 
practical implications for disaster mitigation, including the development of 
targeted early warning systems, prioritization of high-risk areas such as Cianjur 
Regency, and more efficient allocation of resources to strengthen preparedness and 
community safety. 
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A. INTRODUCTION  

Natural disasters are events that threaten people's lives and welfare, caused by natural 

phenomena, either from within the earth such as earthquakes, or from weather and climate 

change (Chaudhary & Piracha, 2021; Prasad & Francescutti, 2017; Sealey & Logan, 2019). 

Indonesia is very vulnerable to earthquakes because it is located at the boundaries of three 

tectonic plates: Indo-Australian, Eurasian, and Pacific, their motions often triggering 

earthquakes due to plate collisions or shifts (Murdiaty et al., 2020; Zaccagnino & Doglioni, 

2022). In addition, Indonesia is located along the Pacific Ring of Fire and the Alpide Belt, two of 

the world's major seismic belts, making this country one of the regions with the highest seismic 

activity in the world (Jufriansah et al., 2021).  

West Java Province is one of the most seismically active areas in Indonesia. In 2022, the 

Meteorology, Climatology, and Geophysics Agency (BMKG) recorded 1,290 earthquakes in the 

province, most occurring on land at shallow depths. The most destructive event, a magnitude 

5.6 Mw earthquake in Cianjur on November 21, 2022, caused 602 fatalities, thousands of 

injuries, and widespread damage to homes and public facilities (Ridwan, 2023). The province’s 

location near the southern subduction zone and the presence of active inland faults such as the 
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Cimandiri, South Garut, and Lembang faults further heighten its vulnerability (Irsyam et al., 

2020; Supendi et al., 2023).  

Given this high seismic risk, identifying patterns in earthquake occurrences is essential for 

disaster risk mitigation. Clustering analysis offers a way to map high-risk areas, enabling 

targeted preparedness measures such as the optimal placement of shelters, evacuation routes, 

and emergency assembly points (Yang et al., 2025; Zhang et al., 2023). One of the clustering 

methods that can be used is Spatio Temporal-Density Based Spatial Clustering Applications 

with Noise (ST-DBSCAN). The ST-DBSCAN algorithm is included in the category of 

nonparametric algorithms in unsupervised learning. Unsupervised learning is a learning 

method that uses machine learning algorithms to analyze and group unlabeled data sets (Berry 

et al., 2020). In the context of ST-DBSCAN, the algorithm is able to identify patterns or groups 

in spatial-temporal data without requiring additional information or assumptions about data 

grouping. The ST-DBSCAN method considers proximity in both spatial and temporal 

dimensions, is able to handle noise and outliers in the data, and has parameters that are 

relatively easy to implement, such as spatial distance parameters (epsilon) and temporal 

distance parameters (epsilon time). This algorithm also has the ability to find groups based on 

non-spatial, spatial, and temporal values of objects (Birant & Kut, 2007). ST-DBSCAN is a very 

effective method in identifying clusters in large spatial databases (Gaonkar & Sawant, 2013). 

Various studies have advanced spatiotemporal clustering of earthquake data using ST-

DBSCAN-based approaches. Sonhaji (2023) applied ST-DBSCAN to seismic data on Java Island, 

yielding 13 clusters and 10 noise points with a silhouette coefficient of 0.538. Nicolis et al. (2024) 

developed ST-DBSCAN-EV, which adapts the epsilon radius based on point density, and 

demonstrated superior performance (F1 > 0.8) on major Chilean earthquakes. Meanwhile, 

Sharma et.al (2023) proposed a two-stage clustering method combining Self-Organizing Maps 

and density-based temporal clustering to effectively separate aftershocks from background 

seismicity across several global regions, including Indonesia and Chile. In addition, there is also 

a study using the same method for earthquake points on Sulawesi Island resulting in 60 clusters 

and 216 noises (Jales et al., 2021). Faraouk et al (2023) conducted an ST-DBSCAN analysis on 

forest fire hotspots in Riau Province from 2015 to 2020.  

This study applies ST-DBSCAN to earthquake events in West Java from January 2022 to 

December 2023 to identify spatial and temporal clustering patterns and assess their stability. 

The novelty of this research lies in explicitly determining the most effective ST-DBSCAN 

parameter set through a structured evaluation of multiple spatial, temporal, and density 

thresholds using cluster quality metrics. This approach differs from previous works that often 

use default or heuristic parameters, ensuring that the resulting clusters are both statistically 

robust and contextually relevant for the study area. The findings provide practical benefits for 

disaster management agencies, including accurate mapping of high-risk zones, improved early 

warning dissemination, and better-targeted resource allocation in earthquake-prone regions. 
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B. METHODS 

1. Data 

This study is a quantitative descriptive research that uses earthquake data from West Java 

Province, covering the period from January 2022 to December 2023, obtained from the official 

BMKG repository (https://repogempa.bmkg.go.id/). The study area encompasses both land 

and offshore regions within the province. The variables analyzed include event date, longitude, 

latitude, magnitude, and depth, with detailed descriptions provided in Table 1. 

 

Table 1. Operational Variables Definition 

Variable Definition 
Date Earthquake dates in West Java Province (Date/Month/Year) 
Longitude Latitude coordinates of the point where the earthquake occurred in West Java Province 

(°) 
Latitude Longitude coordinates of the point where the earthquake occurred in West Java 

Province (°) 
Magnitude The strength of the earthquake that occurred in West Java Province (RS) 
Depth The depth of the focus point of the earthquake that occurred in West Java Province (KM) 

 

2. Research Methodology 

This study used the (ST-DBSCAN) method to group the distribution of earthquake locations 

in West Java Province. The flowchart of this method is shown in Figure 1. As presented in Figure 

1, the steps for analyzing the distribution of earthquakes in West Java Province from January 

2022 to December 2023 include several stages as follows.  

 

 
Figure 1. Research Flowchart 

https://repogempa.bmkg.go.id/
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First, the earthquake location data in West Java Province taken from the BMKG website 

(https://repogempa.bmkg.go.id) is geoprocessed, then georeferencing and digitization are 

carried out to create regional maps, including the addition of coordinate points in shapefile 

format. Next, the data is processed by deleting duplicated data and data outside the West Java 

Province area. This step aims to maintain data accuracy and consistency, because duplication 

can cause inconsistencies in the analysis. Furthermore, descriptive analysis is performed to 

provide an overview of the distribution of earthquakes in this region during the period. Then, 

the data distribution pattern is analyzed using nearest-neighbor analysis (Equation 2 and 

Equation 4), and the results of the data distribution are examined to determine whether there 

is a clustered pattern (using Equation 6).  If the data shows a clustered pattern, the ST-DBSCAN 

method is applied. The quality of the clusters is then assessed using the silhouette coefficient 

(Equation 7), and data exploration is carried out by changing the MinPts value so that the 

number of clusters formed is greater, which allows for broader identification of earthquake-

prone area. Finally, visualization and interpretation of the clustering results by the ST-DBSCAN 

method are presented to understand the distribution of earthquake risk in West Java Province. 

In the data preprocessing stage, Quantum Geographic Information System (QGIS) software was 

employed, whereas the analysis stage was conducted using R software. 

 

3. Nearest Neighbor Analysis and ST-DBSCAN 

Nearest neighbor analysis is a method designed to see patterns in point data in two or three 

dimensions (Fahira & Nooraeni, 2023; Halder et al., 2024; Philo & Philo, 2022a; Soltisz et al., 

2024). This method involves calculating the average distance between all points and their 

nearest neighbors. The nearest neighbor index is expressed as the ratio of the observed 

distance divided by the expected distance. The distance used is the Euclidean distance 

presented in Equation (1) for the spatial aspect and Equation (2) for the temporal aspect. The 

nearest neighbor index is expressed as 𝑅 and its calculation is written in Equation (3). 

 

𝑑𝑠(𝑖, 𝑗) =  √(𝑋𝑖 − 𝑋𝑗)2 +  (𝑌𝑖 − 𝑌𝑗)2    (1) 

 

𝑑𝑡(𝑖, 𝑗) =  |𝑋𝑑𝑎𝑡𝑒(𝑖) − 𝑋𝑑𝑎𝑡𝑒(𝑗)|    (2) 

 

𝑅 =  
𝑑̅𝑜𝑏𝑠

𝑑̅𝑟𝑎𝑛
       (3) 

 

𝑑̅𝑜𝑏𝑠 is the observed mean nearest-neighbor or the average observed distance between each 

point and its nearest neighbor and 𝑑̅𝑟𝑎𝑛 is the average expected distance for the given points in 

a random pattern, with Equation (4). 

 

𝑑̅𝑜𝑏𝑠 =  
∑ 𝑑𝑖

𝑛
𝑖=1

𝑛
 𝑎𝑛𝑑 𝑑̅𝑟𝑎𝑛 =  

1

2√𝑝
=  

1

2√
𝑛

𝐴

   (4) 

 

 

 

https://repogempa.bmkg.go.id/
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𝑑𝑖 is the distance between 𝑖 and its nearest neighbor, 𝑛 is the number of points, and A is the 

minimum rectangular area around all points, or the specified area value and  𝑆𝐸𝑑̅  is the 

standard error of the nearest neighbor mean and c is the test statistic, with the calculation 

formula given in Equations (5) and (6). 

 

𝑐 =  
𝑑̅𝑜𝑏𝑠− 𝑑̅𝑟𝑎𝑛 

𝑆𝐸𝑑̅

       (5) 

 

𝑆𝐸𝑑̅ =  
0.26136

√𝑛𝑝
=  

0.26136

√𝑛2

𝐴

     (6) 

 

The nearest neighbor index has a value ranging from 0 to 2.15 (Indrawan & Adrianto, 2016). 

The nearest neighbor index with a value of 0 indicates a completely clustered pattern. 

Meanwhile, the nearest neighbor index with a value of 2.15 indicates a completely dispersion 

pattern. A random pattern is indicated by a nearest neighbor index value of 1 (Philo & Philo, 

2022b). The sample distribution from test c is a normal distribution, therefore c is the normal 

standard deviation. Hypothesis testing on the c test statistic (zscore) involves the null 

hypothesis (𝐻0) stating randomly distributed data and the alternative hypothesis (𝐻1) stating 

cluster distributed data. The zscore value, which is normally distributed, is used as the test 

criteria. If the absolute value of 𝑍𝑠𝑐𝑜𝑟𝑒 > 𝑍𝑡𝑎𝑏𝑙𝑒 , then 𝐻0 is rejected (Aslam, 2022, 2024). 

The ST-DBSCAN algorithm requires three parameters, a parameter stating the distance 

between 2 objects on the earth's surface (Eps1), a parameter stating the distance between time 

events (Eps2), and the number of members of a cluster (MinPts). The stages of the ST-DBSCAN 

algorithm begin by determining the Eps parameter, which are the spatial and temporal distance 

parameters, and MinPts (the minimum number of cluster members) through a trial and error 

approach based on k-dist graph analysis (An et al., 2023; Birant & Kut, 2007; Iswari, 2022). 

Subsequently, we calculate the Euclidean distance between objects by considering the spatial 

and temporal dimensions, using Equations (1) and Equation (2). Next, a distance matrix is 

created that contains the distance between each pair of objects from a total of n objects by 

combining the spatial and temporal dimensions. From the starting point, all points are selected 

based on the spatial and temporal dimensions that meet the following criteria: A for spatial 

distance (𝑥 ≤ Eps1 in the spatial distance matrix) and B for temporal distance (𝑥 ≤ Eps2 in the 

temporal distance matrix). An intersection is taken between spatial and temporal dimensions 

such that it satisfies the condition 𝐴 ∩ 𝐵, where 𝑥 is in 𝐴 and 𝐵. If the number of objects in the 

intersection is less than MinPts, the point will be considered as noise. A cluster is formed when 

the selected points satisfy the criteria Eps1, Eps2, and MinPts. If point p is a border point and 

there are no other points in the intersection, then we proceed to the next point to form a new 

cluster. The steps from selecting a point to forming a cluster are repeated until all points have 

been processed. If there are two adjacent clusters, i.e. C1 and C2, where a point q may be in both, 

the algorithm will place point q in the cluster that first detects it. 
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4. Model Evaluation 

One of the measures to assess cluster quality is the silhouette coefficient. The calculation of 

the silhouette coefficient is presented in Equation (7) (Belyadi & Haghighat, 2021; Subasi, 

2020). 

𝑆(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)}
      (7) 

 

𝑎(𝑖) =  
1

|𝐴|−1
∑ 𝑑(𝑖, 𝑗)𝑗∈𝐴,𝑗≠1      (8) 

 

𝑏(𝑖) = min𝐶≠𝐴  𝑑(𝑖, 𝑗)     (9) 

 

𝑑(𝑖, 𝐶) =  
1

|𝐶|
∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶,      (10) 

 

The values |A| and |C| are the cluster sizes, which are the total number of objects in cluster 

A and cluster C, respectively. The value of 𝑎(𝑖) indicates the density of the cluster containing 

object 𝑖, while 𝑏(𝑖) describes the distance of object 𝑖 from other clusters. If 𝑎(𝑖)  is small and 

𝑏(𝑖) is large, 𝑆(𝑖) approaches 1, indicating a dense and far-separated cluster. Conversely, if 𝑎(𝑖) 

is large and 𝑏(𝑖) is small, 𝑆(𝑖) approaches -1, indicating a cluster that is not dense and close to 

other clusters. The closer the value of 𝑆(𝑖) is to 1, the better the clustering of data. Conversely, 

the closer to -1, the worse the clustering (Han et al., 2012; Ikotun et al., 2025; Papakostas, 2025; 

Zheng & Zhao, 2018). 

 

C. RESULT AND DISCUSSION 

1. Exploratory Spatial Data Analysis 

From January 2022 to December 2023, earthquakes in West Java Province occurred at 790 

locations. Before grouping the data, the distribution pattern of the data is examined. As a basis 

for whether the earthquake points are scattered or clustered, the nearest neighbor analysis is 

used. Based on the calculation results using the nearest neighbor analysis, the nearest neighbor 

index value is 0.45 which indicates a clustered pattern. In addition, the absolute value of the 

zscore of 29.313 is greater than the ztable of 1.96. Based on this, the data on the location points of 

the distribution of earthquakes in West Java Province from January 2022 to December 2023 

has a clustered data distribution pattern. 

 

2. Clustering Using the ST-DBSCAN Algorithm 

In this study, using the values of Eps1, Eps2, and MinPts, where the Eps1 interval is between 

2 KM to 22 KM, then Eps2 7 days, 14 days, 21 days and 28 days, while the MinPts interval used 

is 3 to 9. From the combination of the three parameters, the best cluster is determined based 

on the silhouette coefficient. The results of the combination of the three parameters are 

presented in Table 2. 
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Table 2. Silhouette Coefficient Results 

No MinPts 
Eps 1 
(KM) 

Eps2 
(Hari) 

Number  
of Clusters 

Number of  
Noise Points 

Silhouette 
Coefficient 

1 3 2 7 41 103 0.245 
2 3 6 7 20 13 0.543 
⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

68 5 6 28 21 37 0.556 
⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

134 8 6 21 10 132 0.560 
⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

168 9 22 28 2 0 0.676 

 

Based on Table 2, the maximum silhouette coefficient value is 0.721, namely at MinPts = 8, 

Eps1 = 2, and Eps2 = 21, with 8 clusters formed and 262 noise. The silhouette coefficient value 

of 0.721 means that the cluster has a strong structure. The silhouette coefficient plot for each 

MinPts is shown in Figure 2. Figure 3 presents a 3D visualization of the silhouette coefficient at 

each Eps1, Eps2, and MinPts. 

 

 
Figure 2. Silhouette Coefficient Plot against Each MinPts Value. 

Source: Processed data 

 

As presented in Figure 2, we obtained the overall average MinPts of 3 to 9, with the highest 

silhouette coefficient value at MinPts = 8. It is also observed that the fluctuations of the graph 

is the same because the time distance (days) between objects 7 days, 14 days, 21 days, and 28 

days the silhouette coefficient value produced is the same or there is no change over time (days).  
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Figure 3. Visualisation of the Silhouette Coefficient (Source: Processed data) 

 

In Figure 3, the X axis represents Eps1, the Y axis represents Eps2, and the Z axis represents 

MinPts. From a total of 168 pairs of Eps1, Eps2, and MinPts parameters, the highest silhouette 

coefficient value is 0.72, as indicated by the yellow point in the Figure, and the red points mark 

silhouette coefficient values that are close to 1. 

 

3. Data Exploration 

In addition to clustering based on the highest silhouette coefficient, as explained in the 

research methodology, data exploration for disaster mitigation was also conducted. During this 

stage, an earthquake incident map was created. We explored different outcomes by lowering 

the MinPts value, which resulted in the formation of more clusters, thereby identifying more 

earthquake-prone areas. The MinPts values used were 3 and 9, as a smaller MinPts value leads 

to more points being included in clusters. This occurs because the requirements for cluster 

formation become less stringent. With MinPts = 3, two clusters were formed with no noise and 

a silhouette coefficient of 0.676, whereas with MinPts = 9, six clusters were formed, along with 

279 noise points, and a silhouette coefficient of 0.714. A visualization of the data exploration 

results is presented in Figure 4. 

 

 
Figure 4. Visualisation of the number of clusters at MinPts=3 and MinPts=9 

Source: Processed data 

MinPts 3 MinPts 9 
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4. Best Clustering Selection 

The best clustering is determined by comparing the clustering results and the amount of 

noise, based on the highest silhouette coefficient for each MinPts value. A comparison of the 

clustering results is presented in Table 3. 

 

Table 3. Optimal Parameters for Each MinPts Value. 

MinPts Eps1 (Km) Eps 2 (Days) Cluster Noise 
Silhouette  
Coefficient 

3 14 7 2 0 0.676 
4 14 7 2 0 0.676 
5 14 7 2 0 0.676 
6 18 7 2 0 0.676 
7 2 7 9 243 0.711 
8 2 7 8 262 0.721 
9 2 7 6 279 0.714 

Based on Table 3, it is observed that the combination of Eps1 values from 2 to 22 and MinPts 

values from 3 to 9 that obtained the highest silhouette coefficient of 0.721 is MinPts = 8, Eps1 = 

2, and Eps2 = 7, which means that to form a cluster, a minimum of 8 points are needed with a 

maximum distance between points of 2 KM and a maximum distance of 7 days. The best 

clustering results were obtained with the best parameters Eps1 = 2, Eps2 = 7, and MinPts = 8, 

involving 8 clusters and 262 noise, with a silhouette coefficient value (excluding the noise) of 

0.721, suggesting that the cluster has a strong structure as the value is close to 1. The 

characteristics of the depth and magnitude of the earthquakes in each cluster are presented in 

Table 4. 

 

Table 4. Earthquake characteristics of each cluster 

Cluster Variable 
Statistic 

Mean Median Min Max Standard Deviation 

A 
Magnitude (RS) 2.26 2.18 1.14 6.40 0.62 
Depth (KM) 16.32 10.00 5.00 6.40 17.00 

B 
Magnitude (RS) 2.40 2.23 1.64 3.75 0.56 
Depth (KM) 28.41 12.00 10.00 265.00 51.49 

C 
Magnitude (RS) 2.09 2.07 1.55 2.46 0.29 
Depth (KM) 30.00 13.00 10.00 123.00 38.11 

D 
Magnitude (RS) 2.80 2.70 1.71 4.84 0.82 
Depth (KM) 41.36 10.00 10.00 148.00 44.06 

E 
 

Magnitude (RS) 2.88 2.76 1.78 4.15 0.60 
Depth (KM) 18.86 10.00 2.29 3.84 0.43 

F 
Magnitude (RS) 2.86 2.72 2.38 3.84 0.43 
Depth (KM) 42.67 2.84 10.00 95.00 22.69 

G 
Magnitude (RS) 2.68 2.66 2.22 3.22 0.33 
Depth (KM) 23.56 10.00 10.00 105.00 31.04 

H 
Magnitude (RS) 3.04 3.00 2.62 3.87 0.38 
Depth (KM) 22.88 10.00 10.00 108.00 34.42 

Based on Table 4, we conclude that the cluster with the highest average earthquake 

magnitude is cluster 8 at 3.04 RS. The following is a visualization of cluster 8 which is shown in 

Figure 5. 
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Figure 5. Visualisation of Cluster 8 

Source: Processed data 

 

In Figure 5, cluster 8 contains 8 earthquake points located in the Bandung Regency, Garut 

Regency and South Sea of the West Java Province, with the time span of the earthquake 

occurrence from September 4, 2023 to September 8, 2023. The next stage involves analyzing 

the Spatio-Temporal pattern, which is divided into four types: stationary, reappearing, 

oscillating, and track. Large clusters with at least 30 points can be analyzed for their patterns, 

while clusters with less than 30 points are considered small and their patterns cannot be 

studied  (Poelitz C. & Andrienko N., 2010). Based on the research of Poelitz and Andrienko, in 

order to analyze the Spatio-Temporal pattern at earthquake points in West Java Province, the 

focus of this study is directed towards large clusters. From the best parameter results of Eps1 

= 2, Eps2 = 7, and MinPts = 8, the following results of 8 clusters are obtained along with their 

respective number of points, as shown in Table 5. 

 

Table 5. Number of points in each cluster 

Cluster Number of Points 

A 430 

B 29 

C 12 

D 14 

E 14 

F 12 

G 9 

H 8 

 

Based on Table 5, there is only one cluster with more than 30 points, which is cluster A, with 

430 points. The following are the characteristics of the depth and strength of earthquakes in 

large clusters, which is presented in Table 6. 

 

 

 

 



1302  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 9, No. 4, October 2025, pp. 1292-1308  

 

 

Table 6. Earthquake Characteristics in Large Clusters 

Cluster 
Time Interval of Earthquake 

Occurences 
Variable 

Statistic 
Mean Median Min Max St.Dev 

A 
21 November 2022 to 25 

December 2022 

Magnitude 
(RS) 

2.26 2.18 1.14 6.40 0.62 

Depth (KM) 16.32 10.00 5.00 6.40 17.00 

Table 6 shows that the average earthquake strength in cluster A is 2.26 RS while the average 

earthquake depth is 16.32 KM. In addition, in cluster A, the standard deviation value is smaller 

than the average earthquake magnitude value, indicating that the earthquake magnitude data 

in cluster A does not vary. Furthermore, cluster A is analyzed for its pattern, which is illustrated 

in Figure 6. 

 

 
Figure 6. Spatio-Temporal Pattern Visualisation(Putri et al., 2023) 

 

The clusters are divided into periods, where since the best parameter in this study is Eps2=7, 

the length of the period is seven days allowing comparison of the earthquake point 

distributions between periods. In cluster A, there are five periods as shown in Figure 7. 
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Figure 7. Spatio-Temporal Pattern Visualisation 

Source: Processed Data 

 

Figure 7 shows that in period 1 to period 5, the epicenter of the earthquake did not shift, 

but several points shifted not far from the epicenter. To investigate the area where the 

epicenters of the earthquakes are located along with the distribution of other points, we present 

them in Table 7. 

  

1 2 3 

4 5 
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Table 7. Areas Containing Earthquake Epicenters 

Period Description of Area 

1 
Centered in Cianjur Regency and other earthquake points are located in West Bandung 
Regency, Sukabumi Regency, Purwakarta Regency, Karawang Regency and Bogor Regency 

2 
Centered in Cianjur Regency and other earthquake points are located in West Bandung 
Regency, Sukabumi Regency, Purwakarta Regency, Garut Regency, Tasikmalaya City, and 
the South Sea of West Java Province 

3 
Centered in Cianjur Regency and other earthquake points are located in West Bandung 
Regency, Sukabumi Regency, Bogor Regency, Bandung Regency, Garut Regency, and the 
South Sea of West Java Province 

4 
Centered in Cianjur Regency and other earthquake points are located in Sukabumi Regency 
and the South Sea of West Java Province 

5 
Centered in Cianjur Regency and other earthquake points are located in Bandung Regency, 
Garut Regency, Kuningan Regency, and the South Sea of West Java Province 

 

Based on Table 7 in period 1 to period 5 the earthquake epicenter is in Cianjur Regency. It 

is observed that the epicenter did not move from period 1 to period 5, which leads to the 

conclusion that cluster A has a stationary pattern, which refers to a collection of points or areas 

that tend to remain the same or do not change over time. 

 

5. Data Exploration of the Best Cluster 

This data exploration is used to examine the distribution of earthquake data in West Java 

Province based on the best cluster. Clusters with the number of points between 10 and 30 

consist of five clusters: Cluster B with 29 points, Cluster C with 12 points, Cluster D with 14 

points, Cluster E with 14 points, and Cluster F with 12 points. The distribution of earthquake 

data from these five clusters can be seen in Figure 8. 

Based on Figure 8, in Cluster B, the distribution of earthquake points is centered in Cianjur 

Regency, with other points scattered across Bandung Regency, Sukabumi Regency, and the 

southern sea of West Java Province. In Cluster C, the earthquake points are centered in Cianjur 

Regency, with other points scattered in Sukabumi Regency. In Cluster D, the distribution is 

centered in Cianjur Regency, with other points scattered across Bandung Regency, Sukabumi 

Regency, Bogor Regency, and the southern sea of West Java Province. In Cluster E, the points 

are centered in Bandung Regency, with others scattered across Cianjur Regency, Purwakarta 

Regency, Sukabumi Regency, Garut Regency, and the southern sea of West Java Province. In 

Cluster F, the earthquake points are not centered in any specific location, but are scattered 

across Cianjur Regency, Bandung Regency, Garut Regency, Sumedang Regency, Subang Regency, 

Ciamis Regency, and the southern sea of West Java Province. 

 Cianjur Regency is the area that is most often the center of earthquake cluster points. 

Therefore, with this analysis, it is expected that the local government can take appropriate steps 

to reduce losses, both casualties and material losses, in earthquake-prone areas. For example, 

Cianjur Regency can strengthen the construction of public facilities and important buildings in 

accordance with earthquake-resistant building quality standards. Steps such as selecting the 

right materials, using shock-resistance systems (such as base isolators, sliding pendulums, or 

shock absorbers to reduce the force transmitted to the main structure), selecting a location that 

is safe from earthquake risks, and strengthening columns and beams using steel placed in 

concrete can increase the strength and stiffness of the structure. In addition, disaster mitigation 
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can be carried out by conducting socialization, increasing awareness among the community, 

and holding basic training on disaster management for officers and residents is also an effective 

step. 

 

 
Figure 8. Distribution of Earthquakes Based on the Exploration Results (Source:Processed Data) 

 

The results of the earthquake clustering show that earthquakes in Cianjur tend to be 

concentrated or have a higher density than other areas in West Java Province. This may indicate 

that Cianjur has the potential for greater damage due to earthquakes. The Cianjur local 

government needs to pay attention to these results and prioritize appropriate mitigation 

measures to protect its citizens from potential earthquake hazards. When an earthquake occurs 

in Cianjur, people in the area must immediately take steps for their safety. One step that can be 

taken is to move to areas located north of Cianjur. These areas such as Bekasi, Karawang, 

Purwakarta, and Bogor, can be considered safer alternatives because they are quite far from 

the epicenter and have a lower risk of damage. In addition, these areas have stronger 

infrastructure and can provide better access to health facilities and emergency assistance in 

emergency situations such as earthquakes. Therefore, it is important for the people of Cianjur 

to have a good evacuation plan and follow the directions of local authorities to ensure their 

safety and that of their families in the face of the threat of an earthquake. 

The findings of this study, which identified eight earthquake clusters with a strong internal 

similarity (silhouette coefficient = 0.721), are consistent with previous research demonstrating 

the effectiveness of ST-DBSCAN in detecting spatio-temporal patterns within seismic data. 

Similar to the results reported by Birant & Kut (2007); Gaonkar & Sawant (2013), this study 

confirms the algorithm’s robustness in handling noise and identifying meaningful clusters in 

large spatial databases. However, unlike many previous studies that typically relied on a limited 

set of parameters, the present research systematically combined variations of spatial distance 

(Eps1), temporal distance (Eps2), and minimum cluster size (MinPts), resulting in 168 

parameter configurations tested. This comprehensive approach not only reinforces earlier 

findings on the stability of spatio-temporal clustering but also extends them by providing 

B C D 

E F 
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evidence that optimal parameter combinations enhance the precision of cluster detection. The 

emergence of stationary patterns in high-risk zones further supports earlier studies that 

emphasized the persistence of seismic activity in areas with active fault systems (Irsyam et al., 

2020; Supendi et al., 2023), while at the same time offering localized, actionable insights for 

disaster mitigation planning in Indonesia. 

 

D. CONCLUSION AND SUGGESTIONS 

This study successfully applied the ST-DBSCAN method to identify spatio-temporal 

clustering patterns of earthquakes in West Java, thereby achieving the main research objective 

of mapping high-risk zones and understanding their stability. The analysis of 168 parameter 

combinations revealed the best configuration (Eps1 = 2 km, Eps2 = 7 days, MinPts = 8), 

producing eight clusters with a silhouette coefficient of 0.721, which indicates robust clustering 

quality. One major cluster (Cluster A) with 430 points was centered in Cianjur Regency and 

exhibited a stationary pattern, highlighting a persistent concentration of seismic activity over 

time. The relevance of these results lies in providing reliable insights into earthquake-prone 

areas that are directly aligned with disaster risk mitigation objectives. Practically, the findings 

can support local authorities in prioritizing Cianjur and surrounding regions for disaster 

preparedness measures, including strengthening earthquake-resistant infrastructure, 

optimizing the placement of evacuation routes and shelters, and enhancing community 

awareness and emergency response planning. By focusing on the significance of the clustering 

outcomes rather than technical details, this study demonstrates the practical value of ST-

DBSCAN in supporting adaptive disaster management strategies in seismically active regions. 
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